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Abstract

We present an implementation of autonomous navigation for Micro Air Vehicles which is well-
suited for inexpensive models: It only relies on a single camera and few on-board sensors to solve
the challenges of flight planning and collision avoidance. Artificial landmarks are merely required
in places with ambiguous further flight paths, e. g. corridor crossings or junctions. There they
provide topological localization and enable our system to perform tasks like way point following.

Even without any direct 3D sensor, our system is able to reconstruct metric distances from its
monocular camera using two complementary methods: An oscillating motion pattern is superim-
posed to regular flight to reliably estimate up-to-date 3D positions of sparse image features. As
an alternative, a specific flight maneuver can virtually create a vertical stereo camera to provide
depth information densely across most pixels at single points in time. The unknown metric scale
inherent in employing a single camera is determined by evaluating further sensors via a robust
two-stage approach. We use the reconstructed 3D scenes to traverse free space and avoid obstacles.

1 Introduction

Figure 1: AR.Drone 2.0 quadcopter: Its
4 degrees of freedom during flight are in-
dicated by arrows.

The popularity, availability and range of applications of
Micro Air Vehicles (MAV) – especially quadcopters – has
been steadily increasing over the last few years. While the
mechanical performance of rotor-driven models has long
been satisfactory, enabling applications like localization,
mapping and autonomous flight using minimal sensors and
infrastructure still presents various challenges to research:
Especially for MAVs, on-board sensors as well as proces-
sors should be inexpensive, but also lightweight and energy-
efficient. Implementations therefore must be able to cope
with limited and noisy inputs. At the same time, either
their complexity needs to be feasible for on-board process-
ing or their robustness against signal latencies and inter-
ruptions has to allow for remote operation.

As an example of such applications, we present a complete system for fully-autonomous indoor
navigation based on the monocular forward-facing camera and supplementary on-board sensors of
the inexpensive Parrot AR.Drone 2.0 quadcopter [17] shown in fig. 1. Regarding infrastructure, our
system requires a standard PC for remote processing and control, and landmarks for topological
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localization at crossings or junctions, but no external cameras or radio beacons. Our respective labs
productively employ the presented system i. a. for studying and mitigating the quadcopter’s impact
on privacy while guiding visitors in an office environment, as well as for teaching computer vision and
control theory. A preliminary demonstration video is available at [2].

The remainder of this paper is organized as follows: Section 2 introduces related works and dif-
ferentiates them from our contributions. After section 3 has given an overview of our system and its
fundamentals, the two complementary methods for sparse and dense 3D reconstruction as well as for
landmark-based navigation are described in sections 4 to 6, including respective experimental results.
Section 7 concludes the paper and presents an outlook on future works.

2 Related Work and Contribution

MAV research connects a diverse range of topics such as control systems, computer vision, sensor
fusion and artificial intelligence. Several publications are related to individual aspects of this paper:
[18] avoids collisions based on re-projected sparse feature correspondences between images from a
single camera. This technique’s inherent ambiguity of absolute scale can be resolved via integrating
additional sensors – exemplarily, inertial measurement units (IMU) are employed by [1], [6] and
[15] to enable drift-free localization, precise figure-flying and autonomous mapping respectively. We
extend this approach in two ways: Firstly, a preferred method to estimate the absolute distances
of re-projected sparse 3D points evaluates the quadcopter’s position relative to the ground plane.
It is therefore less susceptible to noise in IMU measurements. Secondly, we superimpose a circular
motion pattern in vertical and lateral direction to regular flight so that feature correspondences can
be re-projected more precisely and reliably.

Besides the above structure from motion-based approaches, various sensors to directly measure a
MAV’s 3D environment are available, including time-of-flight and structured light cameras or LIDAR.
As another example, [7] primarily uses on-board stereo cameras to explore and map unknown envi-
ronments. We propose to emulate such a sensor by evaluating monocular images before and after a
change in flight altitude. While saving one camera’s weight and power consumption, this approach
also introduces algorithmic challenges and inherent limitations.

The more complex quadcopter models used in some of the works above allow performing at least
parts of the respective computations on-board. In our system, processing is also distributed among a
remote PC and the AR.Drone itself, but the latter can only run manufacturer-supplied code such as
longitudinal and lateral velocity tracking. Nevertheless, this does not necessarily limit our system’s
range – e. g. a six-legged ground robot has been demonstrated to be a suitable base station for
cooperative terrain exploration with a very similar quadcopter model [10].

3 System Overview and Fundamentals

As mentioned initially and shown in fig. 2, our quadcopter is complemented by a remote PC for per-
forming custom tasks like 3D reconstruction, landmark recognition and flight control. The following
paragraphs will introduce each of the depicted modules:

Our MAV of choice is the Parrot AR.Drone 2.0, whose standard quadcopter design enables flight
with four degrees of freedom: Vertical motion and yaw rotation are independent, while forward/back-
ward and sideways motion is achieved via pitch and roll rotation respectively. Although being mar-
keted mainly as a toy for private use at a price of $ 300, it provides various sensors, and is safe to use
and robust. In contrast to more expensive models, custom code cannot easily be run on-board, and
hardware extensions are limited to vendor-supported devices – as of 2013, these only include USB
flash drives for recording flights and an optional GPS receiver.
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Figure 2: Overview of our system’s modules: The perception methods may be run concurrently, but
only one of their associated control strategies is selected based on their respective results.

Among the aforementioned on-board sensors are a 3-axis accelerometer, both an ultrasonic and a
pressure-based altimeter, but also a gyroscope and a magnetometer for measuring the quadcopter’s an-
gular velocities and absolute orientation. Their readings are combined with the optical flow determined
from a downward camera to estimate the quadcopter’s translational velocities at short intervals and
with reduced drift [3]. Another forward-facing camera provides images with a resolution of 1280× 720
pixels for remote processing at a rate of up to 30 Hz. However, in order to transfer the video stream
more steadily and reduce compression artifacts, we limit both to 640× 360 px and 15 Hz respectively.

The remote PC connects to the quadcopter via WiFi. At this, our base system employs Robot Op-
erating System [16], a widely-used open-source middleware. A supplementary driver [14] conveniently
provides the AR.Drone’s camera images and sensor measurements, and accepts normalized control
commands ∈ [−1, 1] for each of the quadcopter’s four degrees of freedom.

Because our methods for environmental perception generate metric deviations between the quad-
copter’s current and target 3D position and yaw angle, we use discrete-time PID controllers to convert
them to the required normalized commands. Table 1 shows their respective parameters, which have
been determined via the closed-loop Ziegler-Nichols method: In individual experiments, proportional-
only control is used to hover at a certain altitude or yaw angle, or exactly above a longitudinal or
lateral line on the ground. The controller’s gain is increased until, at its ultimate value kU , the quad-
copter performs a permanent marginally stable oscillation with period TU . Both values are used in a
heuristic rule [13] for finding PID control parameters which achieve quick settling without overshoot.
As the controllers’ outputs may well exceed the [−1, 1] interval and therefore the quadcopter’s capa-
bilities, an anti-windup logic prevents their error integrals from building up and – once the set point
has been reached – causing significant overshoot while being unwound again.

One last part of our base system is image undistortion – it is required since all our methods for
environmental perception expect the pinhole camera model to be valid. This model greatly simplifies
the re-projection of image points into 3D, and approximately holds for the AR.Drone’s downward
camera. Its forward-facing camera however shows significant barrel distortion, which can be described
and corrected using the Brown-Conrady model [4]. The undistorted images cover a 64 ◦ horizontal
field of view on 736×360 pixels. Undistortion is our system’s only task to exploit data-parallelism

degree of freedom kU TU kP = kU/ 5 kI = 2 kP /TU kD = kP TU/ 3
longitudinal and lateral 1.2 4.65 0.24 0.10 0.37
vertical 2.9 2.50 0.58 0.46 0.48
yaw-angular 5.4 0.95 1.08 2.27 0.34

Table 1: PID control parameters for each of the quadcopter’s degrees of freedom: kU and TU are
determined experimentally and used to find the actual parameters via a heuristic rule [13].
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through multiple CPU cores or optionally a GPU in order to minimize latency. All further processing
runs sufficiently fast even on an Intel Core 2 Duo T7700, although we selected efficient algorithms
and implementations mainly to maintain the possibility of using the embedded on-board processor of
a different quadcopter model in the future.

To conclude this overview, we will briefly introduce the three combinations of environmental per-
ception methods and flight control strategies listed in fig. 2 – their respective implementations and
experimental results on the other hand will be described in individual sections later on.

• Sparse 3D reconstruction may be used continuously during regular flight and therefore is our
preferred method of perception. It usually yields the spatial locations of few hundreds of distinct
image points. Their accuracy largely depends on the quadcopter’s motion: Vertical and sideways
movements are particularly beneficial, which is why our associated control strategy superimposes
an oscillation in those directions, hereby creating a corkscrew-shaped flight trajectory.

• Dense 3D reconstruction can alternatively provide an estimated distance for most of the 265.000
pixels of an image, but in return requires exclusive flight control to virtually create a vertical
stereo camera through a change in altitude. Because regular flight needs to be interrupted for
this maneuver, results are dense in space yet sparse in time.

• Landmarks to be detected and recognized by our system are only required in places offering
multiple possible directions for further flight. There they provide topological localization of
the quadcopter within the set of marked crossings, including its inbound direction. Using this
information, it can assume a previously defined position and outbound direction relative to the
landmark before resuming 3D reconstruction-based flight.

While undistorted input images and supplementary sensor data are processed in parallel by all percep-
tion methods, only one control strategy’s outputs must be selected for being sent to the quadcopter.
We prioritize the strategies based on their internal state: Once triggered, the altitude change ma-
neuver for dense 3D reconstruction is never interrupted. Otherwise, landmark-based navigation is in
effect while a landmark has been detected and the corresponding further flight orientation has not
yet been assumed. Lastly, continuous sparse 3D reconstruction and “corkscrew” flight are intermitted
with dense 3D scans on demand.

4 Sparse 3D Reconstruction and “Corkscrew” Flight

The basis of this method of environmental perception is formed by sparse optical flow, i. e. the change
in pixel coordinates of corresponding distinct points from two subsequent images. Our system usually
evaluates directly consecutive frames from the quadcopter’s forward camera, but may make one ex-
ception in case of very slow flight: Because a sufficient translational movement between both views is
required to obtain accurately reconstructed 3D points, a previous image may be kept and processed
with a series of new images until this movement has built up.

The process of estimating this translational as well as the rotational movement of a camera is
called visual odometry – a real-time open-source implementation is offered i. a. by LIBVISO2 [8] for
both stereoscopic and monocular cameras. Because the latter version is particularly aimed at ground
vehicles however, we extended it for use in conjunction with a quadcopter. The following list outlines
the whole process of obtaining 3D points from an image pair – state-of-the-art algorithms from [9] are
briefly summarized while our extensions are described in detail:

1. To efficiently find correspondences between images, LIBVISO2 uses custom implementations:
Its feature detector distinguishes between 4 classes. Its descriptor is neither scale- nor rotation-
invariant, but quickly compute- and comparable. The matching strategy considers intra-class
matches only and uses the results from an initial subset of points as priors for the remaining set.
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Figure 3: The ground plane is correctly identi-
fied by the 4th step of sparse 3D reconstruction.
The camera’s height Zc above it may safely be
assumed to equal the altitude Zo measured by
the on-board ultrasonic sensor.

Figure 4: The tabletop is mistaken for the ground
plane. The 3D points’ distances and the camera’s
motion tc are over-estimated by a common fac-
tor, which can be corrected by incorporating to
from on-board odometry.

2. The rotation matrix R and translation vector tc between both camera poses are determined as
intermediate results1: As a basis, applying the normalized eight-point algorithm in a RANSAC
scheme yields a robust estimate of the fundamental matrix F, which relates the two views. The
camera matrix K is used for converting F to the essential matrix E, from which four potential
solutions for the camera’s motion can be constructed. However, each one’s translation vector is
only defined up to scale – its metric length remains to be determined.

E = K>FK = [t]×R (1)

3. Given the camera’s motion, a 3D position Xi = [Xi Yi Zi]
>

of each point correspondence i can
be reconstructed very efficiently via homogeneous linear triangulation, which merely requires
the singular value decomposition of a 4×4 matrix. The correct tuple (R, tc) among the four
potential solutions from the previous step can be easily determined because ideally all 3D points
are reconstructed in front of both cameras for one of them only. However, since t is still only
determined up to scale, the same holds true for Xi.

4. Our preferred method of estimating the above common scale of all Xi and t relies on the assump-
tion that – as shown in fig. 3 – a horizontal ground plane extends from below the quadcopter
into its camera’s field of view. This plane’s position w. r. t. the quadcopter can be described in
terms of flight altitude Zo, pitch θ and roll ψ, all of which are measured directly and accurately
on-board. Using these angles, each 3D point Xi can be projected to the ground plane’s normal
vector:

Zi = n>Xi =

cos(θ) sin(ψ)
cos(θ) cos(ψ)
− sin(θ)

>Xi (2)

After finding the distance Zc of the largest cluster within all Zi below the quadcopter, the scale
factor s is determined so that Zc matches the altitude Zo measured by the ultrasonic sensor,
i. e. s = Zo/Zc. This scale is then applied to each 3D point Xi and the translation vector tc.

5. An optional second stage of scale estimation more ordinarily incorporates the translation vector
to obtained by integrating measurements from the on-board accelerometer. Since our quad-

1Algorithms such as bundle adjustment, which estimate the camera’s motion and the feature correspondences’ 3D
positions jointly rather than successively, may yield more accurate results [9], but are considerably more computationally
demanding than the presented approach.
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Figure 5: Sparse 3D reconstructions: Blue/pur-
ple lines show optical flow vectors consistent/
conflicting with the camera’s motion. The points’
color represents their longitudinal distance – red
indicates 1 m and below, cyan for 10 m and above.
A larger circle marks the target flight direction.

Figure 6: Imperfect sparse 3D reconstructions: A
path through a window is planned because of too
few correspondences on its blinds (top). Mostly
mirrored points are reconstructed (middle). Dif-
ficult lighting caused erroneous estimates of cam-
era motion and 3D point distances (bottom).

copter’s downward camera compensates them for drift, the scale factor can similarly be deter-
mined as s′ = |to| / |tc|. Nevertheless, the above method has proven to be more precise if the
ground actually is horizontal and correctly identified within the set of 3D points. Therefore, s′

should only be applied if that assumption does not hold, e. g. above stairs or – as illustrated in
fig. 4 – if tabletops predominate floor within the field of view. Such situations can be recognized
by large deviations between tc and to: Our implementation requires s′ to change the scale by
at least 20% in order to become effective.

Figs. 5 and 6 show exemplary results of sparse 3D reconstruction as well as marked target flight
directions. Our approach for determining the latter is similar to [18]’s virtual directional distance
sensors: We equally divide the camera’s field of view into a (j = 3) × (k = 5) grid of such sensors,
each of which provides a single distance measurement djk. At this, rather than finding the closest
cluster among the distances di = |Xi| within a sensor’s region of interest, the 25th percentile distance
yields comparable results at a reduced computational complexity. We first determine the target flight
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direction in image coordinates xt by computing a weighted mean of each virtual distance sensor’s
center xjk:

xt =

(
ut
vt

)
=

∑
j=1..3
k=1..5

xjk d
2
jk∑

j=1..3
k=1..5

d 2
jk

(3)

However, a grid cell may potentially lack any feature matches and 3D points, e. g. in case it merely
views a blank wall. Our implementation then artificially sets the associated distance to zero in order
to prevent the quadcopter from flying towards such uncharted regions.

The target flight direction only affects the quadcopter’s yaw rotation and forward velocity, since its
sideways and vertical degrees of freedom are reserved for the aforementioned oscillations. A conflict of
goals must be resolved when defining their amplitude and frequency: Higher values ensure sufficient
motion for precise 3D reconstruction, but require more battery power and a larger clearance space.
We found 0.3 m and 0.33 Hz respectively to be a good compromise in an office environment. Because
of this scenario we also decided to currently ignore the target direction’s vertical coordinate vt: The
quadcopter should fly around tables rather than passing above or below them. The horizontal coordi-
nate can be converted into an angular deviation ∆ϕ = arctan ((ut − cu) /fu), which is not only used
in closed-loop PID yaw rate control, but also in a heuristic for determining the forward flight velocity:
It is highest if the quadcopter is well-aligned with the target direction, while angular deviations of
±32 ◦, i. e. the edges of its field of view, lead to in-place rotations without any forward component.

5 Dense 3D Reconstruction with a Virtual Stereo Camera

In contrast to the previous method, a stereo camera allows estimating a distance Zi for the majority
of pixels. Our system can emulate such a sensor by moving the quadcopter perpendicularly to its
camera’s optical axis and analyzing images buffered before and after that maneuver. Hereby, virtually
creating a vertical stereo camera through an in-place change in flight altitude has several advantages
over the default horizontal arrangement: The AR.Drone’s ultrasonic height sensor allows to precisely
measure the baseline distance between both views and to adapt it to the current scene: 0.20 m have
proven suitable for the indoor scenarios presented in fig. 9, but larger values likely yield more precise
outdoor results. We also found a vertical instead of a lateral offset to be more quickly and smoothly
controllable using on-board odometry – due to the maneuver’s duration of only 0.5 s, the update rate of
visual odometry is insufficient here. Finally, as also shown in fig. 9, the field of view of a vertical stereo
camera’s results is also limited vertically, which is the less relevant dimension for our application.

Efficient generic implementations of dense stereo matching such as [11] require input image pairs
to be rectified: Only if all corresponding points are ideally located on the same column, finding their
disparity di = vi,after − vi,before = |t| f/Zi becomes a valid 1D optimization problem. As sketched

Figure 7: Rectification of one image each before
and after a height change, based on camera mo-
tion estimate according to section 4

Figure 8: Video stabilization for moving object
masking, used while hovering before or after a
height change maneuver for dense 3D perception
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Figure 9: Dense 3D reconstruction results: The overlayed rectified images before and after the height
change visualize the precision of the estimated camera motion (left). Therefore, any standard imple-
mentation for distance reconstruction, e. g. [11], may be used without modification (right).

in fig. 7, this is achieved by applying perspective transformations to both views such that their image
planes and v-axes coincide. The associated homographies can be computed from the camera matrix
K and motion (R, tc). While the former can be statically calibrated, our system requires precise
estimates of the latter for each individual pair of images from before and after a change in altitude.
Nevertheless, they can successfully be provided by applying the steps described in section 4 directly
to both images. Rectification may however fail if wind or another disturbance cause excessive lateral
or especially longitudinal motion: We detect such cases within the camera-based translation estimate
tc = [tcx tcy tcz]

>
by evaluating 4t2cx + 16t2cz > t2cy and – if true – repeating the maneuver.

One conceptual disadvantage of the proposed method can merely be mitigated algorithmically:
While an actual stereo camera captures both images simultaneously, our system allows objects to move
during the 0.5 s height change. Therefore, they often do not meet the above same-column criterion and
cause incorrect distance estimates. Our preliminary approach can at least mask the potentially affected
results before further processing: We detect moving objects by hovering in place for 0.75 s before and
after the maneuver. As sketched in fig. 8, the first and last image of each phase are stabilized using
a perspective transform based on sparse correspondences. Their respective absolute difference images
∆Ibefore and ∆Iafter indicate an invalid result if max (∆Iafter(ui, vi),∆Ibefore(ui, vi − di)) > ∆Imax.
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Figure 10: Landmark with machine-readable dot pattern and human-readable floor plan (left). Ap-
proach towards a detected yet un-recognized landmark (middle). Recognized landmark just before
re-orientation for further flight (right).

6 Landmark-based Navigation

As explained before, our system is capable of navigating locally without any artificial landmarks, but
requires them e. g. for taking previously defined turns at corridor crossings and junctions2. Fig. 10
shows an example of the currently employed wall-mounted markers, which have been developed in
a student project [5]. They are detected and recognized via thresholding in the HSV color space:
Detection only involves the green corners’ relative positions, from which the landmark’s distance
and point of view can be derived as well. The 14 cyan/black dots along the edges allow recognizing
212 = 4096 individual markers, while two remaining bits are reserved for error detection via checksums.

We use this pattern to encode a location’s ID and the quadcopter’s inbound direction within each
landmark. A supplementary mission description concisely maps all relevant crossings to outbound
directions for further flight, and thereby yields a fully-defined path. Actual flight control is a two-
stage process: Once a landmark is initially detected, it is rarely immediately recognized as well.
However, the quadcopter usually has not yet entered the crossing or junction at this point either. In
a 1st stage, we therefore compute and approach a position directly facing the landmark at a distance
of 1 m. The PID controllers of all 4 degrees of freedom are used cooperatively for this task. A 2nd

stage exclusively uses closed-loop yaw control to re-orientate the quadcopter towards its designated
outbound direction. Sparse 3D reconstruction and “corkscrew” flight continue directly after it has
been correctly aligned.

7 Conclusions and Outlook

We have presented each module of a complete system which has proven capable of autonomous indoor
navigation. Despite the absence of any inherent 3D sensor on our quadcopter, it is able to perform
metric 3D reconstructions mainly based on a monocular camera. Comparing the two complementary
approaches we implemented for this purpose, the sparse method seems more suitable for the task of
following way points: Its resulting 3D points consistently cover the area ahead and are continuously
updated, while the dense method periodically needs to interrupt regular flight. Nevertheless, the
latter’s much larger number of result pixels may well be useful e. g. for mapping a building. For that
application, visual odometry – merely an intermediate result at present – would also be of greater
interest. Finally, the presented landmarks effectively provide topological localization and offer a
convenient way to define the quadcopter’s path.

2Without a landmark, the above strategies would heuristically follow the path requiring the least sharp turn.
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Even though it has been sufficient for our application, the quality of sparse 3D reconstruction
and visual odometry can be improved by applying bundle adjustment techniques to longer feature
tracks. Their computational complexity might however inhibit compatibility with embedded on-board
PCs. The localization and prediction of moving objects using a monocular camera requires resolving
individual scale ambiguities and i. a. therefore still poses research challenges. Furthermore, visual
place recognition such as [12] offers the opportunity to avoid the need for specific landmarks and to
make our system fully independent from any infrastructure.
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