
Security Modeling for Embedded System Design

Letitia W. Li12, Florian Lugou1, and Ludovic Apvrille1

1 Télécom ParisTech, Université Paris-Saclay
450 route des Chappes, Sophia Antipolis, France,

{letitia.li,florian.lugou,ludovic.apvrille}@telecom-paristech.fr
2 Institut VEDECOM,

77 rue des Chantiers, Versailles, France
letitia.li@vedecom.fr

Abstract. Among the many recent cyber attacks, the Mirai botnet
DDOS attacks were carried out using infected IoTs. To prevent our con-
nected devices from being thus compromised, their security vulnerabili-
ties should be detected and mitigated early. This paper presents how the
SysML-Sec Methodology has been enhanced for the evolving graphical
modeling of security through the three stages of our embedded system
design methodology: Analysis, HW/SW Partitioning, and Software Anal-
ysis. The security requirements and attack graphs generated during the
Analysis phase determine the sensitive data and attacker model during
the HW/SW Partitioning phase. We then accordingly generate a secured
model with communication protection modeled using abstract security
representations, which can then be translated into a Software/System
Design Model. The Software Model is intended as the final detailed model
of the system. Throughout the design process, formal verification and
simulation evaluate safety, security, and performance of the system.

Keywords: Embedded Systems, ProVerif, Formal Verification

1 Introduction

To prevent the compromise of connected objects, their security vulnerabilities
should be detected and mitigated, preferably as early as possible. Correcting
these security flaws might be difficult once the system has been released - and
sometimes impossible - if the flaws cannot be corrected by software update only.
Furthermore, adding security mechanisms at the late stages of software develop-
ment may change the performance of the system to render a selected architecture
non-optimal.

Autonomous drones have been proposed for use in disaster relief efforts. How-
ever, insufficient security may allow an unauthorized attacker to gain control of
the drone. Furthermore, disaster relief drones may carry sensitive data and im-
ages that should be kept confidential [15].

The SysML-Sec methodology was introduced to handle the design of such
complex systems, in terms of safety, performance, and security [2]. SysML-Sec
is an extension of UML for the design of embedded systems. It addresses system



development starting from Requirements and Attacks analysis, progressing into
Hardware/Software Partitioning, and finishing with Software/System Design.
The entire design process is supported by TTool, a free, open-source, multi-
profile toolkit [3].

The paper presents how security can be efficiently handled through the en-
tire design process (see Figure 1). Solid lines in the methodology represent man-
ual steps to be performed by the designer, while dotted lines represent auto-
matic steps performed by our toolkit. Our methodology starts with Require-
ments/Analysis phase, described in section 2, which helps a designer consider
the security requirements and possible attacks. Next, we describe the security-
aware HW/SW Partitioning phase, where we model the abstract system archi-
tecture and behavior based on those requirements and risks. Section 4 describes
the transition to the final Software Design phase. Next, we present the related
work in Section 5. Finally, Section 6 concludes the paper.

Fig. 1. Design Methodology

2 Analysis: Security Requirements and Attack Trees

The methodology depicted in Figure 1 starts with the Analysis phase (Step 1),
which involves describing the requirements and use case of the system, and then
considers the possible attacks that the system may face. This analysis is expected
to prepare the verification phase, and to drive the two further steps (functional
view, architecture view) with the selection of the components (functions, hard-
ware elements) adapted to counter the listed attacks. The necessary iterations
between requirements, attacks, and components of the system are not detailed
in this paper, but are explained in [14].



<<refine>> <<refine>><<deriveReqt>>
<<Requirement>>

ValidUser
ID=3
Text="The drone should only
accept commands from
the correct user"
Kind="Controlled access (authorization)"
Risk="High"

<<Requirement>>
ImageConf

ID=5
Text="The drone should preserve
confidentiality of captured images"
Kind="Confidentiality"
Risk="Medium"

<<Requirement>>
DroneSecurity

ID=0
Text="The drone should be secure"
Kind="Functional"
Risk="High"

<<Requirement>>
DroneControlSecurity

ID=1
Text="The drone control
should be secure"
Kind="Controlled access (authorization)"
Risk="High"

<<Requirement>>
Image

ID=2
Text="The image system
should be secure"
Kind="Privacy"
Risk="Medium"

<<Requirement>>
CommandVerification

ID=4
Text="Drone controls should
not be broadcoast unencrypted"
Kind="Confidentiality"
Risk="Medium"

Fig. 2. Security-related Requirements Diagram for a drone

Figure 3 shows a high-level overview of one attack tree for gaining control
of the drone. An attacker must understand how to forge commands, then gain
remote access to the drone while denying access to the legitimate user controller.
The avenues for gaining control include kicking the legitimate user and then
connecting to the drone [6], or a Man-in-the-Middle (MITM) attack [13].

The Requirements Diagram includes the textual specifications regarding im-
portant properties of the system. Figure 2 shows an extract of the Security-
related Requirements Diagram. These requirements may be continually refined
with the details of their implementation. The requirement for the drone to be se-
cure involves the sub-requirements that the drone should only accept commands
from the authorized user, and that captured images should remain confidential.

After performing this analysis, we detail in the next section how to use these
diagrams for security modeling in the HW/SW Partitioning phase.

<<block>>
AttackerSystem

<<SEQUENCE>>

<<root attack>>
gainUnauthorizedControlOfDrone

<<attack>>
reverseEngineerRemoteCommands

<<attack>>
connectToDrone

<<block>>
DroneSystem

<<attack>>
sendDeauthenticateCommand

<<OR>>

<<block>>
Drone<<attack>>

sendConnectMessage
<<attack>>

sendForgedCommandToDrone

<<SEQUENCE>><<SEQUENCE>>

<<attack>>
crackWEP <<attack>>

determineDroneNetworkID

1 2 3

1 2 3 1 2
<<attack>>
MITMAttack

<<attack>>
changeNetworkAddresses

<<block>>
UserController

Fig. 3. Attack Tree for gaining unauthorized control of a drone



3 Security-Aware HW/SW Partitioning

The HW/SW Partitioning phases models the high-level behavior and archi-
tecture of the drone system, based on the Y-chart methodology. The applica-
tion model (Figure 4) designs the high-level behavior of the system as a set of
communicating tasks. The architecture (Figure 5) is modeled as the execution
nodes (CPUs and Hardware Accelerators) and memories connected by buses and
bridges. The mapping model then places the application tasks onto execution
nodes of the architecture.

3.1 Security Modeling

Based on the security requirements described in the Analysis Phase, certain com-
munications may be considered critical and must be secured. For example, since
images taken by the camera and should be secure, we mark those communica-
tion channels with a grey lock to indicate that we should examine its security
properties.

Attack Trees describing scenarios of attack also provide information on the at-
tacker’s actions and capabilities. In our attack tree, we assumed that the attacker
could intercept the Wifi communications between the controller and Drone. On
the other hand, since we assume the attacker has no physical access to the drone
and cannot probe the internal drone bus, then we mark it as secure with the
green shield.

In this sample mapping, mission commands are broadcast across a bus ac-
cessible to the attacker, so we must secure that communication.

DroneControlImageProcessing

Camera

?

RemoteControl

IR motorControl

imgData

droneData
targetData

obsData

motorCommand

missionCommand

scanResults checkArea

?

?

?

<<Requirement>>
CommandSecurity

Text="Drone controls should
not be broadcoast unencrypted"
Kind="Confidentiality"
Risk="Medium"

<<Requirement>>
ImageSecurity

Text="The drone should not
broadcast images unencrypted"
Kind="Confidentiality"
Risk="Medium"

Fig. 4. Application Model of Drone considering requirements

Abstract operators named ’Cryptographic Configurations’ indicate security
operations performed on communications [9]. These application security ele-
ments may be added manually or automatically after a security verification.
Since security operations can be computationally-intensive and require the se-
cure storage of cryptographic elements (e.g., keys), there exist specialized co-
processors Hardware Security Modules which perform cryptographic operations
faster than a normal processor and store cryptokeys.



<<CPURR>>
CPUDrone

motorControl

IR

Camera

<<CPURR>>
CPURemote

RemoteControl

<<BUS-RR>>
Wifi

ImageProcessing

DroneControl

<<BUS-RR>>
BusCPU1

<<MEMORY>>
MemoryDrone

<<BUS-RR>>
BusRemote

<<MEMORY>>
MemoryRemote<<attack>>

sendForgedCommandToDrone

Fig. 5. Architecture Model of Drone considering attackss

To verify that these countermeasures are sufficient, our toolkit performs se-
curity verification automatically with ProVerif [12]. The verification results are
backtraced automatically to our diagrams, by marking communications that are
verified secure for a given mapping with a green lock, and marking insecure
communications with a red lock. Once our mapping has been verified to meet all
safety, security, and performance requirements, then the software of the system
can be designed in detail, as described in the next section.

4 Security in Software Design

After HW/SW Partitioning has determined the architecture and mapping of
the system, we design the software components of the application in greater de-
tail. Our toolkit can generate a software design diagram automatically based on
HW/SW Partitioning models. The details of the algorithms to be implemented
must then be added by the designer. For example, the trajectory calculation
algorithm should be added in place of the element indicating only its computa-
tional complexity. The generation saves the designer time, by creating the model
blocks and framework.

Figure 6 shows the transition from the Activity Diagram in HW/SW Par-
titioning to the State Machine Diagram in Software Design for the drone con-
troller. Cryptographic configurations are translated into software methods. The
software modeling environment also offers primitives to closely model security
protocols.

Verification of Software Design models is intended to verify the details of
implementations of security. For example, the verification may concern the con-
fidentiality of one given block attribute, or the authenticity of one given message
exchnaged between SysML block. On the contrary, verification at mapping stage
concerns abstract data channel.

5 RELATED WORK

[4] relies on Architecture Analysis and Design Language (AADL) models to
consider architectural mapping during security verification. The authors note
that a system must be secure on multiple levels: software applications must ex-
change data in a secure manner, and also execute on a secure memory space and



nonceChmotorControl(nonce)

encrypt

motorCommand(motorCommand_encrypted)

motorCommand=

motorCommand_encrypted=

chl
motorCommand(10)

sec:autoEncrypt_motorCommand

chl
nonceChmotorControl(1)

sec:nonce_motorControl

sec:autoEncrypt_motorCommand

calcTraj
[insert algorithm to calculate trajectory]

sencrypt(motorCommand,key_motorCommand)

concat2(motorCommand,nonce_motorControl)

Fig. 6. Translation of Activity Diagrams to State Machine Diagrams

communicate over a secure channel. Our approach, however, considers security
regarding protection against external attackers instead of access control.

Another approach performs Design Space Exploration on a vehicular net-
work protecting against replay and masquerade attacks [10]. The project evalu-
ates possible security mechanisms, their effects on message sizes, and candidate
architectures during the mapping phase. While their work targets automotive
systems and network communications, our analysis may be applied more broadly
for any embedded system.

Attack Defense Trees [7] analyze the possible attacks against a system, in
conjunction with the defenses that the system may implement. The supporting
toolkit ADTool analyzes attack scenarios to determine the cost, probability, time,
etc, required for a successful attack.

The Knowledge Acquisition in Automated Specifications approach Security
Extension aims to identify security requirements for software systems [8]. The
methodology uses a goal-oriented framework and builds a model of the system,
and then an anti-model which describes possible attacks on the system. Both
models are incrementally developed: threat trees are derived from the anti-model
and the system model adds security countermeasures to protect against the
attacks described in the anti-model.

SecureUML enabled the design and analysis of secure systems by adding
mechanisms to model role-based access control [11]. Authorization constraints
are expressed in Object Constraint Language (OCL) for formal verification. Our
security model focuses on protecting against an external attacker instead of
access control. In contrast to formula-based constraints or queries, our approach
to security analysis relies on graphically annotating the security properties to
query within the model.

Another work [16] proposed modeling security in embedded systems with at-
tack graphs to determine the probability that data assets could be compromised.
While their approach is also UML-based, they focus on estimating probabilities
of success for attacks, while ours focuses on verifying adequate placement of
encryption.



UMLSec [5] is a UML profile for expressing security concepts, such as en-
cryption mechanisms and attack scenarios. It provides a modeling framework to
define security properties of software components and of their composition within
a UML framework. It also features a rather complete framework addressing var-
ious stages of model-driven secure software engineering from the specification of
security requirements to tests, including logic-based formal verification regard-
ing the composition of software components. However, UMLSec does not take
into account the HW/SW Partitioning phase necessary for the design of IoTs.

The Software Architecture Modeling (SAM) framework [1] aims to bridge the
gap between informal security requirements and their formal representation and
verification. SAM uses formal and informal security techniques to accomplish
defined goals and mitigate flaws. SAM relies on a well established toolkit - SMV
- and considers a threat model, but the ”security properties to proof” process is
not yet automated. In contrast, our work focuses on automatic formal verification
from an abstract partitioning model.

In contrast to these approaches, our work involves a methodology for the
modeling and analysis of security at all stages in the design process.

6 Conclusion

This paper presented how our enhanced SysML-Sec Methodology now considers
security at all phases in the design process. We examined the security consider-
ations in the design of a disaster relief drone, which must not be compromised
or controlled by an attacker. First, the requirements and attacks phase helps us
decide what data needs to be secure and which architectural locations are vul-
nerable, which then leads us to add abstract representations of security. Once
an architecture and mapping are decided, then we can generate the base struc-
ture of the software models. The software model is then refined to include the
algorithms and details of the software to be developed.

In future work, we plan to better connect the Analysis and Partitioning
phases. Currently, the Analysis phase provides guidelines for the designer, but
does not explicitly connect security requirements in the Requirements Diagram
with the critical channels in the Mapping Models. We should add the capabili-
ties to trace the fulfilment of each requirement. The attack paths in the Attack
Trees could also provide more explicit information regarding the security of spe-
cific architectural elements, instead of needing to be deciphered by a designer.
These additions will enhance our toolkit to better support the design of secure
embedded systems.

Acknowledgment

This work was partly funded by the French Government (National Research
Agency, ANR) through the Investments for the Future Program reference #ANR-
11-LABX-0031-01 and Institut VEDECOM.



References

1. Ali, Y., El-Kassas, S., Mahmoud, M.: A rigorous methodology for security archi-
tecture modeling and verification. In: Proceedings of the 42nd Hawaii International
Conference on System Sciences. vol. 978-0-7695-3450-3/09. IEEE (2009)

2. Apvrille, L., Roudier, Y.: SysML-Sec: A Model Driven Approach for Designing Safe
and Secure Systems. In: 3rd International Conference on Model-Driven Engineering
and Software Development, Special session on Security and Privacy in Model Based
Engineering. SCITEPRESS Digital Library, France (Feb 2015)

3. Apvrille, L.: TTool. ttool.telecom-paristech.fr (Dec 2003), ttool.

telecom-paristech.fr
4. Hansson, J., Wrage, L., Feiler, P.H., Morley, J., Lewis, B., Hugues, J.: Architectural

Modeling to Verify Security and Nonfunctional Behavior. IEEE Security Privacy
8(1), 43–49 (Jan 2010)

5. Jürjens, J.: UMLsec: Extending UML for Secure Systems Development. In: Pro-
ceedings of the 5th International Conference on The Unified Modeling Lan-
guage. pp. 412–425. UML ’02, Springer-Verlag, London, UK, UK (2002), http:

//dl.acm.org/citation.cfm?id=647246.719625
6. Kamkar, S.: Skyjack: Autonomous drone hacking (2003), http://www.samy.pl/

skyjack/
7. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: Adtool: Security analysis with

attackdefense trees. In: Joshi, K., Siegle, M., Stoelinga, M., DArgenio, P. (eds.)
Quantitative Evaluation of Systems, Lecture Notes in Computer Science, vol. 8054,
pp. 173–176. Springer Berlin Heidelberg (2013)

8. van Lamsweerde, A.: Elaborating Security Requirements by Construction of In-
tentional Anti-Models. In Proc. of the 26th International Conference on Software
Engineering , ICSE ’04 pp. 148–157 (2004)

9. Li, L.W., Lugou, F., Apvrille, L.: Security-Aware Modeling and Analysis for
HW/SW Partitioning. In: Conferénce on Model-Driven Engineering and Software
Development (Modelsward’2017). Porto, Portugal (Feb 2017)

10. Lin, C.W., Zheng, B., Zhu, Q., Sangiovanni-Vincentelli, A.: Security-Aware Design
Methodology and Optimization for Automotive Systems. ACM Transactions on
Design Automation of Electronic Systems (TODAES) 21(1), 18 (2015)

11. Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security. In: Proceedings of the 5th International Confer-
ence on The Unified Modeling Language. pp. 426–441. UML’02, Springer-Verlag,
London, UK, UK (2002), http://dl.acm.org/citation.cfm?id=647246.719477

12. Lugou, F., Li, L.W., Apvrille, L., Ameur-Boulifa, R.: SysML Models and Model
Transformation for Security. In: Conferénce on Model-Driven Engineering and Soft-
ware Development (Modelsward’2016). Rome, Italy (Feb 2016)

13. Rodday, N.: Hacking a Professional Drone. Slides at www.blackhat.com/docs/asia-
16/materials/asia-16-Rodday-Hacking-A-Professional-Drone.pdf (Mar 2016)

14. Roudier, Y., Idrees, M.S., Apvrille, L.: Towards the Model-Driven Engineering of
Security Requirements for Embedded Systems. In: proceedings of MoDRE’13, Rio
de Janeiro, Brazil (Jul 2013)

15. Tanzi, T.J., Sebastien, O., Rizza, C.: Designing Autonomous Crawling Equipment
to Detect Personal Connected Devices and Support Rescue Operations: Technical
and Societal Concerns. The Radio Science Bulletin 355(355), 35–44 (2015)

16. Vasilevskaya, M., Nadjm-Tehrani, S.: Quantifying Risks to Data Assets Using For-
mal Metrics in Embedded System Design, pp. 347–361. Springer International Pub-
lishing, Cham (2015), http://dx.doi.org/10.1007/978-3-319-24255-2_25


