

Une école de l'IMT

Model-Driven Engineering for Safety,

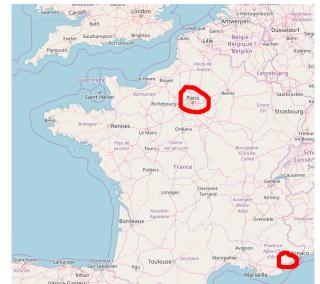
Security and Performance:

SysML-Sec

Ludovic APVRILLE

ludovic.apvrille@telecom-paristech.fr

Seminar - City University



Telecom ParisTech

Telecom ParisTech

Context: Security for Embedded Systems Embedded systems

SysML-Sec

Method SysML-Sec

Case study

Case Study

Demo

5/39

Demo

Conclusion

Conclusion, future work and references

Transport systems

- Use of exploits in Flight Management System (FMS) to control ADS-B/ACARS [Teso 2013]
- Remote control of a car through Wifi [Miller 2015] [Tecent 2017]

Medical appliances

Infusion pump vulnerability, April 2015 http://www.scip.ch/en/?vuldb.75158

(C) Wired - ABC News

(C) Hospira

SysML-Sec

Examples of Threats (Cont.)

Internet of Things

- Proof of concept of attack on IZON camera [Stanislav 2013]
 - Vulnerability on fitbit [Apvrille 2015]

Hacking a professional drone [Rodday 2016]

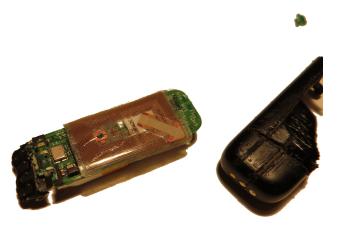
XBee - Man-in-the-Middle Attack

N. Rodday, BlackHat Asia'2016

Finding Vulnerabilities on IoTs

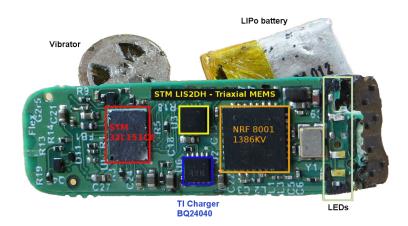
What's inside? Let's look together!

Don't try this at home!

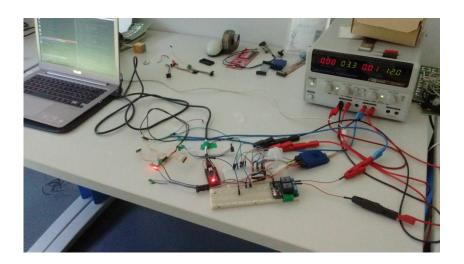

Again: don't try this at home!

June. 2018

11/39


June. 2018

June. 2018


12/39

Fitbit: Hardware Components

June. 2018

Then, How to Identify Vulnerabilities?

Investigations

- ► Testing ports (JTAG interface, UART, ...)
- Firmware analysis
- Memory dump
- Side-channel analysis (e.g. power consumption, electromagnetic waves)
- Fault injection
- **•** . . .

Secure your systems!

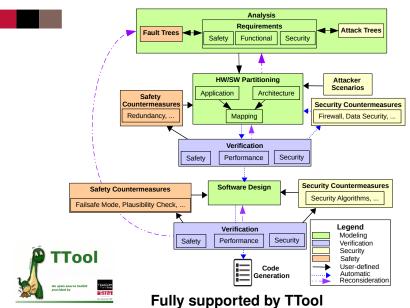
Develop your system with security in mind from the very beginning

Our solution: SysML-Sec, supported by TTool

Designing Safe and Secure Embedded Systems: SysML-Sec

Main idea

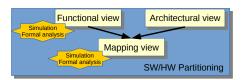
▶ Holistic approach: bring together experts in embedded systems, system architects, system designers and security experts (with SysML)


Common issues (addressed by SysML-Sec):

- Adverse effects of security over safety/real-time/performance properties
 - Commonly: only the design of security mechanisms
- Hardware/Software partitioning
 - Commonly: no support for this in tools/approaches in MDE and security approaches

15/39

June. 2018

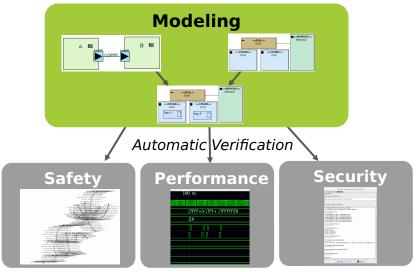


SysML-Sec

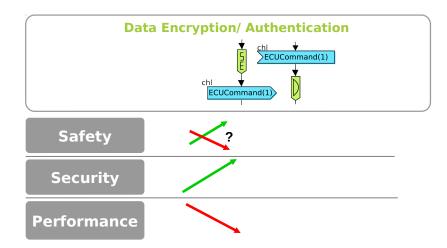
Partitioning

Before mapping

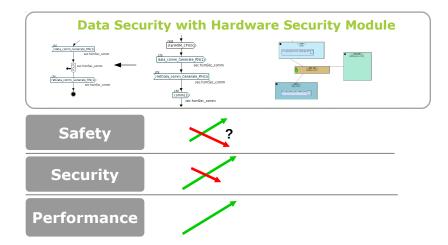
Security mechanisms can be captured but not verified


After mapping

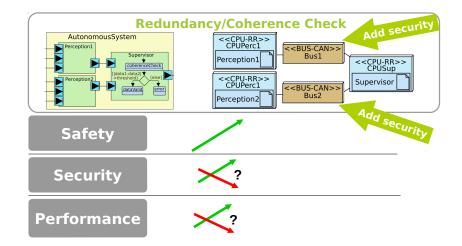
- Verify security (confidentiality, authenticity) according to attacker capabilities
 - Whether different HW elements are or not on the same die
 - Where are stored the cryptographic materials (keys)
 - Where are performed encrypt/decrypt operations
- Impact of security mechanisms on performance and safety
 - e.g. increased latency when inserting security mechanisms



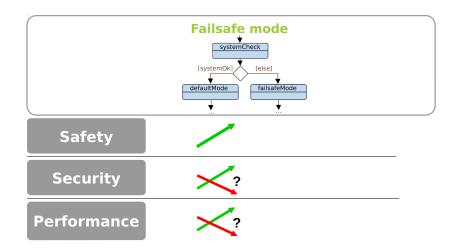
Partitioning Verification

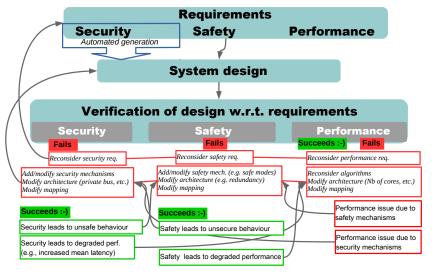


Safety and Security Mechanisms

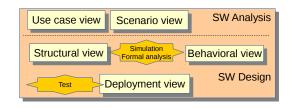


Safety and Security Mechanisms (Cont.)


Safety and Security Mechanisms (Cont.)



Safety and Security Mechanisms


Safety/Security/Performance

SysML-Sec: SW Design

- Precise model of security mechanisms (security protocols)
- Proof of security properties: confidentiality, authenticity
- Channels between software blocks can be defined as private or public
 - This should be defined according to the hardware support defined during the partitioning phase

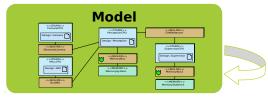
Cyber security of connected vehicles

- Safety/Security/Performance
- EVITA FP7 Partners: Continental, BMW, Bosch, ...
- VEDECOM

H2020 AQUAS

- Automated train sub-systems (ClearSy): Safety/Security/Performance
- Industrial Drives (Siemens): Safety/Security/Performance

Nokia


June. 2018

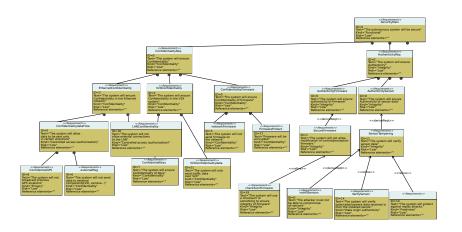
25/39

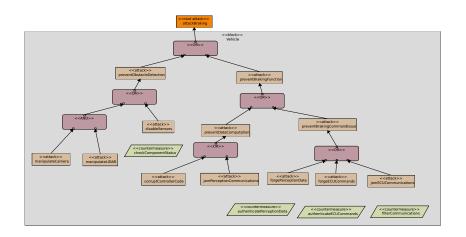
Digital architectures for 5G networks (Safety/Performance)

Case Study: VEDECOM Autonomous Vehicle

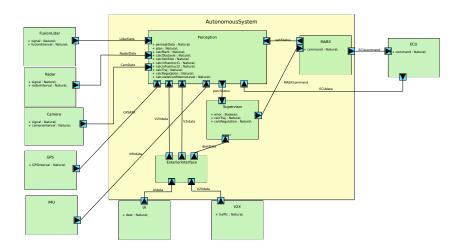
Verification

Tests



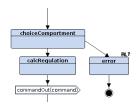

- ► Standard: ISO26262
 - ► SOTIF: Safety Of The Intended Function
- Security: impact of potential attacks on safety

Requirements



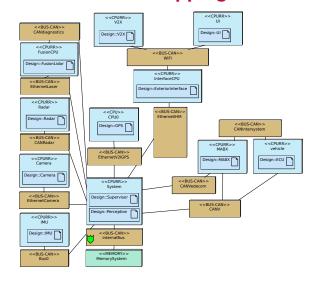
SysML-Sec

Functional View



Safety Verification (Before Mapping)

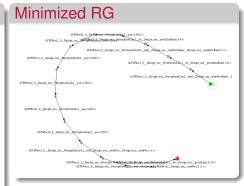
Reachability/Liveness



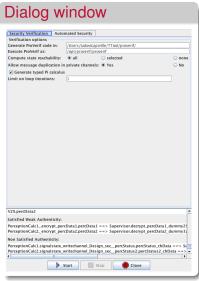
Queries

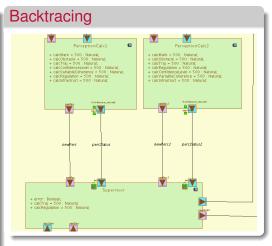
Safety Pragma A[] Supervisor.running Perception.distance<threshold --> Supervisor.brakingOrder

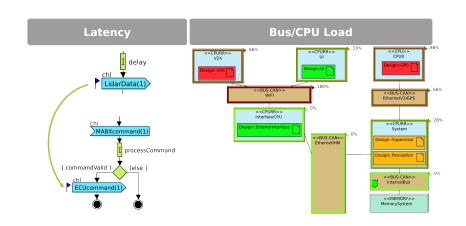
Architecture and Mapping Views



Safety Verification (After Mapping)


Reachability Graph iPerceptionCPU 0 Design sec Perception sel Des i(PerceptionCPU_0_Design iPerceptionCPU 0 Design sec Per i/CameraCPU_0_Designate/cubs ifPerceptionCPU_0_Design_sec_Percention_rd_Design_sec_CamData<1> iPerceptionCPU 0 Design sqq-_R i(CameraCPU 0 Design sec Camera wr Design sec CamData<1>) itCameraCPU_0_Design_procus itPerceptionCPU_0_Design_sqc_al





Security Verification

Performance Verification

SW Design, Code generation, Test

- First SW model from mapping models
- SW model refinement
- SW model verification (safety, security)
- Code generation
 - (Virtual) Prototyping, test

Demo: SmartCard

- Main functions of the system
- Safety of the system (before mapping, after mapping)
- Performance
- Model enhanced with Security
- Impact on performance

June. 2018

Conclusion and Future Work

Achievements: SysML-Sec

- Methodology for designing safe and secure embedded systems
- Fully supported by TTool
- Applied to different domains, e.g., automotive systems, IoTs. malware

Future work

- Security risk assistance and backtracing
- Assistance to handle conflicts between security/safety/performance
 - Design space exploration

39/39

June. 2018

To Go Further ...

Web sites

Context: Security for Embedded Systems

- https://sysml-sec.telecom-paristech.fr
- https://ttool.telecom-paristech.fr

References

- Ludovic Apvrille, Yves Roudier, "SysML-Sec: A SysML Environment for the Design and Development of Secure Embedded Systems", Proceedings of the INCOSE/APCOSEC 2013 Conference on system engineering, Yokohama, Japan, September 8-11, 2013.
- Ludovic Apvrille, Yves Roudier, "Designing Safe and Secure Embedded and Cyber-Physical Systems with SysML-Sec", Chapter in Model-Driven Engineering and Software Development, p293-308, Springer International Publishing, 2015

