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Abstract: Cyber-physical systems are based upon analog / digital hardware and software components. The splitting into
functionalities and interaction between analog and digital parts should be considered as early as possible in the
design phase, relying on formal verification or simulation. While many papers pretend to propose a modeling
environment supporting them, only a few of them really address the different Models of Computation of these
systems because they strongly differ. The paper explains how to generate a virtual prototype of the analog
and mixed-signal parts of CPS directly from a SysML model featuring whole parts of CPS, thus reconciling
near-circuit precision with more abstract analog and digital models.

1 Introduction

Cyber-physical systems span three domains: ana-
log, digital and physical. Most often, off-the-shelf
analog and digital components can be used for their
design. Yet, when special requirements have to be
met (such as: low-power, very small size, specific ap-
plication, etc.) such off-the-shelf components may be
too costly or not available, thus advocating for from-
scratch designs, sometimes both for analog and digital
parts.

For such a custom design, the splitting of func-
tionalities between analog and digital parts, and their
interaction, is of prime importance, and should there-
fore be done as early as possible. In early design
phases, simulation or formal verification helps taking
decisions. But, in the case of mixed signal design,
i.e., designs with analog and digital parts, the Models
of Computation (MoC) of these two aspects strongly
differ. Moreover, they are commonly designed at dif-
ferent abstraction levels, depending on the design pat-
terns already available. Last, because of the signifi-
cant semantic difference between MoCs, similar mod-
els or unique tools can not be used to study the same
system.

Thus, an interesting contribution is to offer a
multi-level virtual prototyping and simulation envi-
ronment that can be executed from SysML models,
featuring all necessary elements to capture analog and
digital aspects. Abstraction levels could range from a
near-circuit precision to more abstract analog and dig-
ital models (e.g., transactional models).

The paper explains how to use SysML diagrams
to efficiently capture digital and analog parts of CPS
–as well as the interactions between these parts– and
how to generate a virtual prototype of the analog and

mixed-signal parts directly from these SysML mod-
els. Just like many SysML tools, our tool already of-
fers verification capabilities for the digital parts, thus
this part is not addressed in the paper.

Related work is discussed in Section 2, then basic
concepts are introduced in Section 3. Section 4 de-
scribes our contribution (modeling and simulation).
Section 5 shows a complex case study, a scalable
analog-to-digital converter.

2 Related Work

The contribution of the paper is at the intersection
between two research domains: model-based design
for cyber-physical systems and analog/mixed signal
hardware design.

2.1 Model-based design for
cyber-physical systems

UML/SysML based modeling techniques such as
MARTE [Demathieu et al., 2008] and Gaspard2
[Gamatié et al., 2011] have been employed to model
cyber-physical systems [Selic and Gérard, 2013], but,
with few exceptions [Taha et al., 2010,Li et al., 2018],
they do not support refinement until a low level of ab-
straction nor provide full-system simulation.

Into-CPS [Fitzgerald et al., 2013] uses model-
based formal methods by integrating discrete-event
models of controllers with continuous-time models
of their environments. Starting from a discrete-
event model, approximations of continuous-time be-
havior are subsequently replaced by couplings to
continuous-time models.



TTool [Apvrille, 2011], an open-source modeling
and verification framework, provides to some extend
analog/mixed signal modeling and virtual prototyping
[Genius et al., 2019]. The determination of the sched-
ule and causality between analog and digital parts of
the system is based on timed Synchronous Data Flow
(SDF) [Lee and Messerschmitt, 1987].

Another extension to the SDF formalism is called
Polygraph, which includes frequency constraints and
adjustable communication rates and ensures synchro-
nization [Dubrulle et al., 2019].

2.2 Analog/Mixed signal hardware
design

The following tools target analog/mixed signal or
multi-domain design and virtual prototyping.

Ptolemy II [Ptolemy.org, 2014] is based upon a
data-flow model. It addresses digital/analog systems
by defining several sub domains.

Metro II [Davare et al., 2007] is based on hierar-
chical high level models. A common simulation ker-
nel handles the entire execution, using Adapters for
data synchronization between components belonging
to different MoC, leaving the implementation of syn-
chronization mechanisms to the designer.

Modelica [Fritzson and Engelson, 1998], an
object-oriented modeling language for describing and
simulating cyber-physical systems, comes without
predefined time synchronization. The simulation en-
gine manipulates objects containing sets of equations
in a symbolic way in order to determine the order of
execution.

Linking simulations with different Models of
Computation can also be done by using the Functional
Mock-up Interface [Blochwitz et al., 2011], which is
closely related to the Modelica tools.

Many approaches are based on SystemC [IEEE,
2011], with or without alteration of the simulation
kernel, initially targeted only toward discrete systems
simulation.

3 SystemC-AMS modeling

SystemC AMS extensions [Accellera Systems Ini-
tiative, 2010] is an extension of SystemC with AMS
(Analog/Mixed Signal) and RF (Radio Frequency)
features [Vachoux et al., 2003]; several Models of
Computation are predefined. A proof-of-concept im-
plementation [Einwich, 2016] evolved into an indus-
trial tool that also handles validation of hardware
against software and generates Simulink or C Code.

Digital components are described by a Discrete
Event (DE) MoC, while analog components follow
the Timed Data Flow (TDF) MoC, based on the
timeless Synchronous Data Flow semantics [Lee and
Messerschmitt, 1987]. The most low-level MoC is
called Electrical Linear Network (ELN). It relies on
equations to capture the behavior of electrical circuits
in a simplified way.

3.1 Discrete Event

A Discrete-Event (DE) simulation abstracts a system
as a discrete sequence of events in time, where each
event signals a change of state, in contrast to contin-
uous simulation in which the system state changes
continuously over time. System C AMS DE mod-
ules have input and output ports, and contain SystemC
code.

3.2 Timed Data Flow

A Timed Data Flow (TDF) module samples continu-
ous functions at discrete intervals. Such a module is
described with an attribute representing the time step
and a processing function, a mathematical function
depending on the module inputs and/or internal states.

TDF modules have the following attributes:

1. Module time step (Tm) denotes the period during
which the module is activated, which is the case if
enough samples are available at its input ports.

2. Rate (R). Each module reads or writes a fixed
number of data samples each time it is activated,
annotated to the port as port rate.

3. Port time step (Tp) denotes the time interval be-
tween two operations (read or write).

4. Delay (D). A delay can be assigned to a port and
will make the port handle a fixed number of sam-
ples at each activation, and read or write them in
the following activation of the port.

At each time step, a TDF module thus first reads
a fixed number of samples from its input ports, then
executes the processing function, and finally writes a
fixed number of samples to its output ports.

Schedulability denotes the correct static execution
order of TDF modules in a cluster containing several
modules. A cluster is schedulable if the module time
step is consistent with the rate and time step of any
port within a module. Le TM denote the module time
step, Tpi and Tpo respectively denote the input and out-
put port time steps, Rpi and Rpo respectively denote
the input and output port rates:

TM = Tpi ×Rpi = Tpo ×Rpo



Figure 1: Partitioning of analog behavior into different models of computation [Accellera Systems Initiative, 2010]

Before the static schedule of a cluster can be com-
puted, time steps and sampling rates that are not indi-
cated in the model need to be calculated by upstream
and downstream propagation, as explained in [Ac-
cellera Systems Initiative, 2010].

3.3 Electrical Linear Networks

The Electrical Linear Networks (ELN) model of
computation introduces the use of electrical primi-
tives and their interconnections to model conserva-
tive, continuous-time behavior. The ELN modeling
style allows the instantiation of electrical primitives,
connected by electrical nodes. The mathematical rela-
tions between the primitives are defined at each node
in the network, where both the potential (voltage) and
flow (current) quantities are used according to Kirch-
hoff’s laws. The electrical network is represented by
a set of differential algebraic equations that are taken
into account at simulation.

SystemC AMS extensions offers a limited set of
primitive modules: voltage or current sources, lin-
ear lumped elements (resistors, capacitors, inductors),
transmission lines, ideal transformers and amplifiers,
linear gyrators, and ideal switches. Unlike for TDF
models, there is no possibility to implement user-
defined electrical primitives.

An ELN module gives a detailed representation of

an electrical circuit. Yet, non-linear behavior cannot
be represented; as a consequence, nonlinear elements
such as diodes and transistors must be approximated
with the existing linear components.

3.4 Simulating the MoC

Converter ports are required to connect DE compo-
nents to TDF components, and reciprocally. Con-
verter modules can connect ELN components to TDF
or DE modules. When connecting such components,
the timing and consistency issues between their dif-
ferent MoC, in particular between TDF and DE, are
delicate to handle [Cortés Porto et al., 2021, Andrade
et al., 2015].

For ELN modules, a time step can be directly as-
signed to modules or propagated using the mechanism
of the time step within an ELN equation system. In
case an ELN model is connected to a TDF model, the
time steps from the connected TDF ports are propa-
gated to the ELN model.

Figure 1, published by [Accellera Systems Initia-
tive, 2010], shows the partitioning of analog behavior
into different models of computation as recommended
by the SystemC AMS working group. For the mod-
eling of digital hardware/software systems (e.g., mi-
crocontrollers and processors), interconnect and com-
munication protocols, SystemC (DE) modeling ap-
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Figure 2: Method with software design

proaches are most suitable. Signal processing func-
tionality should be modeled by LSF. If sampling rates
and time steps need to be described, either statically
or dynamically, the TDF MoC is chosen. If non-
linear elements such as diodes and transistors have
to be precisely modeled, it is preferable to resort to
Spice [Quarles et al., 2003]. In combination with Sys-
temC, SystemC AMS covers all of the above MoC ex-
cept Spice. Our tool currently treats neither nonlinear
model generation nor Linear Signal Flow (LSF).

4 Hierarchical modeling of analog
hardware components

In the following, we highlight our new contribu-
tion. The Timed Data Flow (TDF) model of compu-
tation (higher abstraction level) is often insufficient
to deal with highly specialized custom circuits [Ac-
cellera Systems Initiative, 2010]. In particular, pre-
cise interactions with the environment are expected
to be studied as soon as possible, i.e., before the ac-
tual design is complete: this can be done with TDF
descriptions only. We present in the following a
top-down, hierarchical manner, using a customized
SysML meta-model and generating code that can be
used in a SystemC/SystemC AMS simulation envi-
ronment.

[Cortés Porto et al., 2021, Andrade et al.,
2015] already proposed a simulation environment for
SystemC-AMS integrating TDF and DE MoC: the
simulation of DE components there controls the TDF
simulation. Inspired by this simulation hierarchy, we

propose a three-level modeling –between which a de-
signer can navigate back and forth– using three kinds
of diagrams representing analog/mixed signal hard-
ware, where the DE simulator controls the TDF sim-
ulator, which in turn controls the ELN simulation.

4.1 Method overview

Figure 2 displays the overall design method which
we suggest for systems with digital and analog parts.
The top of the figure focuses on the hardware/-
software partitioning step: a functional representa-
tion is mapped into a hardware platform, like in
[Apvrille, 2011]. This mapping concerns both func-
tions (mapped to e.g. processors or hardware ac-
celerators) and communications (mapped to buses,
bridges, memories, . . . ). Once the functionality has
been partitioned into software tasks (represented on
the left) and hardware, the deployment diagram (top
right) represents all of the selected hardware.

The "Hardware design" part is the main contribu-
tion of this paper. The top part of the right part of
Figure 2 captures an analog/mixed signal cluster as
a grey box in the bottom of the "Digital Hardware
Model". The other nodes correspond to the digital
parts of the Virtual Prototype. The middle part ("Ana-
log hardware model") zooms into this grey box (it can
be opened with a double-click). It shows the SysML
representation of the TDF model of this cluster. The
three modules of this level capture, from left to right,
an output to the digital domain, a TDF block and an
abstract representation of an ELN module. Last, the
lower hierarchical level ("Analog hardware model")
is destined for detailing ELN modules.



Once software and (digital and analog) hardware
have been designed, a virtual prototype can be gener-
ated. This prototype is built from the free SystemC
library [SocLib consortium, 2003], and from analog
hardware components described in SystemC AMS,
some of these components being detailed in ELN.

4.2 Modeling DE-TDF-ELN modules

Figure 3 displays SysML blocks used to describe a
small home automation/lighting system, composed of
a light bulb supplied with a voltage controlled by a
dimmer, which in turn is controlled by the software
running on the —digital–microcontroller of a home
automation system. Figures 4 to 6 show the digital,
TDF and ELN hardware views, respectively.
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Figure 3: Functional model of the lighting system
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Figure 4: Deployment Diagram
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Figure 5: Representation combining three different MoC

Digital hardware, with possibly software running
on it, is represented in a UML Deployment Diagram
(see Figure 4: A microcontroller (CPU) and its soft-
ware application are shown in the light blue box on
the left (named CPU and application_code, respec-
tively). The platform also features a bus, a RAM
memory and a TTY for monitoring and debugging.
TDF clusters are represented in the deployment dia-
gram as grey boxes; in Figure 4, the TDF controller
is shown as a grey box on the bottom. The DE block
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Figure 6: TDF cluster encapsulating an ELN diagram

shown in the left of Figure 5 represents the interface
to the microcontroller.

By selecting such a TDF cluster (here: lighting),
the user opens a panel like the one shown in Figure
5. The left part of this Figure, home_automation, rep-
resents the interface to the digital hardware, for ex-
ample a micro controller or general purpose platform
running application code. This block is connected to
a TDF block (in the middle) which samples the in-
put on the converter port at a given frequency (indi-
cated by T _m = 10.0ms in the TDF block dimmer).
Causality issues between the TDF and the DE MoC
are explained in [Cortés Porto et al., 2021].

The right hand side of the Figure shows the en-
capsulation of a ELN cluster (lamp) into a TDF clus-
ter (lighting). Input and output are handled via TDF
ports, for which the sampling frequency of 10 ms is
imposed.

The main idea is that an ELN module –like for in-
stance lamp in Figure 6– is represented in the TDF
panel, featuring the appropriate TDF ports. However,
the precise handling of inputs and outputs by ELN
components is hidden at this abstraction level: it will
be supplied later. At this level of abstraction, a pro-
cessing function reading from and writing to TDF port
guarantees that schedulability of the entire TDF clus-
ter can be determined.

By selecting the ELN cluster block, the user opens
the corresponding ELN panel (Figure 6). In this toy
example, the left hand module has a TDF input port
connected to a TDF-to-ELN converter module, a TDF
controlled voltage source TDF_VSource. This mod-
ule is in turn connected via its positive (p) and nega-
tive (n) terminals to an ELN resistor.

Currently, we support 20 elements out of the 29
defined in the SystemC AMS standard, not counting
ports, connectors and terminals. In particular, nullors,
gyrators, and the TDF and DE controlled versions of
variable resistors, capacitors and inductors were not
yet required for our models, but could easily be added
if necessary.

Figure 7 shows the toolbar of the new ELN panel
featuring all graphical operators which are supported.
These ELN elements are also listed in Table 1.



Figure 7: ELN Panel Toolbar

element symbol

Cluster and module terminal

TDF cluster and module port

DE cluster and module port

Resistor

Capacitor

Inductor

Voltage controlled voltage source

Voltage controlled current source

Ideal transformer

Transmission line

Independent voltage source

Independent current source

Voltage source driven by TDF input signal

Voltage converted to TDF output signal

Current source driven by TDF input signal

Current source converted to a TDF output signal

Switch driven by a TDF input signal

Switch driven by a DE input signal

Voltage source driven by DE input signal

Voltage converted to DE output signal

Current source driven by DE input signal

Current source converted to DE output signal

Reference node (ground)

Table 1: ELN modules currently available in the panel

4.3 Virtual prototype generation

For a virtual prototype containing three different
Models of Computation, it is particularly important
that interactions between the MoC are handled as
early as possible in the design process. [Cortés Porto
et al., 2021] has already shown how to efficiently gen-
erate TDF and DE parts of the prototype as well as
their interaction, including validation of causality on

the TDF/DEconverter ports. In our tool, this can be
done as follows:

1. Select one of the TDF clusters, including the ones
with ELN clusters.

2. Activate the "Validation" button. This checks
for coherency of the time steps within the TDF
cluster as well as for respect of temporal causal-
ity between TDF and DE models as described in
[Cortés Porto et al., 2021].

3. Activate "Code generation" button. This gener-
ates, for all ELN clusters, SystemC AMS TDF
module templates with the appropriate input and
output ports, leaving their processing functions
empty.

4. Select one of the ELN clusters within the TDF
cluster.

5. Activate the "Code generation" button. This gen-
erates, for the selected ELN cluster representa-
tion, SystemC AMS code for the ELN module it-
self and updates the template for the surrounding
TDF block with the instantiation of the internal
ELN blocks and the signals connected to the in-
ternal ports.

In our tool, the design choice was made that ELN
clusters are always modeled inside TDF blocks. The
algorithm given in [Cortés Porto et al., 2021] prop-
agates the time steps and checks schedulability and
causality on the abstraction level level where interac-
tion between TDF/DE blocks is analyzed. An ELN
cluster thus can never be simulated alone, it requires
a TDF block that forces its time step. Thus, an ELN
module has to be encapsulated within a TDF module.

Code has also to be generated for:

• The top cell, containing the simulation entry
point, TDF and DE block instantiation, code for
starting and stopping the simulation and optional
code for tracing.

• The ELN cluster encapsulation module. This is a
TDF module instantiating the ELN modules, their
connections among each other and to the TDF
modules.

• The ELN module itself.

Algorithm 1 shows the transformation for code gen-
eration and scheduling, leaving out the DE part and



Listing 1 Code generation and scheduling algorithm
1: procedure GENERATESYSTEMCAMSCODE

▷ T time step, B block,
▷ C cluster, M module

2: for each TDF cluster CTDF do
3: generate cluster code
4: for all TDF blocks BTDF in CTDF do
5: CALCULATESCHEDULE (CTDF)
6: if BTDF simple TDF block then
7: generate TDF block code
8: else

▷ BTDF contains ELN cluster CELN
9: for all MELN ∈ CELN do

10: set TMELN from BTDF
11: determine Tpi, Tpo for BTDF
12: end for
13: calculate TCELN
14: CALCULATESCHEDULE (CTDF)
15: if CTDF schedulable then
16: generate encapsulation code
17: for all MELN ∈ CELN do
18: generate ELN code
19: end for
20: end if
21:
22: end if
23: end for
24: end for
25: end procedure

using the scheduling algorithm CALCULATESCHED-
ULE of [Cortés Porto et al., 2021] for TDF clusters.

Figure 8 shows the generated SystemC AMS code
for the ELN cluster encapsulation and ELN module of
the introductory example, respectively. The top cell
(not shown here) includes the code for the three parts:
DE block, TDF block and ELN representation. The
TDF ports have to be connected to the sub modules of
the ELN cluster. As a consequence, in the ELN clus-
ter code (top of Figure 8), we find port-to-port bind-
ing: port "in" of the module is bound to the cluster
port named "in". The ELN module lamp (bottom of
Figure 8) contains a voltage source controlled by the
TDF module dimmer via "inp" port connected to the
cluster port "in", a ground element, and two nodes a
and b connecting them.

4.4 Virtual Prototype

Our simulation environment applies the following hy-
potheses, sometimes conforming to or contradicting
previous approaches:

• The behavior of ELN modules can be described

with mathematical equations: these equation sys-
tems are solved numerically by the simulation en-
gine at appropriate time steps. Also, for ELN
modules connected to a TDF module, the time
step from the connected TDF port(s) is propagated
to the ELN module. Consistency between locally
defined ELN module time steps and propagated
time steps is checked by SystemC AMS. Other-
wise, the time points for the solution of the ELN
equation system or communication with the con-
nected TDF model cannot be defined properly.

• In the presence of DE modules, the DE simula-
tor controls the entire simulation via the converter
ports, respecting temporal causality [Cortés Porto
et al., 2021, Andrade et al., 2015].

• TDF modules impose their timestep on the ELN
modules, as described in [Accellera Systems Ini-
tiative, 2010].

• Even if possible according to [Accellera Systems
Initiative, 2010], direct assignment of a timestep
to an ELN module is currently not allowed.

#include <systemc-ams>
#include "lamp.h"

class eln_cluster : public sc_core::sc_module {

public:
lamp lamp_0;

sca_tdf::sca_in<double> in;

SC_CTOR(eln_cluster) :
lamp_0("lamp_0"),
in("in"){

lamp_0.in(in);
};

SC_MODULE(lamp){
sca_tdf::sca_in<double> in;
sca_eln::sca_r R;
sca_eln::sca_tdf_vsource TDF_VSource;

SC_CTOR(lamp)
: in("in"), R("R", 1.0)
, TDF_VSource("TDF_VSource", 1.0)
, b("b"), a("a"){

R.p(a);
R.n(b);
TDF_VSource.p(a);
TDF_VSource.n(b);
TDF_VSource.inp(in);

}
private:

sca_eln::sca_node b;
sca_eln::sca_node a;

};

Figure 8: Generated encapsulation and ELN code



Info: SystemC-AMS:
3 SystemC-AMS modules instantiated
2 SystemC-AMS views created
2 SystemC-AMS synchronization objects/solvers instantiated

Info: SystemC-AMS:
1 dataflow clusters instantiated

cluster 0:
2 dataflow modules/solver, contains e.g. module: dimmer_0
2 elements in schedule list,
10 ms cluster period,
ratio to lowest: 1 e.g. module: dimmer_0
ratio to highest: 1 sample time e.g. module: dimmer_0
0 connections to SystemC de, 1 connections from SystemC de

Info: SystemC-AMS:
ELN solver instance: sca_linear_solver_0 (cluster 0)

has 3 equations for 2 modules (e.g. lamp_0.R),
1 inputs and 0 outputs to other (TDF) SystemC-AMS domains,
0 inputs and 0 outputs to SystemC de.
10 ms initial time step

Info: SystemC-AMS:
ELN solver instance: sca_linear_solver_0 (cluster 0)

has calculated 10000 time steps the equation system was 1 times re-initialized
the following max. 10 modules requested the most re-initializations: lamp_0.R 1

Figure 9: SystemC AMS simulation

Figure 10: Waveform results: exchanges between ELN and TDF module

Figure 9 shows the SystemC AMS simulation for
the introductory example. Three modules, one DE,
TDF and ELN each, are instantiated. Two views cor-
respond to the TDF and the ELN MoC. After this, the
dataflow (TDF) cluster is analyzed, then the equations
of the ELN cluster solved and finally the simulation is
run for 10000 simulation steps.

Finally, Figure 10 shows the waveforms of the sig-
nals exchanged between the ELN and TDF module.

5 Case Study: Scalable SAR ADC

5.1 Analog-to-digital converters

As stated in the introduction, cyber-physical systems
span three domains (analog, digital and physical).
The digital and analog domains are interconnected
with digital-to-analog (DAC) and analog-to digital
(ADC) converters. These converters are expected to
be of small size and designed with high energy effi-
ciency in mind.

Successive Approximation Register (SAR) ADCs
provide good power efficiency for medium-resolution
applications. For instance, as stated by [Shen et al.,
2017], Wireless local area networks (WLAN) require
resolutions above 10 bit and sampling rates of about
40 MS/s, digital TV receivers up to 80 MS/s sampling
rate, while Bluetooth applications require resolution
and sampling rates of around 12-bit and 11 MS/s, re-
spectively. ADC should furthermore support multiple
applications, so their design is required to be easily
reconfigurable.

[Gylling and Olsson, 2015] overview several pos-
sible designs for SAR-ADC circuits. The basic idea
of SAR ADCs is to approximate the actual voltage
successively by several iterations, corresponding to
the number of bits which are fed back to a DAC. The
most essential parameter of this circuit is its bit preci-
sion: from 3 to 12-bit precision.

5.2 Overview of the use case

We consider a SAR ADC designed in a recent
project [Louërat and Porte, 2022], shown in Figure



11. This SAR ADC mostly consists of analog com-
ponents, with one digital component used for control-
ling the device. The implementation was performed
with the Oceane toolchain [Porte, 2008]. In this
project, one interesting challenge was to couple the
implementation process with system-level modeling
approach. Indeed, a very detailed model of the ADC
circuit was not yet available at the beginning. For in-
stance, the number of bits of precision ultimately re-
quired by the system was not yet known, thus the cor-
responding system-level model had to be easily pa-
rameterizable. Also, a TDF overview representation
of the mixed analog-digital circuit was necessary to
evaluate the interplay of digital (Ctl logic) and ana-
log (Comparator and DAC) circuits. In the scope of
this project, we could thus evaluate our SysML-based
modeling tool, including the newly introduced panel
for circuit-level design explained in the contribution
section.

Figure 11: SAR Analog-Digital converter design overview
[Louërat and Porte, 2022]

Figure 12 shows the main algorithm of the
ADC [Louërat and Porte, 2022]. Basically, an incom-
ing voltage V _x is to be determined iteratively. An
initial voltage value is set to V _in and all bits are set
to 0. Then, the most significant bit (MSB) Bn is set
to 1. At a given iteration i, V _x is compared to a gen-
erated voltage V _dac. A bit is set to 1 if the volt-
age is higher, set to 0 if the voltage is lower, starting
with MSB Bn and progressing down to B1. This al-
gorithm was implemented in the VHDL hardware de-
scription language [IEEE, 1987] for an FPGA-based
test (Field-programmable Gate Array).

These bits B1 to Bn are used to control a digi-
tal analog converter (DAC), which produces the more
precise voltage for the next iteration. For example,
if we assume Vre f = 2V and a 3-bit resolution then
Vx = 2.6V . In the first iteration, Vx is compared to
Vdac = Vre f and as it is higher, thus bits are 100 and
Vre f /2 is added to Vdac. In the second iteration, Vx is
compared to Vdac = 3V and as it is lower, the control
bit remains unchanged and Vre f/4 is added to Vdac

Figure 12: Conversion algorithm [Louërat and Porte, 2022]

and it becomes 2.5V. In the final iteration, Vx > Vdac,
thus the third control bit is set to 1. We obtain an ap-
proximation of 2.5V.

5.3 Models

Figure 13 shows the detailed hardware implementa-
tion proposed by [Louërat and Porte, 2022]: a non-
differential ADC with implicit sampling using capac-
itor top plates. On the upper center, we find a com-
parator (CMP) which compares zero/ground voltage
(VSS) to the voltage generated in each cycle by the
DAC (VDAC). Shown on the lower left hand side,
the DAC produces this voltage from i+ 1 capacitors
which are either activated (switch closed) when the
control bit S_i is 1, deactivated when it is 0. B_i has
the same value as S_i but is destined for digital output
as a bit vector. Thus, during n iterations, the incom-
ing voltage is approximated with n bit precision. The
additional capacitor on the right sets the starting ca-
pacity, the others then yield 20,21, etc ... 2N−1 times
that capacity.

The implementation of this design is a challenging
test case for our tool extension, because (i) the digital
control circuit and the analog comparator and DAC
are combined on a single chip and (ii) the complexity
of low level modeling is high.

5.3.1 Digital hardware model

System-level design is restricted to the external digital
control in our study to the generation of a Start-of-



VDAC

Figure 13: Analog-Digital converter: electronic design (simplified) from [Louërat and Porte, 2022]

Conversion (SoC) signal generated by software.
In current experimentation, code on the digital

platform is essentially limited to giving start/stop sig-
nals, to I/O and debug functionality. The deployment
on a momo processor platform with one analog com-
ponent ressembles the one of the introductory exam-
ple shown in Figure 4.

The sampling algorithm is implemented in the
Control Logic component. Destined to be imple-
mented in hardware, it was translated to SystemC
from the VHDL digital hardware description lan-
guage and precisely reflects the functionality shown
in the algorithm of Figure 12.

5.3.2 Analog hardware model (TDF)

Figure 15 gives an overview of the overall SysML
based representation of the SystemC AMS TDF de-
sign. On this level, the entire digital part running
the software is in fact represented on the lower right
within one DE block, whose only role here is to pro-
vide the start of conversion (SoC) signal on its sin-
gle output port as currently the tool allows only TDF
blocks to contain ELN.

The control algorithm thus has been implemented
in the processing function of the control_logic block
(Figure 14). The control_logic block is considered
mixed-signal; it features TDF and converter ports.

The comparator-and-DAC block has two TDF en-
try ports called start_conversion and in_bits. The
start_conversion TDF signal is received from the con-
trol_logic block, the configurable in_bits signal con-
tains the n bits controlling the switches in the DAC.
As the number of control bits is configurable, we
make use of the multiport mechanism: the arity of
a TDF port can be configured.

The block also features an output port VDD_out,
providing the voltage calculated after each iteration of
the algorithm (output of CMP block in Figure 13), a
floating point value.

5.3.3 Analog hardware model (ELN)

Double clicking on the comparator_and_DAC block
opens the most detailed view (Figure 16). The com-
parator_and_DAC block actuelly contains the two
analog ADC blocks Comparator (CMP) and DAC
(representing the entire left part of Figure 13). These
blocks are described in SystemC AMS ELN.

Figure 14: ADC control logic: processing function

sar_adc

SoC

<<SystemC-AMS ELN>>
comparator_and_DAC

in_bitsin_bits

VDD_outVDD_out

start_conversionstart_conversion

control_logic

Tm = 1.0 ms

SoCto_dac

cmp

start_conversion

Figure 15: TDF model view of the SAR-ADC in the tool

The comparator on the top receives V_dac, on an
ELN terminal (bottom of the block) from the DAC
that produced it with the SAR method. It is compared
to the voltage to be measured, V_x, modeled by an
independent voltage source on the left of the com-
parator. At each iteration, the result of the succes-
sive aproximations is transmitted to the control_logic
block by a TDF port VDD_out (a double value) .
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Figure 16: Overview of the ELN Model of the comparator and DAC module: TTool-AMS

The lower part of the Figure represents the DAC.
The voltage Ve is generated by the independent volt-
age source on the upper left of the DAC model.

As in ELN modeling it is not foreseen to handle
arrays of ports, the ports in the cluster port in_bits (on
the lower left in the figure and in our example of arity
3) are split into three individual TDF module ports
controlling two rows of three switches each.

Two rows of three TDF controlled Switches
(TDF_Switch_a1, TDF_Switch_a2, TDF_Switch_a3,
TDF_Switch_b1, TDF_Switch_b2, TDF_Switch_b3)
take up the central part of the design and are con-
nected, by their control ports, to one of three TDF
in_bits signals, each representing one of the control
bits for one switch of each row. There are four ca-
pacitors, three to be controlled by two switches each.
C0 is not controlled by a switch and imposes the ini-
tial capacitor value which is then doubled, quadru-
pled etc. as described in the algorithm above, by ac-
tivating more and more switches. A seventh switch
T DF_Switch_0 is connected to the start_conversion
port. Voltage sources Va and Vb on the right are set
to 2V and 0V, respectively.

6 Conclusion and future work

SystemC AMS based hierarchical design of cyber-
physical systems is now possible with our tool, with a

real support for both digital and analog parts.
Currently, the consistency between ELN and TDF

is checked by the SystemC AMS simulator. The hy-
potheses from section 4.4 can be used to validate
schedulability and causality between TDF and ELN
before simulation, at prototyping time, similar to what
was shown in [Cortés Porto et al., 2021] for these
properties between TDF and DE.

ELN diagrams can quickly become complex to be
read: we are thus working on visual improvements,
such as the use of colors and a better representation
for line crossing.

Our tool also provides comfortable possibilities to
model, verify and simulate embedded software on a
virtual prototype: this aspect has been left out in the
present paper in order to focus on the hardware design
part.
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