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Abstract. Model-Based Systems Engineering has often been associated with the
Systems Modeling Language. Several SysML tools offer formal verification ca-
pabilities, and therefore enable early detection of design errors in the life cycle
of systems. Model-checking is a common formal verification approach used to
assess the satisfiability of properties. Thus, a SysML model and a property can
be injected into a model-checker returning a true/false result. A drawback of this
approach is that the entire SysML model is used for the verification, even if the
property targets a sub-system of the model. In this paper, it is suggested to rely on
dependency graphs to avoid applying model checking to the entire system when
only a subset of the latter needs to be taken into account. We formalize SysML
models and properties, then we present new algorithms to generate and reduce de-
pendency graphs, so as to perform verification on reduced models. A case study
on Time-Sensitive Networking is used to demonstrate the efficiency and limits of
this approach. The algorithms described in the paper are fully implemented by the
free software TTool. Our method enables an improvement in run time between
3% and 90% depending on the state space to be traversed to verify the property.
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1 Introduction

Over the past two decades, Systems Engineering has transitioned from document centric
approaches to model based ones. The ‘MBSE’ acronym was coined to denote a form of
systems engineering where models serve as references for a set of activities as various
as requirement capture, use-case driven analysis, and system design. With a system life
cycle made up of a requirement capture, analysis and design steps, one major concern
is to detect design errors as early as possible in the life cycle of the system.

Checking a model against design errors can be achieved using formal verification
techniques. The latter have first been developed for formal methods, such as timed au-
tomata, Finite State Machines, and Petri Nets, just to mention a few. Formal verification
techniques such as model checking have more recently been adapted to semi-formal
languages, in particular SysML [8], [38], [10], [36].
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As far as SysML is concerned, a model-checker takes a SysML model and a prop-
erty as input, and outputs a true/false result. To make model checking practicable, the
designer of the SysML model must be able to identify the properties to be verified and
to express them in a form that is processable by the model checker. Model checking
SysML models further requires to interpret the results output by the model checker, and
to eventually relate the true/false answers to the original SysML Model. With its in-built
model checker, TTool [43] handles the two issues. First, the properties are expressed in
a CTL-like language and located in specific comments inside the SysML model. Sec-
ond, the results of model checking the SysML models are reported in the comments
containing the properties, by indicating which property holds or not.

Despite of its user-friendliness in terms of properties expression and verification,
TTool shares one limitation with other SysML model checkers: the verification process
uses the entire model as input, even if the property of interest concerns only a sub-part
of it, thus leading to extra verification time, and possibly to combinatorial explosion.
The purpose of this paper is to address this issue in the context of SysML and to as-
sess the efficiency of the proposed approach by using TTool as a prototyping platform.
The proposed approach relies on the following statement: many parts in the block and
state machine diagrams of the SysML model are two by two dependent. For instance, a
dependency does exist between two blocks B1 and B2 that synchronize by respectively
sending and receiving a message m.

In the current paper, it is argued that dependencies may be expressed using a graph
that we call dependency graph. It is further proposed to compute a reduced model of the
SysML model that is sufficient to prove the property of interest. Because the resulting
model is smaller, the proof is expected to be faster, as illustrated in this paper with a
case study.

The current paper sketches the dependency graph generation algorithm and relies on
a case study to show the efficiency of its implementation in the free software TTool [43,
36], both for the proof of reachability and liveness properties.

The current paper extends a paper co-authored by the same authors and published
at Modelswards 2022 conference [5]. The current paper differs from [5]. The related
work section has been substantially extended with recently released papers. Algorithms
2 and 3, at the root of this new contribution, have been substantially improved and their
implementation in TTool has been updated. Last but not least, the TNS (Time Sensitive
Networking) protocol [21] has been selected as a case study for it is the successor of
the AFDX protocol addressed in [5]. More complete performance measures, based on
the next algorithms, are provided: they better demonstrate the interest of our approach.

The current paper is organized as follows. Section 2 formally defines a subset of
SysML. Section 3 introduces dependency graphs. It also presents the algorithms im-
plemented by TTool to generate dependency graphs from SysML models. Section 4
discusses a case study based on the IEEE 802.1 TSN protocol. Section 5 surveys re-
lated work. Section 6 concludes the paper and outlines future work.
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2 SysML

The Systems Modeling Language (SysML [30]) is an international standard [30] at
OMG (Object Management Group) and originates from joint efforts of OMG and IN-
COSE (International Council on Systems Engineering) to define a modeling language
for systems engineers. Version 1.6 of SysML enables covering the requirement capture,
analysis and design steps in the life trajectory of systems.

The main objective of the design phase is to define the architecture of the system
using the Block Definition Diagrams (BDD) and the Internal Block Diagrams (IBD)
defined by the SysML standard [30]. In this paper, the BDD and IBD are merged into
a Block Instance Diagram (BID). Each block instance in the BID has a behavior ex-
pressed in the form of a SysML state machine diagram.

2.1 Block Instance Diagram

A Block Instance Diagram contains a set of block instances that can be composed to-
gether, and associated through port relations.

Definition: block instance. A block instance is a 7-tuple B= ⟨id,A,M,P,Si,So,smd⟩
where:

– id is a String that names the block instance.
– A is an attribute list. The attribute types include Integer, Boolean, Timer, and user-

defined Records. An attribute may be defined with an initial value.
– M is a set of methods.
– P is a set of ports.
– Si and So are sets of input and output signals.
– smd is a state machine diagram.
– Bp represents the parent block to which B belongs. Bp can be empty.

Definition: Block Instance Diagram. A Block Instance Diagram models the ar-
chitecture of a system as a graph of interconnected block instances. More formally, a
Block Instance Diagram D is a 3-tuple D = ⟨B,connect,assoc⟩. We denote by Si the set
of all input signals of B, by So the set of all output signals of B and by P the set of all
ports of B .

– B is a set of block instances.
– connect is a function P ×P → {No,synchronous,asynchronous} that returns the

communication semantics between two ports ( /0 , synchronous or asynchronous).
– assoc is a function (PB1 × So × PB2 × Si) → Bool that returns true if an output

signal So of block B1 is associated to an input signal Si of block B2 via 2 ports
p1, p2 of respectively of B1 and B2, and if these two ports are connected (i.e.,
connect(p1, p2) = true);

2.2 State Machine Diagram

Each block instance contains one finite state machine that supports states, transitions,
attribute settings, inputs and outputs operations on signals, and temporal operators such
as delays and timers.
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Definition: State Machine. A finite state machine depicted by a SysML state ma-
chine diagram is a bipartite graph ⟨s0,S,T ⟩ where

– S is a set of states (s0 is the initial state).
– T is a set of transitions.

Definition: State Transition. A transition is a 5-tuple ⟨sstart ,a f ter,condition,Actions,send⟩
where:

– sstart is the initial state of the transition.
– a f ter(tmin, tmax) specifies that the transition is enabled only after a duration between

tmin and tmax has elapsed.
– condition is a Boolean expression that conditions the execution of the transition.This

Boolean expression can use block attributes.
– action ∈ {variable affectation, send signal, receive signal} represents the action

attached to the transition. The action can be executed only once the transition has
been enabled, i.e., when the a f ter clause has elapsed and the condition equals true.
send signal, receive signal can use its signals, or the signals of the parent block Bp,
or the signals of the parent block of Bp, and so on.

– send is the final state of the transition.

2.3 Formal Verification with TTool

A SysML model is made up of one or several diagrams expressed in a graphic fash-
ion for SysML V1 [30] or by a combination of graphics and text for SysML V2 [30].
Whatever the version of SysML, a SysML tool must offer a diagram editor. The open
source Papyrus tool [32] offers a complete editor that strictly follows the SysML stan-
dard [30]. Other SysML tools commonly support variants of the OMG-based SysML
syntax, and offer extensions to supports various classes of systems. Examples of tools
applied to real-time systems include Cameo Systems Modeler [29], Rhapsody [34], If-
Omega [13], and TTool [43].

SysML diagrams editors usually save SysML diagrams in a form that becomes pro-
cessable by external tools or in-built modules in charges of checking the SysML dia-
grams, especially the block and state machine diagrams, against design errors. Simula-
tion enables early debugging of SysML diagrams by randomly firing transitions. Model
checking goes one step further with a more systematic and mathematically grounded
analysis of the SysML models.

TTool [43, 6] is a free and open source framework for the design and verification of
embedded systems. The TTool model checker [11] inputs SysML models enriched with
safety properties to be verified and outputs a yes-no answer for each property. In prac-
tice, the TTool model checker takes as input (1) a block instance diagram and the state
machine diagrams modeling the inner workings of the blocks, and (2) properties for-
mally expressed using a CTL-based language. TTool’s model checker computes prop-
erties expressed inside the SysML model and returns the feedback in the same SysML
model. Users of TTool are therefore not obliged to use external tools or to inspect the
inner workings of the model checker.
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The benefits and potential of using TTool for model-checking SysML models have
been discussed in [6, 36]. The remainder of the current paper explains how the model
checker of TTool has recently been extended with the purpose to reduce the amount of
time allocated to model checking of SysML models.

3 Dependency Graphs

D p

prover

True / false

D p

prover

Dependency 
Graph

D’

True / false

Fig. 1: Proofs without/with dependency graphs [5]

This section shows how dependency graphs can be used in the scope of the verifi-
cation problem addressed by the paper. A classical verification process takes as input a
design, a property, and outputs false or true, as illustrated by the left part of Figure 1.
Basically, a design is made up of a (1) a SysML block instance diagram and its associ-
ated state machines, and (2) a set of properties. Using a dependency graphs is expected
to decrease the complexity of the proof with regards to the proof without using de-
pendency graphs. This section first gives a definition related to systems’ verification.
Then, dependency graphs are introduced along with algorithms, and illustrated on a toy
system.

3.1 Definition of a system

Definition 1. A System has a Design and a set of Properties to be verified, as defined
in [11] .

S = ⟨D,P⟩ (1)

3.2 Proving a property over a system

Definition 2. Let us define prover as a function that takes a Design D and a Property p
as input. The prover function returns true if p is satisfied by D (also denoted as D |= p),
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f alse otherwise.

prover(D, p ∈ P) =

{
true if p is satisfied by D
f alse Otherwise

(2)

The objective of this work is to decrease the complexity of the prover() function (2).

3.3 Decreasing the proof complexity

To prove a property, a prover considers all design elements, even if some of these ele-
ments are not involved in this proof, as depicted by the left part of Figure 1.

The right part of Figure 1 illustrates the main idea behind the paper’s contribution:
to eliminate parts of the models that may slow down the proof without impacting its
result. The proposed solution, detailed in Algorithm 1, is (i) to compute a dependency
graph DG from the input model D, (ii) to reduce DG to DGp according to property p to
be proven, (iii) to rebuild a model Dp from DGp and finally (iv) to use DGp and p as
input for the prover to figure out if Dp |= p, and by deduction if d |= p.

Algorithm 1: Use of dependency graphs to simplify proofs
Data: D, P
Result: ∀p ∈ P,resultp = prover(D, p)

1 DG = computeGraph(D)
2 foreach p ∈ P do
3 DGp = reduceGraph(DG, p)
4 Dp = graphToModel(DGp)
5 resultp = prover(Dp, p)
6 end

The section now formalizes the different stages of Algorithm 1.

3.4 From a Design to a dependency graph

We now assume that a design d ∈ D is a block instance diagram B. A dependency graph
DG can be computed from D = B (Algorithm 2):

DG = computeGraph(D)

For each smd of B ∈ Bl, for each element of the state machine (states, transitions,
send/receive actions), we generate one vertex ve in DG (line 4).

Then, the algorithm looks for all couples of read and write operators connected
through the same channel (line 7, cond1). If the channel is synchronous, the two oper-
ators must belong to different blocks. For all such couples, a new vertex is added for
each element (line 9, v1 and v2, and an edge is created in line 10 between the vertex
of the writer (v1) to the vertex of the reader (v2). Then, the new vertices v1 and v2 are
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Algorithm 2: Building a dependency graph from a model
Data: D
Result: DG

1 DG = emptyGraph
2 foreach smd of Bl of D do
3 foreach elt ∈ smd do
4 DG⊎ vertex(elt)
5 end
6 foreach elt1,elt2 ∈ smd2 do
7 c = connect( block(elt1), signal(elt1),block(elt2), signal(elt2))

cond1 = isSending(elt1)∧ isReceiving(elt2)∧ c! = ”No” ∧c == synchronous
=⇒ block(elt1)! = block(elt2)

8 if cond1 then
9 DG⊎ v1 = vertex(elt1_to_elt2)

10 ⊎v2 = vertex(elt2_to_elt1)
11 ⊎edge(v1,v2)
12 ⊎edge(vertex(elt1),v1)
13 ⊎edge(v1,vertex(next(elt1))
14 ⊎edge(vertex(elt2),v2)
15 ⊎edge(v2,vertex(next(elt2))
16 cond2 =

isSending(elt1)∧ isReceiving(elt2)∧ connect(block(elt1),signal(elt1),
block(elt2),signal(elt2)) == ”synchronous”

17 cond2 =⇒ DG⊎ edge(v2,v1)

18 else
19 link(elt1,elt2) =⇒ DG⊎ edge(vertex(elt1),vertex(elt2))
20 end
21 end
22 // Optimization: removing empty transitions
23 foreach elt ∈ smd do
24 if elt == "empty transition" then
25 DG = DG vertex(elt)
26 foreach l = link(elt1,elt) do
27 DG = DG edge(l)
28 DG⊎ edge(vertex(elt1),vertex(next(elt))
29 end
30 end
31 end

connected to the rest of the graph as follows. (i) Edges from the element vertex (e.g.,
vertex(elt1) and vertex(elt2) created at line 4) are respectively connected to v1 and v2.
(ii) Edges are created from v1 / v2 vertices are respectively connected to the vertex of
the next element of elt1 and elt2 (lines 12 to 15). Last, if the communication between
the two operators is synchronous (cond2, line 16) then an edge is also added from the
reader to the writer: indeed, the latter must wait for the former to be ready to perform
the (synchronous) write operation. If the two selected elements do not correspond to
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a pair (writer, reader), then an edge is simply added between their respective vertices
according to the links specified in their state machines (line 19).

Further, if a transition is empty, then its corresponding vertex can be seen as a simple
logical dependency: so it can be captured with an edge. This optimization is taken into
account at the end of the algorithm by the optimisation stage: the algorithm removes
useless vertices, and updates edges accordingly.

Finally, the dependency graph is built upon control flow dependencies (transitions
of the state machines) and communication dependencies (asynchronous, synchronous).

Let us use a toy example to illustrate the construction of a dependency graph with a
simple sensor monitoring system. Two sensors provide data to a remote filtering system.
The role of the filtering is to decide to store data in a data center, or to drop them.

Blocks Sensors and DataCenter are synchronously connected by their respective
ports to convey signals value and stored (Figure 2). The two sub-blocks Sensor1 and
Sensor2 can use both signals. Filter and Center1 blocks are connected with a query
signal via an asynchronous port connection. The state machines are given in Figure 3.
Sensor1 and Sensor2 have the same state machine diagram. Note that in these state ma-
chines, actions for sending or receiving messages are depicted with a dedicated graphi-
cal operator. Nonetheless, sending or receiving a message is considered as an action of
a transition between two states.

block
Sensors

~ out value()
~ in stored()

block
Sensor2

block
Sensor1

block
DataCenter

~ in value()
~ out stored()

block
Filter

~ out query()

block
Center1

~ in query()

block
Sensors

~ out value()
~ in stored()

block
Sensor2

block
Sensor1

block
DataCenter

~ in value()
~ out stored()

block
Filter

~ out query()

block
Center1

~ in query()

Fig. 2: Internal block diagram of the sensor system

The resulting dependency graph of this toy system (Figure 4) was built using TTool.
The graph shows start states of blocks in green, stop states in red, other states in grey,
and communication actions in blue. All double arrows between communication states
depict possible synchronous communications between a sender and a receiver using the
same signal, e.g., between states 37 and 38. On the contrary, an asynchronous com-
munication has a unique dependency arrow from the writer to the reader, e.g., between
states 29 and 30. The Filter block can synchronize on signals "value" and "stored" ei-
ther with Sensor1, or with Sensor2: the graph depicts these two logical dependencies.
Last but not least, Filter can stop in two different situations: either after getting a value
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value()

stored()

WaitingForDataStorage

value()

stored()

WaitingForDataStorage

value()

query()

Filtering

stored()

value()

query()

Filtering

stored() query()query()

Fig. 3: State machine diagrams: sensors (left), Filter (middle) and Center1 (right)

38 / Filter / Receiving "value"

37 / Sensor1 / Sending "value"

36 / Filter / Receiving "value"

35 / Sensor2 / Sending "value"

34 / Sensor1 / Receiving "stored"

33 / Filter / Sending "stored"

31 / Filter / Sending "stored"

30 / Center1 / Receiving "query"

29 / Filter / Sending  "query"

25 / Sensor1 / WaitingForDataStorage23 / Sensor1 / start

22 / Sensor2 / stop

19 / Sensor2 / WaitingForDataStorage

14 / Center1 / stop

11 / Center1 / start

6 / Filter / stop

5 / Filter / Filtering
2 / Filter / start

28 / Sensor1 / stop

10 / Filter / stop

17 / Sensor2 / start

32 / Sensor2 / Receiving "stored"

Fig. 4: Dependency graph of the toy system

and dropping it, or after storing the data in the center and informing sensors about the
fact that the data has been stored. This explains why Filter has two different stop states.

3.5 Reducing a graph with regards to a property

As explained before, reducing the graph w.r.t. to a property decreases the proof com-
plexity. Yet, if a property refers to the whole graph then there is no reduction. Parts of
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the graph that are not related to the property can instead be pruned: this is the objective
of graph reduction.

Graph reduction consists in marking the vertices related to the selected CTL prop-
erty p, and then removing all vertices that are not marked, i.e., that are not on a path be-
tween start vertices and property vertices. CTL properties explicitly refer to a list of ele-
ments in D. In TTool, CTL properties can either relate to a state of a block, (e.g., E <>
Block1.state1 means the reachability of state1 in Block1) or can refer to attributes of
blocks, (e.g., A[]Controller.pressure> 0&&Controller.pressure<Controller.threshold
expresses that in all the system states, the pressure attribute of block Controller must
be between 0 and threshold). Another CTL property, called leads-to and denoted as
"expr1 –> expr2" expresses that the if expr1 is reached then expr2 will eventually be
reached. Currently, the reduction works for A <> expr and E <> expr properties with
expr referring to an sending/receiving action or the the state of a state machine.

Algorithm 3 first computes Vp, the list of vertices corresponding to the elements
referenced by a CTL property p (e.g., states, sending/receiving actions). Then, each
vertex v of DG is added to the reduced graph DGp if there exists a path from v to at
least one vertex in Vp. For liveness properties, we also have to add all the vertices that
are connected by one edge to all the vertices v on the path Vp, in order to take into
account the beginning of paths not leading to vp. Finally, if two vertices of DG are in
DGp, then all edges between these two vertices are also added to DGp.

Algorithm 3: Reduction of dependency Graphs: reduceGraph()
Data: D, DG, p
Result: DGp

1 next(v) denotes {v1 ∈ DG/edge(v,v1) ∈ DG}
2 Vp = listO fVertices(D, p)
3 foreach vertex v ∈ DG do
4 path(v,Vp)→ DGp ⊎ v⊎next(v)
5 end
6 foreach vertex v1,v2 ∈ DG2 do
7 e = edge(v1,v2) ̸= /0 → DGp ⊎ e
8 end

Let us apply this algorithm to the graph given in Figure 4 and to the following prop-
erty: the liveness of the "Filtering" state of Filter, i.e., in CTL: A <> Filter.Filtering.
The resulting graph is given in Figure 5. The graph shows that only the path leading to
the Filtering state have been kept, thus cleaning the initial model from useless elements,
e.g., the Center1 block, the behaviour of sensors after sending "value", and the behavior
of Filter once the Filtering state has been reached.

3.6 Back to a (SysML) model from a dependency graph

Since a dependency graph references all the model elements, it is possible to reconstruct
the initial model from a dependency graph. As our prover takes as input a model (and
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36 / Filter / Receiving "value"

35 / Sensor2 / Sending  "value"

17 / Sensor2 / start

2 / Filter / start
5 / Filter / Filtering

23 / Sensor1 / start

37 / Sensor1 / Sending "value"

38 / Filter / Receiving "value"

Fig. 5: Dependency graph of the toy system after reduction

a property), once the dependency graph has been reduced according to a given prop-
erty, we can rebuild a new model from the reduced graph. The new model is reduced
with regards to the original one, which means it contains fewer, or the same number of
elements as the original model does.

Let us come back to our toy system. As said in the previous subsection, the reduced
dependency graph shows that both the structure (blocks and their connections) and the
behaviour (state machines) have been impacted. As shown in Figure 6, the Center1
block has been removed, and the declaration and connection of signals "stored" and
"query" has also been removed.

Similarly, the states machines have less states and sending / receiving actions, as
shown in Figure 7. Moreover, the state machine of Center1 has been removed since its
behaviour is now empty.

3.7 Dependency graphs for model updates

Figure 8 depicts another usage of dependency graphs. The goal is to avoid reproving
properties after a SysML model was updated. Those properties impacted by the model
update are the only ones that need to be proven again. For this, as shown on the left
part of Figure 8, a property p is first proved on a design D using a dependency graph
DG. Then, D is updated as D′. To know whether p must be proved again on D′, the
dependency graph DG′ is generated and then compared with DG. If DG is equivalent to
DG′ according to a bisimulation relation, then the proof of p made on D is still valid for
D′. Otherwise, p must be proved for D′. This approach is summarized by algorithm 4
(which is implemented by TTool).
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block
Sensors

~ out value()

block
Sensor1

block
Sensor2

block
DataCenter

~ in value()

block
Filter

block
Sensors

~ out value()

block
Sensor1

block
Sensor2

block
DataCenter

~ in value()

block
Filter

Fig. 6: Internal block diagram of the sensor system after reduction

value()

value()

FilteringFiltering

Fig. 7: State machine diagrams built from the reduced dependency graph. From left to
right: Sensor1 (and Sensor2) and Filter. Center1 has been remove because its behaviour
is now empty.

D p

prover

True / false

D’ p

prover

Dependency 
Graphs

(2) else

True / false

DG DG’

(1) DG == DG’ ?

Fig. 8: Decreasing proof complexity using dependency graphs [5]

4 Case Study

The purpose of this section is to evaluate the gain when using model-checking with
dependency graphs with regards to model-checking without dependency graphs. Here,
model-checking relates to the internal model-checker of TTool.



Dependency Graphs to Boost the Verification of SysML Models 13

Algorithm 4: Use of dependency graphs to simplify proofs
Data: D, D′, P
Result: DG

1 DG′ = computeGraph
2 foreach p ∈ P do
3 DG = computeGraph(D, p)
4 DG′ = computeGraph(D′, p)
5 if DG ≡ DG′ then
6 resultp′ = resultp
7 else
8 resultp′ = prover(DG′, p)
9 end

10 end

The selected case study is an industrial Ethernet-based Time-Sensitive Networking
(TSN) [21] that serves as communication mean for distributed safety-critical applica-
tions.

4.1 Time-Sensitive Networking

Time-Sensitive Networking (TSN) [21] is a set of standards defined by IEEE 802.1
Working Group to provide deterministic services through IEEE 802 Ethernet networks,
i.e., guaranteed packet transport with bounded low latency, low packet delay variation,
and low packet loss. Deterministic real-time communication is a crucial requirement in
modern embedded systems and cyber-physical systems, e.g., safety-critical industrial,
automotive and avionics networks.

The topology of such networks consists of a set of end systems and communication
switches. Each end system has a network interface interconnected with communication
switches via full-duplex physical links. A TSN network architecture is depicted in Fig-
ure 9. The network supports unicast and multicast communications between a set of
applications distributed over a number of end systems.

ES1

ES2

ES3

ES4

SW1

SW3

SW2

SW4

Fig. 9: A TSN network architecture



14 L. Apvrille et al.

Reliability and fault tolerance. To achieve determinism, TSN enables transmission of
Time-Triggered (TT) flows with bounded end-to-end delay guarantees. TT flows share
the network with less critical non-TT flows. Since TT flows carry safety-critical traffic,
if a TT flow cannot be delivered correctly (e.g., because of a fault) and in a timely
manner, disastrous consequences may occur in safety-critical systems.

The reliability of TT flows may be compromised by two types of faults: permanent
faults and transient faults. Permanent faults may cause link or switch failure and disturb
the transmission service, while transient faults include packet losses or bit-flips caused
by electromagnetic interference, and may compromise the transmission of a message
without affecting successive messages. For fault tolerance, TSN enhances redundancy
with Frame Replication and Elimination for Reliability (FRER) (IEEE 802.1CB) [20].
According to FRER, multiple routes that do not share any common switches, are al-
located for each TT flow. Frames are replicated at the source and transmitted through
separate paths to the destination as depicted in Figure 10. Duplicates are eliminated at
destinations.

Fig. 10: Frame Replication and Elimination for Reliability (FRER)

In the past few years, several research work on Time-Sensitive networking has been
using model-based approaches to formally verify properties of the network. In [16,
27], the UPPAAL model checker is used for timing analysis of TSN, while in [35, 14],
network models described in MARTE, respectively EMF are proposed to serve for au-
tomatic generation of TSN network configurations. As for the FRER mechanisms on
which we focus in this paper, most of the existing research work focus on time schedul-
ing and routing in case of faults and propose optimal or heuristic-based algorithms to
compute flows schedules in case recovery is needed, such as presented in [24, 45]. In
this paper, we do not focus on aspects related to the timing requirements of flows. In-
stead, we focus on the behavior of the network when dealing with a failure. We will
address the timing analysis of flows in a future work.

4.2 TSN FRER model in SysML

Our aim is to model the FRER mechanism for TSN with SysML and TTool, and then to
verify properties on the SysML model. This model is intended to be used as a decision
helper for dimensioning TSN networks for safety-critical applications.

Our model considers a communication scenario with two emitting end systems and
a receiving end system. End systems are interconnected by three switches and six com-
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munication links. Emitting end systems inject data flows into the network on different
priority levels as described in Table 1. In our model, we consider flows with only 3
levels of priority (0 - high, 2 - low) of the 8 priority levels available in TSN. High pri-
ority level is intended for the transmission of safe-critical flows that also require fault
tolerance. So, in our example, the FRER replication/elimination mechanism is applied
for flows F10 and F20 of priority 0 for which two different paths are established in the
network.

Table 1: TSN flows profile considered in the model
Emitting ES Flow Priority Period Path FRER

ES1
F10 0 20

EmittingES1 −> Switch1 −> ReceivingES
Yes

EmittingES1 −> Switch2 −> ReceivingES
F11 1 5 EmittingES1 −> Switch1 −> ReceivingES No
F12 2 5 EmittingES1 −> Switch2 −> ReceivingES No

ES2
F20 0 20

EmittingES2 −> Switch3 −> ReceivingES
Yes

EmittingES2 −> Switch2 −> ReceivingES
F21 1 5 EmittingES2 −> Switch3 −> ReceivingES No
F22 2 5 EmittingES2 −> Switch2 −> ReceivingES No

Figure 11 depicts the SysML internal block diagram of the case study presented
in this section. The model is made up of (1) blocks that describe the end systems,
(2) switches, and (3) communication links of the network. Each emitting end system
is modelled by a set of blocks representing the emission of flows, the classification
of flows by priority, the replication of flows in case of safety-critical traffic, and the
scheduling mechanisms for the selection of messages on the output ports. The switch
model focuses on mechanisms for switching, for priority filtering and for selecting mes-
sages based on the Time Aware Scheduling scheduling policy of TSN. The receiving
end system is defined by two blocks: one block corresponds to the elimination of dupli-
cate messages in case of redundant transmission and the second block models the recon-
struction of flows from the received sequence of messages. Examples of state machines
of blocks FrameReplication and FrameElimination related to the FRER mechanism are
given in Figure 12, respectively Figure 13 4.

4.3 Property verification with (and without) dependency graph

Let us now apply the approach of Figure 1 and Algorithm 1 to a set of properties (sec-
tion 4.3) we ought to prove on our model. We then compare the proof time with and
without dependency graphs and discuss the results.

Evaluated properties We have studied the reachability and liveness of states corre-
sponding to frame generation and sending, frame routing and frame receiving:

4 The complete model can be retrieved under TTool−>Examples−>TSN.
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Fig. 11: TSN model with FRER

1. State Sending1 in the FrameGeneration
2. State Queue0 in PrioritySelection2
3. State Filter2 in block PriorityFiltering1
4. State SendingMessages in block FrameReplication_0
5. State HandlingMessage1 in block SwitchFabric1
6. State TestingSequence in block FrameElimination
7. State MessageToFIFO11 in block PriorityFilteringEndSystem
8. State ForwardMessage in block CommunicationLink22_0

These states were selected in order to cover the different networking mechanisms
(frame generation, frame replication and elimination, priority filtering and selection,
message switching).

Results Table 2 compares results for reachability and liveness analysis. The results do
not take into account the time to generate the dependency graph, which is around 10ms:
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Ready

messagePriority0(messageToReplicate)

messageReplicated1(messageToReplicate)

messageReplicated2(messageToReplicate)

Ready

sequenceNumber = 1

messageToReplicate.sequenceNbr = sequenceNumber
sequenceNumber = sequenceNumber +1

Fig. 12: Example of state machine diagram: block FrameReplication

this generation is made once for all the verification process, thus this time is negligible.
But obviously, the time to reduce the dependency graph is taken into account.

The left part of the table concerns the verification time without using a dependency
graph, while the right part relies on the dependency graph, and its reduction to the prop-
erty of interest, for performing the verification. In this table, the verification addresses
two kinds of CTL properties, related to states listed at the beginning of this subsection:

– E <> Block.state: the reachability of a state, i.e. there exists at least one execution
path that goes through this state, i.e. all execution paths have go through this state
at some point.

For the case with dependency graph, we provide the time to reduce the dependency
graph, which is not negligible for some properties, and we compute the gain, that is:

gain = (totalNoDG− totalWithDG)/totalNoDG.
Verification times were obtained on a macbook pro running "Big Sur" with 2.3 GHz

8-Core Intel Core i9 and 32 GB of RAM. The oracle JRE 11 was used to execute TTool
build 14145 date: 2022/06/30 03:22:06 CET. To avoid Just-In-time compilation delays
and load of the machine, each verification was run 10 times and the lowest value was
used.
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messageChoice(message1) messageChoice(message1)

SourceIdentificationSourceIdentification

New

New

Ready

Ready Ready

Ready

Arrived

messageLinked12(message1)

messageChoice(message1)

[ message1.flowID == 3]
countSeq2_0 = true

[ message1.flowID == 0]
countSeq2 = true

[message1.sequenceNbr == 0 ]

[message1.flowID == 3]
countSeq1_0 = true

[else ]

[((countSeq2 == true) && (message1.flowID == 0))|| 

((countSeq1_0 == true) && (message1.flowID == 3))]

[message1.sequenceNbr == 2]

[message1.sequenceNbr == 1 ]

[else ]

[message1.flowID == 0 ]
countSeq1 = true

[((countSeq1 == true) && (message1.flowID == 0))||

((countSeq2_0 == true) && (message1.flowID == 3)) ]

Fig. 13: Example of state machine diagram: block FrameElimination

Results demonstrate a systematic gain, which is more obvious for liveness that for
reachability. The gain is far better when the verification process is long: this is exactly
what we expect since very short verification (i.e., a few ms) do not need to be accelerated
while a gain of 80% is obtained for long verification (a few seconds), as depicted in
Figure 14. Thus, for proving one simple property like reachability, it is not worth using
dependency graphs. On the contrary, when verification takes more time, like for liveness
properties, using dependency graphs always brings a gain.

As a whole, the full verification process takes more than 21 seconds without the
dependency graph, and around 4 seconds with the dependency graph, including the
time to generate the dependency graph and to reduce it to different graphs.
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Table 2: Execution duration (in ms) of the reachability and liveness proof with and
without dependency graph

Block/State

Proof duration (ms)

Gain
No DG With DG

Reachability Liveness Total Reachability Liveness
Graph

Total
reduction

FrameGeneration/
7 284 291 6 187 40 233 18%

Sending1
PrioritySelection2/

13 16035 16048 11 1939 30 1980 88%
Queue0

PriorityFiltering1/
9 343 352 7 249 40 286 18%

Filter2
FrameReplication_0/

7 566 573 7 359 33 135 30%
SendingMessages

SwitchFabric1/
11 81 92 7 57 25 89 3%

HandlingMessage1
FrameElmination/

11 984 995 9 718 20 747 24%
TestingSequence

PriorityFilteringEndSystem/
8 2768 2776 5 206 34 245 91%

MessageToFIFO11
CommunicationLink22_0/

8 191 199 7 112 23 142 28%
ForwardMessage

74 21252 21325 59 3827 255 4141 81%Total
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 80

 100

92 199 352 291 573 995 2776 16048

G
a
in

 i
n
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Verification time in ms

Fig. 14: Gain in function of the verification time. The higher the gain is, the more the
use of dependency graphs saves verification time.
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Extension to more complex properties In this case study, some properties cannot
be expressed as simple reachability or liveness properties. Two properties we ought to
verify are:

– Property 1: arrival of messages. At least one of the duplicate messages must arrive
at destination.

– Property 2: order of messages. Messages that take separate paths may arrive earlier
on a path than another message that was sent after, thus leading to out of order
situations. Depending on the service policy, the out of order can have an impact on
the worst case delay analysis as shown in [41].

In TTool, CTL properties can be captured with so-called "safety pragmas". Figure 15
illustrates the CTL properties related to the two properties listed above: the three first
pragmas correspond to the first property, while the last one captures the last property
with a "leads-to".

Safety Pragmas
A<> FrameReception.reconstructedFlow0__nbrOfMessages == FrameGeneration.flow0__nbrOfMessages
A<> FrameReception.reconstructedFlow1__nbrOfMessages == FrameGeneration.flow1__nbrOfMessages
A<> FrameReception.reconstructedFlow2__nbrOfMessages == FrameGeneration.flow2__nbrOfMessages
FrameGeneration.Sending0 --> FrameReception.Receiving0

Safety Pragmas
A<> FrameReception.reconstructedFlow0__nbrOfMessages == FrameGeneration.flow0__nbrOfMessages
A<> FrameReception.reconstructedFlow1__nbrOfMessages == FrameGeneration.flow1__nbrOfMessages
A<> FrameReception.reconstructedFlow2__nbrOfMessages == FrameGeneration.flow2__nbrOfMessages
FrameGeneration.Sending0 --> FrameReception.Receiving0

Fig. 15: More advanced properties captured with safety pragmas

Currently, the graph reduction algorithm (Algorithm 3) cannot handle these proper-
ties:

– Property 1 uses block attributes. To handle this property, our algorithm would need
to identify all the vertices of the dependability graph susceptible to modify the value
of all the attributes related in the property.

– Property 2 uses a lead-to, currently not supported. Handling a leads-to property,
e.g., expr1−− > expr2, would mean to identify not only the paths starting from
the initial state, but also all paths from all elements of expr1 to all elements of
expr2.

5 Related Work

Formal verification of models and programs has been the subject of many papers and
books. Since the current paper relies on dependency inside SysML models to optimize
verification of these models, this state of the art section specifically surveys papers that
include discussions and proposals for optimizing model verification.

We may first distinguish between two formal verification approaches: static analy-
sis [7, 3] and state space enumeration [4, 36]. The former relies on the structure of the
model and avoids explicit enumeration of the states the systems may reach from its
initial state. The latter explicitly characterizes the states the system may reach from its
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initial state. A direct consequence is that state space enumeration faces the well-known
explosion problem, which in practice means the graph of reachable states may turn
impossible to compute.

Many solutions have been investigated to lower the state explosion risk by partly
exploring the state space of the system without loss of property verification capacity.
For instance, in [9], Bourdil et al. explore symmetries in systems modeled by Time Petri
Nets and implement their proposal in the TINA tool [42]. The current paper explores
another avenue in the context of SysML, by looking for dependencies inside the block
and state machine diagrams defined by SysML models.

Besides the way the model’s state space is traversed to compute a reachability graph,
efficiently storing the states of the graph is also an issue. Work in this area has been
pioneered by Holzman and implemented into SPIN [17]. Such type of optimized state
storage is not yet implemented by the TTool tool considered in the current paper.

SPIN falls in the family of verification tools that we term as ‘model checkers’. A
Model Checker inputs a model and a property, processes them, and outputs a ‘yes/no’
answer stating whether the property is satisfied or not. Basically, a model checker ex-
plores the state space of the model and potentially identifies states where the property
is not satisfied.

Using a model checker first requires to express the properties to be verified. It is a
common practice to express the properties in the form of logic formulas expressed, e.g.,
using Temporal Logic. Property expression is not an easy task and automatic generation
of the properties to be verified is an issue [15].

As far as the model checker has been catered with a set of properties and a model,
the model checking process may start, raising the following question: understanding the
reasons why one or several properties are not satisfied. Identifying counter examples is
an issue [22].

More generally, tracing verification results back to the initial model is a complex
issue, and regularly the subject of questions asked for to researchers who present their
model checkers in papers or talks. As far as the models are expressed in SysML, dif-
ficulties in tracing verification results back to the SysML model stems from the fact
that SysML tools use external model checkers [26, 34] that had been developed for
formal methods such as Petri nets. Translation from UML/SysML to state/transition
models has been formalized in the context of Petri nets [12, 40, 19, 33], automata for
NuSMV model checker [44], timed automata [37] for UPPAAL model checker, hybrid
automata [1], model checker NuSMV [28], model checker nuXmv [39], probabilistic
model checker PRISM [31, 1], and a theorem prover [23]. Translation from UML to
process algebra has been investigated for RT-LOTOS [4] and CSP [2]. The family of
correct by construction specification has been addressed with B [25]. Other contribu-
tions such as [46], target a better understanding of verification results output, especially
when the property of interest is not satisfied.

Conversely the TTool tool considered in the current paper includes a native model
checker and returns yes/no answers inside the SysML model, for properties that are
themselves expressed inside the block diagram of the SysML model. In terms of per-
formances, the native model checker of TTool favorably compares to the performance
of the first version of TTool where the latter was interfaced with UPPAAL [11].
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To be more precise with respect to TTool, let us add that TTool applies model check-
ing to the block and state diagrams of SysML. This is a common point with other
research work published, e.g., practice [12, 37, 4]. Nevertheless, some authors apply
formal verification to SysML activity diagrams [31, 19, 39].

6 Conclusions

The expected benefits of using an MBSE approach includes early detection of design
errors in the life cycle of systems. One or several models are checked against their
expected properties using a model checker that takes the models and the properties as
inputs, and answers stating whether each property holds or not.

Such a model checking approach has been implemented for SysML. The TTool
software implements a user-friendly approach where the properties to be verified are
expressed inside the SysML model and their evaluation is reported at the same place in
the SysML model. Thus, users of TTool work at the SysML level with no need to learn
about the inner workings of the model checker.

The model-checker of TTool, its performance, and its increased user-friendliness
had already been discussed in [11, 36]. The current paper proposes a new optimization
for the model checking of SysML models. The goal is to avoid a prover to handle a
large model when only a subset of it is necessary to evaluate a property. The proposed
idea relies on dependencies internal to blocks (control flows) or between blocks (com-
munications).

An early paper [5] by the authors of the current paper used an AFDX (Avionics
Full DupleX [18]) network to demonstrate the benefits of relying formal verification
of SysML models on dependency graph generation. The current paper optimizes the
dependency graph generation algorithm and illustrates the proposed approach using a
new generation of real-time network: TSN (Time-Sensitive Networking).

Future work includes the definition of a bisimulation relation to compare depen-
dency graphs. Handling more CTL properties, like leads-to, is also part of our future
work. We also intend to use new case studies to demonstrate the efficiency of our ap-
proach at larger scale. Last, we intend to support the new syntax (including the textual
syntax) and semantics of SysML V2.
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