Facial Makeup Detection Technique Based on Texture and Shape Analysis

Neslihan Kose¹, Ludovic Apvrille², Jean-Luc Dugelay³

^{1,3} EURECOM, Sophia Antipolis, France

² Institut Mines-Telecom, Telecom ParisTech, Sophia Antipolis, France

Poster Session:1

Date: May, 5, 2015

Reference Image and Makeup Series Images in their Original Form.

Flowchart of the Proposed Facial Makeup Detection Technique

LGBP → Texture Descriptor HOG → Shape Descriptor

Feature Level Fusion is applied for LGBP and HOG features

Experiment 1:

5-fold cross validation on YMU database
(150 subjects, 600 images)

Classification Rates on the YMU Database.

Trial	SVM(%)
1	100
2	93.33
3	100
4	100
5	99.17
Average	98.5

Experiment 2:

- Training on the YMU database (300 makeup and 300 non-makeup images)
- Testing on the MIW database (77 makeup and 77 non-makeup images)
- A classification rate of 99.35% was obtained with our proposed facial makeup detector.
- The proposed approach is superior compared to the existing ones.

Experiment 3:

5-fold cross-validation on FCD Database
(50 subjects, 385 images)

Classification Rates on the FCD Database.

Trial	SVM(%)	Alligator(%)
1	90.43	100
2	83.33	100
3	96.72	100
4	87.88	96.05
5	87.95	97.60
Average	89.26	98.73