
Mutation of Formally Verified SysML Models

Ludovic Apvrille, Bastien Sultan, Oana Hotescu, Pierre de Saqui-Sannes, and Sophie
Coudert

Modelsward’2023, Lisbon

Context

Two new trends in MDE: agility, digital twins

Agile / incremental development

• +: Expected to improve system
reliability

• +: It helps handling complexity

• -: Improving models can be
cumbersome

• -: Full system verification must
be done again after each
improvement

Digital twin

• +: Used for handling problems
occurring in systems in exploitation
(e.g., an attack)

• The twin helps handle complexity
by reasoning on an abstract view
of the system

• -: Improving model can be
cumbersome

• -: Full system verification must
be done again after each system
modification

2/23

Usual Verification Approach

Model Properties

Verification
(model-checking, etc.)

Proof
result

3/23

Usual Verification After System Update

Model Properties

Verification

Proof
result

(Full)
Verification

Updated
Model

Properties

Proof
result

System
update

4/23

Towards Incremental Verification

Our idea: reusing previous proof results after system update

Model Properties

Verification

Proof
result

(Simplified)
Verification

Updated
Model

Properties

Proof
result

System
update

5/23

Our Proposal

Incremental verification
• Applied to reachability properties given in CTL

• Automated

• Verification reuses verification results obtained before system update

Application to design performed with SysML models

• Block diagrams

• State machine diagrams

• Updates on model are called mutations

6/23

Related Work

Formal verification of
SysML models

• SysML → formal
specification

• Petri nets, NuSMV,
Timed automata
(UPPAAL),
RT-LOTOS, . . .

• E.g, [Delatour et al.
1998; Szmuc 2018;
Huang et al. 2019;
Rahim et al. 2020]

Incremental
verification

• Compositional
verification [Xie et
al., 2022]

• Correct-by-
construction
[Bougacha et al.,
2022]

Model mutation

• Investigating
specification change
[Aichernig et al.,
2013]

• Understanding
impact of attacks
on systems [Sultan
et al., 2017]

7/23

Contribution Overview

Properties P

Model M1

T, F, RG
prover

Set of
mutations

Model M2

Mutation
Application

DG
generator

Dependency
Graph

Properties P’

Proof
optimizer

prover

T, F, RG

T, F, RGT, F, RG

Set of
mutations Model M3

...

Mutation
Application

8/23

Models and Tools

Properties P

Model M1

T, F, RG
prover

Set of
mutations

Model M2

Mutation
Application

DG
generator

Dependency
Graph

Properties P’

Proof
optimizer

prover

T, F, RG

T, F, RGT, F, RG

Set of
mutations Model M3

...

TTool Internal model checker

TToolAMULET compiler

SysML block
and state machine

diagrams

CTL

9/23

Mutations: Definition and Notation

Incremental verification currently supports only additions to models

Block diagrams

• Adding a block

• M B+(B)−−−−→ M′

• Adding a port, connecting two
ports

• Adding attributes / signals to
blocks

• M Attr+(B,a)−−−−−−−→ M′

State machine diagrams

• Adding a state

• M State+
(B,s)−−−−−−−−→ M′

• Adding a transition

• M Trans+(B,t)−−−−−−−−→ M′

• Adding a guard, an after, an
action to a transition

10/23

Contribution: Illustration with An Example

block

Sender

~ out send()

block

S2
block

S1

block

Receiver

~ in recv()

block

Other

block

Sender

~ out send()

block

S2
block

S1

block

Receiver

~ in recv()

block

Other

send()

after(10)

send()

after(10)
Waiting

recv()

End1

End2
RR

after(5)

Waiting

End1

End2
RR

after(5)

after(15)after(15)

State END2 is proved as reachable

11/23

Contribution: Illustration with An Example (Cont.)

We apply mutations to the state machine of Receiver

Waiting

recv()

End1

End2
RR

after(5)

Waiting

End1

End2
RR

after(5)

addState(END3)−−−−−−−−−−→
then
addTransition(Waiting ,END3,after(2))−−−−−−−−−−−−−−−−−−−−−−−→

Waiting

recv()

End1

End2
RR ??

End3

after(5)

after(2)Waiting

End1

End2
RR ??

End3

after(5)

after(2)

Is END2 still reachable?

12/23

Contribution: Illustration with An Example (Cont.)

Dependency graph of the system after mutation. Brown circle: added elements.

22 / Receiver / Receiving signal "recv"

21 / S2 / Sending signal "send"

20 / Receiver / Receiving signal "recv"

19 / S1 / Sending signal "send"

18 / S2 / stop

17 / S2 / avatar transition

16 / S2 / start15 / S1 / stop

14 / S1 / avatar transition

13 / S1 / start

10 / Receiver / stop

9 / Receiver / End2 8 / Receiver / End1

7 / Receiver / avatar transition

6 / Receiver / End3

5 / Receiver / avatar transition

4 / Receiver / Waiting

3 / Receiver / start

2 / Other / stop

1 / Other / avatar transition

0 / Other / start

22 / Receiver / Receiving signal "recv"

21 / S2 / Sending signal "send"

20 / Receiver / Receiving signal "recv"

19 / S1 / Sending signal "send"

18 / S2 / stop

17 / S2 / avatar transition

16 / S2 / start15 / S1 / stop

14 / S1 / avatar transition

13 / S1 / start

10 / Receiver / stop

9 / Receiver / End2 8 / Receiver / End1

7 / Receiver / avatar transition

6 / Receiver / End3

5 / Receiver / avatar transition

4 / Receiver / Waiting

3 / Receiver / start

2 / Other / stop

1 / Other / avatar transition

0 / Other / start

13/23

Contribution: Illustration with An Example (Cont.)

Proof Optimizer

1. Our algorithm first computes that: END1 reachable ⇒ END2 reachable

2. Our algorithm replaces the reachability of END2 by the reachability of END1
in the list of properties to be proved

3. The model is reduced for the proof of the reachability of END1

22 / Receiver / Receiving signal "recv"

21 / S2 / Sending signal "send"

20 / Receiver / Receiving signal "recv"

19 / S1 / Sending signal "send"

18 / S2 / stop

17 / S2 / avatar transition

16 / S2 / start15 / S1 / stop

14 / S1 / avatar transition

13 / S1 / start

10 / Receiver / stop

9 / Receiver / End2 8 / Receiver / End1

7 / Receiver / avatar transition

6 / Receiver / End3

5 / Receiver / avatar transition

4 / Receiver / Waiting

3 / Receiver / start

2 / Other / stop

1 / Other / avatar transition

0 / Other / start

22 / Receiver / Receiving signal "recv"

21 / S2 / Sending signal "send"

20 / Receiver / Receiving signal "recv"

19 / S1 / Sending signal "send"

18 / S2 / stop

17 / S2 / avatar transition

16 / S2 / start15 / S1 / stop

14 / S1 / avatar transition

13 / S1 / start

10 / Receiver / stop

9 / Receiver / End2 8 / Receiver / End1

7 / Receiver / avatar transition

6 / Receiver / End3

5 / Receiver / avatar transition

4 / Receiver / Waiting

3 / Receiver / start

2 / Other / stop

1 / Other / avatar transition

0 / Other / start

DG reduction−−−−−−−−→

5 / Receiver / End3

4 / Receiver / avatar transition

3 / Receiver / END1

2 / Receiver / avatar transition

1 / Receiver / Waiting

0 / Receiver / start

5 / Receiver / End3

4 / Receiver / avatar transition

3 / Receiver / END1

2 / Receiver / avatar transition

1 / Receiver / Waiting

0 / Receiver / start

14/23

Contribution: Illustration with An Example (Cont.)

Resulting model, and proof of reachability:

block
Receiver
block
Receiver Waiting

END1
RR

End3after(2)

after(5)

Waiting

END1
RR

End3after(2)

after(5)

END1 is not reachable so END2 is not

reachable after mutation

15/23

Contribution: Proof Optimizer Algorithm

Input: proof that state s is reachable in initial Design DI . New design DM .
Output: set of properties to be proved on DM

1. New logical paths to s in DM are computed and added to Paths along with
their immediate successors

2. Computation of the shortest prefixes in Paths that cannot lead to any
mutated element . If an immediate successor is reachable then s is reachable
(Proof done for DI): exit.

3. Identification of new paths (due to new loops, choices, variables, . . .) leading
to s that have not been proved for DI . Computation of the reachability of s
via these paths.

16/23

Contribution: Discussion

• Performance trade-off between:
• Reproving the same properties on the new design
• Computing potentially simpler properties to be proved on the new design

A performance study follows. . .

17/23

Case Study: TSN

Time-Sensitive Networking (TSN) [IEEE 802.1]

• Guaranteed bounded latency, low packet delay variation, and low packet loss

• Adapted to safety-critical systems with deterministic real-time communication
• Built upon:

• Transmitting End Systems Tx ES and Receiving End System Rx ES
• Switches SW and network paths

ES1

ES2

ES3

ES4

SW1

SW3

SW2

SW4

18/23

Case Study: Model

2 Tx ES, 2 Rx ES, 2 SW. More than 20 blocks, complex state machines

block
Switch2

block
BlockPortIN2

block
SwitchFabric2

- messageSwitch2 : Message;
- messageSwitch2_0 : Message;

~ in messageLinked21(Message messa...
~ out messageToFilter2(Message s2)

block
BlockPortOut2

block
PriorityFiltering2

- messageFilter2 : Message;

~ in messageToFilter2(Message messageFilter2)
~ out FIFOQueue0(Message p20)
~ out FIFOQueue1(Message p21)
~ out FIFOQueue2(Message p22)

block
PrioritySelection2

- pS20 : Message;
- pS21 : Message;
- pS22 : Message;
- mS2 : Message;

~ in FIFOQueue0(Message pS20)
~ in FIFOQueue1(Message pS21)
~ in FIFOQueue2(Message pS22)
~ out messageOutSwitch2(Message mS2)

block
CommunicationLink21

- dataRate : int;
- capacity : int;
- messageLink21 : Message;
- failure : bool;

~ in messagePO2(Message messageLink21)
~ out messageLinked21(Message messageLink...

block
EmitingEndSystem

block
PriorityFilteringEndSystem

- messageFiltered : Message;

~ in messageGenerated(Message ...
~ out messagePriority0(Message h...
~ out FIFOQueue11(Message m)
~ out FIFOQueue12(Message m)
~ out FIFOQueue21(Message m)
~ out FIFOQueue22(Message m)

block
PortOut1

- po10 : Message;
- po11 : Message;
- po12 : Message;

~ in FIFOQueue0(Mes...
~ in FIFOQueue1(Mes...
~ in FIFOQueue2(Mes...
~ out messagePO1(M...

block
FrameReplication

- messageToReplicate : Message;
- sequenceNumber = 0 : int;

~ in messagePriority0(Message ...
~ out messageReplicated1(Mes...
~ out messageReplicated2(Mes...

block
FrameGeneration

- flow0 : Flow;
- flow1 : Flow;
- flow2 : Flow;
- messageF0 : Message;
- messageF1 : Message;
- messageF2 : Message;
- numberOfMessages0 : int;
- numberOfMessages1 : int;
- numberOfMessages2 : int;
- timeCount0 = 0 : int;
- timeCount1 = 0 : int;
- timeCount2 = 0 : int;

~ out messageGenerated(Messa...

block
PortOut2

- po20 : Message;
- po21 : Message;
- po22 : Message;

~ in FIFOQueue0(M...
~ in FIFOQueue1(M...
~ in FIFOQueue2(M...
~ out messagePO2(...

block
Switch2

block
BlockPortIN2

block
SwitchFabric2

- messageSwitch2 : Message;
- messageSwitch2_0 : Message;

~ in messageLinked21(Message messa...
~ out messageToFilter2(Message s2)

block
BlockPortOut2

block
PriorityFiltering2

- messageFilter2 : Message;

~ in messageToFilter2(Message messageFilter2)
~ out FIFOQueue0(Message p20)
~ out FIFOQueue1(Message p21)
~ out FIFOQueue2(Message p22)

block
PrioritySelection2

- pS20 : Message;
- pS21 : Message;
- pS22 : Message;
- mS2 : Message;

~ in FIFOQueue0(Message pS20)
~ in FIFOQueue1(Message pS21)
~ in FIFOQueue2(Message pS22)
~ out messageOutSwitch2(Message mS2)

block
CommunicationLink21

- dataRate : int;
- capacity : int;
- messageLink21 : Message;
- failure : bool;

~ in messagePO2(Message messageLink21)
~ out messageLinked21(Message messageLink...

block
EmitingEndSystem

block
PriorityFilteringEndSystem

- messageFiltered : Message;

~ in messageGenerated(Message ...
~ out messagePriority0(Message h...
~ out FIFOQueue11(Message m)
~ out FIFOQueue12(Message m)
~ out FIFOQueue21(Message m)
~ out FIFOQueue22(Message m)

block
PortOut1

- po10 : Message;
- po11 : Message;
- po12 : Message;

~ in FIFOQueue0(Mes...
~ in FIFOQueue1(Mes...
~ in FIFOQueue2(Mes...
~ out messagePO1(M...

block
FrameReplication

- messageToReplicate : Message;
- sequenceNumber = 0 : int;

~ in messagePriority0(Message ...
~ out messageReplicated1(Mes...
~ out messageReplicated2(Mes...

block
FrameGeneration

- flow0 : Flow;
- flow1 : Flow;
- flow2 : Flow;
- messageF0 : Message;
- messageF1 : Message;
- messageF2 : Message;
- numberOfMessages0 : int;
- numberOfMessages1 : int;
- numberOfMessages2 : int;
- timeCount0 = 0 : int;
- timeCount1 = 0 : int;
- timeCount2 = 0 : int;

~ out messageGenerated(Messa...

block
PortOut2

- po20 : Message;
- po21 : Message;
- po22 : Message;

~ in FIFOQueue0(M...
~ in FIFOQueue1(M...
~ in FIFOQueue2(M...
~ out messagePO2(...

19/23

Case Study: Mutations and Performance

• System S1: 1 Tx ES, 2 SW, 1 Rx ES, 2 flows

• Mutation M1 = S1
+1TxES ,+2SW ,+1RxES,+2flows−−−−−−−−−−−−−−−−−−−−→ S2

Reachability

Proof Proof

States/ Proof Muta States time time DG:

Transi- time tion Transitions (ms) (ms) vertices/edges/

tions (ms) no red. reduction time to generate

RG genera-
tion

2k/3k 16 M1 13k/50k 240126 617/934/5ms

Get packet
in flow 0

- 5 - 227 2

Get packet
in flow 2

- 7 - 231 2

Get packet
in SW#2

- 5 - 232 2

20/23

Case Study: Mutations and Performance (Cont.)

• Mutation M2 = S3
+1flow−−−−→ S4

Reachability

Proof Proof

States/ Proof Muta States time time DG:

Transi- time tion Transitions (ms) (ms) vertices/edges/

tions (ms) no red. reduction time to generate

RG genera-
tion

80k/200k 292 M2 300k/677k 1170 389/594/2ms

Get packet
in flow 3

- 8 - 11 7

Get packet
in flow 0

- 9 - 10 5

Get packet
in SW#3

- 7 - 10 4

21/23

Conclusion and Future Work

Better agility in design

• Specification of mutations

• Incremental verification
• Demonstrated in the scope of a complex real-time system (TSN)

• Proof time reduced for all tested reachability properties

Improvements

• Decrease complexity of our incremental verification approach

• Extension to more complex CTL properties

• Support for deletion mutations (today: only model additions)

• Full implementation in TTool

22/23

Questions?

Download TTool!

• http://ttool.telecom-paris.fr/

• L. Apvrille, P. de Saqui-Sannes, O. Hotescu. and A. Calvino, ”SysML Models Verification
Relying on Dependency Graphs”, In Proceedings of the 10th International Conference on
Model-Driven Engineering and Software Development, ISBN 978-989-758-550-0, ISSN
2184-4348, pages 174-181

• L. Apvrile, B. Sultan, O. Hotescu, P. de Saqui-Sannes, S. Coudert, ”Mutation of Formally
Verified SysML Models”, Proccedings of the 11th internationl conference on Model-Based
Software and Systems Engineering (Modelsward’2023), Lisbon, Portual, Feb. 19-21, 2023

23/23

