
A Model-Based Combination Language for Scheduling
Verification?

Hui Zhao1, Ludovic Apvrille3, and Frédéric Mallet12

1 Université Côte d’Azur, I3S, INRIA
2 I3S Laboratory, UMR 7271 CNRS, France

3 LTCI, Télecom Paris, Institut Polytechnique de Paris

Abstract. Cyber-Physical Systems (CPSs) are built upon discrete software and
hardware components, as well as continuous physical components. Such hetero-
geneous systems involve numerous domains with competencies and expertise that
go far beyond traditional software engineering: systems engineering. In this pa-
per, we explore a model-based approach for systems engineering that advocates
the composition of several heterogeneous artifacts (called views) into a sound and
consistent system model. A model combination Language is proposed for this
purpose. Thus, rather than trying to build the universal language able to capture
all possible aspects of systems, the proposed language proposes to relate small
subsets of languages in order to offer specific analysis capabilities while keep-
ing a global consistency between all joined models. We demonstrate the interest
of our approach through an industrial process based on Capella, which provides
(among others) a large support for functional analysis from requirements to com-
ponents deployment. Even though Capella is already quite expressive, it lacks
support for schedulability analysis. AADL is also a language dedicated to system
analysis. If it is backed with advanced schedulability tools, it lacks support for
functional analysis. Thus, instead of proposing ways to add missing aspects in
either Capella or AADL, we rather extract a relevant subset of both languages
to build a view adequate for conducting schedulability analysis of Capella func-
tional models. Finally, our combination language is generic enough to extract
pertinent subsets of languages and combine them to build views for different ex-
perts. It also helps maintaining a global consistency between different modeling
views.

Keywords: CPS, MDE, Combination Modeling Language, SysML, AADL, Multi-
View Design

1 Introduction

CPSs (Cyber-Physical Systems) consists of various components and their intercon-
nections [15]. Thus, the design of the CPSs span over numerous domains of the sys-
tem. Handling requirements of different domains with different characteristics pushes
model-based approaches to their limits.

? This work was financially Supported by the CLARITY project and by a UCN@Sophia Labex
scholarship.



Model-Driven Engineering (MDE) is considered as a well-established software de-
velopment approach that uses abstraction to bridge the gap between the problem space
and the software implementation [7][23]. MDE uses models to describe complex sys-
tems at multiple levels of abstraction. In this paradigm, models are first-class elements
that represent abstractions of a real system, capturing some of its essential properties.
Models are instances of modeling languages which define their abstract syntax (e.g.,
using a metamodel expressed in a class diagram), concrete syntax (e.g., graphical or
textual), and semantics (e.g., operational or denotational by means of a model transfor-
mation) [12]. As an important issue of MDE, multi-view modeling integrates different
models using various DSMLs (domain-specific modeling languages) and abstract vari-
ous aspects of systems and sub-systems, such as scheduling, behaviors and functional-
ities. Therefore, it is critical to understand the relationship among (meta) models. The
modeling languages, such as Systems Modeling Language (SysML) [10] and Architec-
ture Analysis and Design Language (AADL) [8], have been enhanced to better handle
the CPS design, but, to the best of our knowledge, none of them cover all the necessary
domains to handle all the characteristics of CPSs effectively. The increasing complexity
of CPSs brings a critical challenge for developers to deal with different domains. De-
velopers have to rely on domain-specific languages to handle different domains, which
results in a proliferation of languages and increasing design complexity of CPS [9, 15].
Furthermore, the gaps between languages and platforms bring several problems, for
example, the specification of the CPS that has problems with inconsistency and inco-
herency. All of those problems are exposed at integration and simulation stages, they
also augment the complexity of CPS and make it skyrocketing.

To tackle these problems, a new approach is required to efficiently take advantage of
each existing language and combine them together. To this end, the existing approaches
can be classified into two types. The first type is to continuously integrate the necessary
languages into an existing development platform, and then progressively build a com-
prehensive development platform. However, this type of approach could encounter a
never-ending process and result in a gigantic framework, thus difficult to use, maintain,
etc. The second type is to keep each language (or tool) isolated, and relate some of the
elements from each language with (sub) meta-model, so as to allow different kinds of
analysis offered by each method (e.g., scheduling analysis, safety analysis). Further-
more, each domain expert can work independently with the second type of approach.
However, since each language has its own characteristic, such as syntax and seman-
tics, the gaps between different languages have to be eliminated in order to handle the
consistency issues.

Our previous work [27] introduced a formal approach to combine two modeling
languages by defining how to link two (sub-)metamodels. More precisely, thanks to our
approach, consider two models m1 and m2 of two different modeling languages: m2 can
automatically be augmented with some information of m1 so as to perform verification
on the enriched model (e.g., scheduling, timing, safety), and then verification results
can be backtraced to m1.



In order to validate our contribution, SysML and AADL are selected as two target
languages, and their support environments (tools) Capella/Arcadia and OSATE2 4 are
used to show the design of example system.

The paper is organized as follows. In section 2, we first identify the workflow of
the proposed approach. Then, we explicitly present the reinforced language and the
operators in section 3. In section 4, we apply these operators on functional and physical
views. To evaluate the proposed formal approach, train traction control systems are used
to demonstrate the architecture and analyze scheduling in section 5. Section 6 illustrate
the related work. Finally, section 7 concludes the paper and presents our future work. It
should be noted that, in sections 2, 3, 4 and 5, all elements on the left of transformation
rules belong to metamodels of Arcadia, and all elements on the right are from the AADL
metamodels. These metamodels have been imported by default, and their prefix (e.g.,
MM.Arcadia.function) are omitted for conciseness.

2 Our Approach

In this section, we describe the workflow we propose using an example based on Arca-
dia and AADL, as shown in figure 1 [27]. Arcadia is well adapted to describe how to
allocate functions, while AADL focuses on the concrete execution behaviors of com-
ponents. In this paper, we use transformation to enhance Arcadia with the scheduling
analysis features of AADL. The transformation is performed by proposing a set of rules
and operators to specify the relationships at the M2 level. Those relations are used for
model transformation purpose and a set of all relationships is called Transformation
Rule Library (TRL). More specifically, these rules are used to establish a relationship
between Arcadia and AADL metamodels in a Transformation Rule Library. We assume
that Arcadia and AADL define concepts that can be put in relation thanks to the pro-
posed rules.

As shown with the green part in the figure 1, an Arcadia function allocated to a pro-
cessor can be related to a ”thread” in AADL. Additional attributes in Arcadia must be
added (e.g., period and execution time) when one feature has no equivalence, as shown
with a red part in figure 1). Then, the elements of metamodels are chosen manually
depending on the requirements of the project. Finally, the workflow has four steps. In
step one, we can get a temporary combinational metamodel (TCM) at run time by us-
ing TRL once the equivalence relations between the two metamodels have been settled.
In step two, the TCM can be used to combine an AADL model with elements of an
Arcadia model, then the new AADL model can be exported into OSATE for further
editing. In step three, the Cheddar analysis tool [22] is used to conduct scheduling sim-
ulation. This tool can be used to detect designing flaws, time and resources conflicts. In
step four, it traces back the results to the Arcadia model in order to help the designer
enhancing the performance of his/her model.

4 http://osate.org/index.html



Import

Transformation Rule 
LIB

Im
port

Arcadia Models

Functional 
Design/Analysis

M2

 

M1
Temporary AADL Models
Architectural + Timing 

Design/Analysis

Simulation

schedule 1 schedule 2

Sim
ulate

Traceback

1

2

34

co
nf

or
m

 to

correspondingcorresponding

Legend

conform to

Export

corresponding

to be implemented

co
nfo

rm
 to

Metamodels of AADLMetamodels of ARCADIA

Temporary combinational Metamodel

conform to

Fig. 1. Overview of Workflow

3 Model Combination Language

The proposed Language is a dedicated (meta) language to extend and enrich one DSML’s
capability by combining the other DSMLs. With this language, an integration engineer
can explicitly capture combination scenarios at the language level. Combination pattern
is used to specify different combination relationships. Specific operators are provided
to build up Transformation Rule Expression (TRE), a set of TRE defines a TRL (Trans-
formation Rule Library) which specifies how to combine different (meta) models’ ele-
ments. Once the TRL is completed, it can be parsed by an automatic tool. Afterwards,
the tool can perform the transformation automatically. The concept of combination lan-
guage is illustrated in figure 2.



TRL (Transformation Rule Library)

Operators Elements+

TRE

TRETRE (Transformation 
Rule Expression)

Patterns

Specification

Parsed by

Realise

Tool

Fig. 2. Concept of Combination Language

3.1 Specification

A specification consists of combination patterns and corresponding TRL. It defines
what and how elements from different models are combined. Once it is specified, inte-
gration experts can share this specification thus allowing the reuse and tuning of TRL.
As a specification can explicitly describe combination relationship, it also can be used
to decompose models by bi-directional techniques for some decomposition needs.

3.2 Combination patterns

Currently, We predefine a number of essential combination patterns, which provide all
the declarations used in all the following examples. However, thanks to our language,
designers can build other combination patterns depending on their problems and re-
quirements. Certainly, they have to define some new combination patterns in the form
of TRL.

1. Association: The association pattern is the most common phenomenon and easier to
understand. It is used to indicates one element associate to another element and their
related sub-elements (for example, its embedded element or associated attributes).

2. Removal: The removal pattern indicates the situation, where some element does
not be needed for new models according to requirements.

3. Correspondence The Correspondence pattern indicates building an equivalence re-
lationship among a set of elements.

4. Notation: The notation pattern aims to hint people to add some extra information
which is not existing in model. For example, the dependency relationship among
the model’s elements, and the nature of the elements.



3.3 Abstract syntax of Combination Language

We give an abstract syntax of Combination Language by using a metamodel expressed
in a class diagram (shown in figure 3). The major element of Combination Language
is a specification that contains Patterns, Operators and TRL. The specification requires
importing at least two (meta) models. The imported (meta) models serve as a source of
a set of candidate elements for following operations. An operator selects the elements
and their attributes from imported (meta) models, and it also specifies how to combine
selected elements with a clear relationship.

Each operator contains a Transformation Rule Expression which relies on a strict
definition by EBNF (Extended BackusNaur Form). Symbols are used to construct the
TRE. For instance, for adding security properties to a logical component of Capella, it
has to specify the corresponding element and their related attributes in TTool by using
TRE.

Specification

[1..n] patterns

Pattern

Transformation 
Rule Express

Transformation 
Rule Library

Operators

[2] (meta) models

Element

(meta) Model

Attribute

[1..n] attributes

[1..n] TREs

[1..n] Operators
[1..n] Elements

[1] TRL

Symbol

[1..n] Symbols

[1..n] Elements

Fig. 3. A simplified view of abstract syntax of combination language



3.4 Meta symbol and notations rule expression

In this subsection, we firstly introduce some notations and meta symbols which are fun-
damental elements for constructing the well-defined Transformation Rule Expressions
(see table 1). For the propose to obtain strict definition and non-ambiguous Transfor-
mation Rule Expression pattern, we use EBNF to define TRE. EBNF is a notation tech-
nique for context-free grammars 5, often used to describe the syntax of languages [17].

Symbol Meaning
Γ Transformation Rule
; End of rule
: Separate elements
 Transfer
<> Parent node
{ } Attribute
[ ] Optional value
| Alternative
+ Object to be created
¬ Ignorer
@ Notation

Table 1. Symbols of transformation rule expression

The detail literal meaning of symbols are as below:

1. A Transformation Rule Expression begins with ”Γ” and ends with ”;”.
2. The symbol ” ” indicates a transfer action.
3. A transfer action contains the source elements which in the left side of ” ” and

the target elements in the right side. A simple example is as bellow:

Γ < parent > source target;

4. Symbol ”:” separates each part of TRE.
5. An angle brackets ”<>” encloses the parent node if the element has one or more

parent nodes.
6. A parentheses ”{ }” enclose attributes
7. A square braces ”[ ]” delimit optional elements.
8. The alternative value is separated by a pipe ”|”. For example, The port has a direc-

tional attribute called Direction which could be in or out shown as:

Port : {Direction[in|out]}
5 https://en.wikipedia.org/wiki/BackusNaur form



9. Symbol ”@” indicates the notations which are used to add some extra informations
such as dependency and nature. The extra informations are handled as the same as
operational value: enclosed in [ ]; separated by ”,”. For example, Port@[ModelA,Security]
means element Port belongs to ModelA and is used for Security purpose (view). In
such situation, it makes tools automatically display or hide the element Port which
is in modelA and for security view in the following process.

With those symbols, we can build up plentiful TREs. Some more detailed examples of
Transformation Rule Expressions are shown in the listing 1.1.

3.5 Abstract syntax of rule expression in EBNF

As we mentioned in the previous subsection, the TRE consists of one or more sequences
of symbols. We list here the context-free syntax in EBNF in this subsection.

〈expression〉 ::= Γ 〈term〉 〈term〉;|〈expression〉:〈term〉; |〈operator〉 〈term〉;

〈term〉 ::= 〈element〉 | 〈operator〉〈element〉 |〈operator〉〈element〉〈operator〉

〈operator〉 ::= ’@’ | ’+’ | ’¬’ |’ ’

〈element〉 ::= 〈element〉|〈attribute〉 |〈optional value〉

3.6 Operators and semantics

The context-sensitive syntax and the operational rules could also be considered to be
semantics instead of syntax. For example, the context-sensitive syntax is called static
semantics in the UML specification documents from OMG [18]. In our case, it specifies
how an instance of a construct can be meaningfully connected to other instances.

In order to make the TRE more clearly and precisely, we firstly present a set of
relationships definitions formally. That is used to help users understand the semantics of
the operator and to avoid ambiguity and misunderstanding. Secondly, we propose a set
of operators to build up Transformation Rule Expression, which represents operations
between (meta) models (e.g., transforming, creating, ignoring) in a systematic way.
They may also help users to understand the following TRE examples.

We define a relation in the sense of set theory. Let A and B be a set of elements
respectively, with a, b, c and x, y, z: elements of model, this is written as A ) a,b,c and
B ) x,y,z.

– Relationship: If the ordered pair (a,x) in our relation, we write R (a,x) or aR x for
simplicity. It is also a boolean function. R (a,x) is true means existing a relation
between a and x.

– Equivalence: E(a,x) is a boolean function that is true if and only if a semantically
equals to x. By function E(a,x) holds R (a,x)∧E(a,x).

– NotIn: ¬a is a boolean function. If it is true, that means there are any corresponding
elements in set of B (x,y,z) which either have a relationship with a, nor semantically
equal to a. Formally,

¬R (a,{x,y,z})∨¬E(a,{x,y,z})



Operators:

(a) Transferring operator: We use indicates transferring operator, for example, a 
x it means that transfer from a to x, if and only if E(a,x) is true, in other words, a
and x is Equivalence relationship.

(b) Creating operator: In the case of creating a new attribute, put the name of an at-
tribute in the parentheses with plus ”{ }+”, that is used to present the option which
is to be created. For example, Γa x : {y}+;, it means that transfer from a to x
and add y attribute, if and only if y ⊃ x and E(a,x)∧R (a,y)∧R (x,y) is true. An
example in practice is below,

ΓPort Port : {Type[data|event|dataevent]}+

A port will be transferred to another port element, and to create new attribute named
Type that associates to port with three optional value (data, event, data and event).

(c) Ignoring operator: This operator is used for some ignored attributes and objects.
It is denoted with symbol ”¬” which is in front of the object. For example, ¬a, it
means a is NotIn object of set B. Formally, ¬R (a,B)∨¬E(a,B).

(d) Notation Operator:This operator is used for tagging the nature of attribute of an el-
ement. There is an example: Port@[ModelA,Security]. It can present two attributes
of element Port with two tags. One is ModelA, indicating that the element Port be-
longs to ModelA. In other words, It represents a dependency relationship between
this element Port and element ModelA. Another is Security, represents an element
Port for Security purpose. It would be used to catalog the elements for displaying
or fast selecting purpose.

TRE examples with semantics: Transformation Rule Express (TRE) represents the
transforming relationships. It would be used for guiding the integration engineer or for
reading by automated transformation engine. We use some more detailed examples of
Transformation Rule Expressions to explicitly explain how it works. Please refer to the
TRE table which is in the listing 1.1.

In line 1 of this example, we firstly transfer an element port (it has direction at-
tribute) of A to an object element port of B, and add a new attribute Type with three
optional value (date, event or data event). These ”type value” can be recognised by
model B’s DSML and the supported environment. The added attribute can be used to
continue further design as well. In line 2, it is similar to previous one, but the object
element Port has a parent node called feature which is enclosed in a pair angle brackets.

Secondly, in line 3, it shows an ignored element, in which the source element may
not be found a corresponding one in the object model, or the source element is not
needed by the object model. Finally, in line 4, it is a Equivalence relationship between
the source element and the object element, in other words, it’s a set of one by one trans-
formations which transfer ”Ex f un” to ”connection”, ”Source” to ”source” and ”Target”
to ”target”, respectively.

1 ΓPort :{Direction[in|out]} <feature>:Port:{Direction[in|out]}:{Type[data|event|data event
]}+;

2 ΓPP <feature>:Port:{Direction[in|out]}+:{Type[data|event|data event]}+;



3 ΓPort :¬{ordering};
4 ΓEx f un:{Source}:{Target} <connections>:connection:{source}:{target};

Listing 1.1. The example of transformation Rule Expressions

4 Transformation Rule Library

As we described in the above section, the Transformation Rule Express play an im-
portant role in the transformation process. Hence, in this section, we will show how
to construct a set of TREs called the Transformation Rule Library (TRL). We also re-
spectively present the following views, functional view and physical view in Arcadia
(SysML) and AADL. Each view contains one or more metamodels which represents as
a x-tuples.

4.1 Functional view

Logical components in Arcadia The logical components in Arcadia contain a set of
member elements, such as logical component containers, functions, ports, and func-
tional exchanges. In the Arcadia, Functional diagrams consist of a set of SysML blocks
and its interactions, named Logical components; The notion of Logical components en-
ables better expression of system engineering semantics compared to SysML, and par-
ticularly, reduces the bias towards software. SysML block definition diagrams (BDDs)
and internal block diagrams (IBDs) are assigned to different abstract and refined layers,
respectively. The definition of a block in SysML can be further detailed by specifying
its parts; ports, specifying its interaction points; and connectors, specifying the connec-
tions among its parts and ports. This information can also be visualized using logical
components in Arcadia. In the definition 1, we present a metamodel of an instance of
logical components.

Definition 1. (Logical Component)

A logical component (LC) is 5 tuples,

LC =<Comp,Fun,Port ,Ex f un,Mc f >

where,

Comp =
∞

∑
i=1

Funi

is a logical component container which contains a set of functional elements.
Fun is a finite set of functional block include their name and id attributes. Port is

a finite set of functional ports including directions and allocation attributes. Ex f un ⊆
Port ×Port denotes a finite set of functional exchange (connection) between two func-
tional ports, it must be pair, one is source, another is target. Mc f : ΣFun→Comp allocate
functions to a logical component container.



Fig. 4. An example of functional view of vehicle traction control unit in ARCADIA

In the figure 4, there is a functional instance model of a part of a vehicle traction
control unit in ARCADIA as an example. The blue rectangle is named logical com-
ponent in Arcadia, but we consider it as a function’s container, we thus call it logical
component container Comp in this paper. The green rectangle are functions Fun which
are contained by Comp. The element Mc f has represented this allocation relationship be-
tween logical component containers and functions Mc f : ΣFun→Comp. The deep green
square with the white triangle is the outgoing port (Port ), which connects to an incom-
ing port (Port ) that is drawn as a red square with white triangle and the green line is the
functional exchange between two functional ports (Ex f un).

The metamodels of software in AADL AADL is able to model a real-time system as a
hierarchy of software components, predefined software component types in the category
of the components such as thread, thread group, process, data, and subprogram are used
to model the software architecture of the system.

Definition 2. (Software Composition)

A SC is a 4-tuples:

SC =< Type,Port,Connection,Annex >

where Type specifies the type of components (e.g, system, process, thread). Port is a set
of communication point of component. Port could be different types such as data port,
event port and data event port. And, port can specify the direction such as in port, out
port, in out port. Connection is used to connect ports in the direction of data/control
flow in uni- or bi-directional. Annex is defined for the refinement of component, in this
paper, we used hybrid annex to explicitly describe the both discrete and continuous
behavoir of train traction control system.

Hybrid Annex We use the HA to declare both discrete and continuous variables in
the Variables section, and the initial values of constants are given in constant section.



Assert is used to declaring predicates which may be used with invariants to define a
condition of operation. The behavior section is used to specify the continuous behavior
of the annotated AADL component in terms of concurrently executing processes, and
use continuous evolution — a differential expression to specify the behavior of a phys-
ical controlled variable of a hybrid system. The communication between computing
units and physical components are an essential part of a hybrid system, Communica-
tion between physical processes uses the channels declared in the channel section, and
communicate with an AADL component relies on ports that are declared in the compo-
nent’s type. Continuous process evolution may be terminated after a specific time or on
a communication event. There are invoked through timed and communication interrupt,
respectively. A timed interrupt preempts continuous evolution after a given amount of
time. A communication interrupt preempts continuous evolution whenever communi-
cation takes places along any one of the named ports or channels. The definition 3 gives
a metamodel of Hybrid Annex which does not exist in SysML-based environment.

Definition 3. (Hybrid Annex)

A Hybrid Annex is a 8-tuples:

H A =< Ass, Ivar,Varhd ,Conshd ,Proc,ChP, Itr,Bitr >

where Ass is a finite set of assert for declaring predicates applicable to the intended con-
tinuous behavior of the annotated AADL component. Ivar is associated with assert to
define a condition of operation that must be true during the lifetime. Varhd is a finite set
of discrete and continuous variables. Conshd is a finite set of constants which must be
initiated at declaration. Proc is a finite set of processes that are used to specify continuous
behaviors of AADL components. ChP is a finite set of channels and ports for synchro-
nizing processes. Itr is a finite set of time or communication interrupts. Bitr : Itr→ Proc
binds interrupts to related processes.

Functional elements transformation rules The table 2 shows the correspondence be-
tween AADL and Arcade elements. The Additional attributes column are the attributes
to be created during the transformation. According to this table, we can easily write
the transformation rules to transforming Arcadia to AADL on functional parts, denoted
LC  SC +H A . An example as below (listing 1.2 [27]):

1 ΓComp  Type[ system|process]:{Runtime Protection[true|false]}+;
2 ΓFun  Type[abstract|thread]:{Dispatch Protocol[Periodic|Aperiodic|Sporadic|Background|

Timed|Hybrid]}+;
3 ...

Listing 1.2. Functional elements transformation rules example

4.2 Physical view

Execution Platform in AADL Processor, memory, device, and bus components are the
execution platform components for modeling the hardware part of the system. Ports and



A
rc

ad
ia

A
A

D
L

A
dd

iti
on

al
at

tr
ib

ut
es

N
ot

at
io

n
L

og
ic

al
co

m
po

ne
nt

co
nt

ai
ne

r(
C

om
p)

Sy
st

em
,P

ro
ce

ss
{R

un
tim

e
Pr

ot
ec

tio
n[

tr
ue
|fa

ls
e]
}+

@
[f

un
ct

io
n|

A
A

D
L
|sc

he
du

lin
g]

Fu
nc

tio
n

(F
un

)
A

bs
tr

ac
t,

T
hr

ea
d

{D
is

pa
tc

h
Pr

ot
oc

ol
[P

er
io

di
c|

A
pe

ri
od

ic
|S

po
ra

di
c|

B
ac

kg
ro

un
d|

Ti
m

ed
|H

yb
ri

d]
}+

@
[f

un
ct

io
n|

A
A

D
L
|sc

he
du

lin
g]

Po
rt

(P
or

t)
Po

rt
{T

yp
e[

da
ta
|e

ve
nt
|d

at
a

ev
en

t]
}+

@
[f

un
ct

io
n|

A
A

D
L
|sc

he
du

lin
g]

Fu
nc

tio
na

lE
xc

ha
ng

e
(E

x f
un

)
C

on
ne

ct
io

n
∅

∅
A

nn
ex

{T
yp

e[
ab

st
ra

ct
|t

hr
ea

d]
}:
{a

nn
ex
}+

@
[f

un
ct

io
n|

A
A

D
L
|sc

he
du

lin
g]

Ph
ys

ic
al

N
od

e
(N

od
e)

D
ev

ic
e,

M
em

or
y,

Pr
oc

es
so

r,B
us
{D

is
pa

tc
h

Pr
ot

oc
ol
}+

:{
Pe

ri
od
}:
{D

ea
dl

in
e}

+:
{p

ri
or

ity
}+

@
[p

hy
si

c|
A

A
D

L
|sc

he
du

lin
g]

Ph
ys

ic
al

Po
rt

(P
P

)
∅

¬P
P

@
[p

hy
si

c|
A

A
D

L
|sc

he
du

lin
g]

Ph
ys

ic
al

L
in

k
(P

L)
B

us
/B

us
A

cc
es

s
{A

llo
w

ed
C

on
nn

ec
tio

n
Ty

pe
}+

:{
A

llo
w

ed
M

es
sa

ge
Si

ze
}+

:
{A

llo
w

ed
Ph

ys
ic

al
A

cc
es

s}
+:
{T

ra
ns

m
is

si
on

Ti
m

e}
+

@
[p

hy
si

c|
A

A
D

L
|sc

he
du

lin
g]

Ta
bl

e
2.

Fu
nc

tio
na

la
nd

Ph
ys

ic
al

el
em

en
ts

co
rr

es
po

nd
en

ce
ta

bl
e



port connections are provided to model the exchange of data and event among compo-
nents. Functional and non-functional properties like scheduling protocol and execution
time of the thread can be specified in components and their interactions.

Definition 4. (Execution Platform)

A EP component is defined as a 3-tuples:

EP =< EC,BA,Conn >

where,EC defines the execution component such as processor, memory, bus and device.
BA defines the BusAccess which is interactive approach between bus component and
other execution platform components. Conn⊆EC×EC denotes a finite set of connection
between two components via bus device.

Physical components in Arcadia The physical component in Arcadia consists of phys-
ical Node, Port and Link. The Physical Port and Link correspond to port and bus con-
nection in AADL. There are some choices when the physical Node is translated to
AADL such as device, memory, and processor, hence the designer has to point out what
type of target component during transformation by using transformation rule express.

Definition 5. (Physical Components)

A Physical components is 3-tuples,

P C =< Node,PP,PL >

where, Node is a execution platform, named node in Arcadia, it could be different type
of physical component (e.g, processor, board). PP is the physical component port. PL
is physical link, it could be assigned a concrete type such as bus.

Figure 5 is shown as a part of physical instance model of vehicle traction control
unit in ARCADIA. We can see the yellow parts are the physical node (Node) and the
red line is the physical link (PL) named bus in this case which connects to two physical
ports (PP), the small square in dark yellow.

Physical elements transformation rules According to the table 2, we can easily write
the transformation rules for physical elements. Listing 1.3 [27] shown as a part of the
code to transform the physical component from Arcadia to AADL.

1 ΓNode  [Device|Process|Memory|Bus]:{Dispatch Protocol}+:{Period}:{Deadline}+:{
priority}+;

2 ΓPP ¬PP;
3 ΓPL Bus/BusAccess:[{Allowed Connnection Type}+:{Allowed Message Size}+|{

Allowed Physical Access}+:{Transmission Time}+];

Listing 1.3. Physcial elements transformation rules example



Fig. 5. An example of physical view of vehicle traction control unit in ARCADIA

What we have to especially explain is the physical link part (see line 3). The Bus
device could be a logical resource or hardware component. Hence, the bus device has
different properties depending on the role. When the bus is considered as a logical re-
source, it contains the properties Allowed connection type and Allowed Message Size.
When the bus is hardware, it contains Allowed Physical Access and Transmission Time.
Therefore, we write the rules that either

{Allowed Connnection Type}+ : {Allowed Message Size}+

or
{Allowed Physical Access}+ : {Transmission Time}+

5 Case Study

To show the efficacy of our approach in transforming and using produced AADL models
to analyze the properties, this section presents the experimental results of analyzing the
traction controlling unit of railway signaling system. By using our proposed approach,
we transfer and extend Arcadia metamodel, and design AADL using OSATE2 with
the generated metamodel. once the concrete models have been created, the scheduling
property is chosen to show analysis ability through Cheddar tool [22].



Fig. 6. Arcadia model of TCU system

5.1 Train Traction Control System

Train movement is the calculation of the speed and distance profiles when a train is
traveling from one point to another according to the limitations imposed by the signal-
ing system and traction equipment characteristics. As the train has to follow the track,
the movement is also under the constraints of track geometry, and speed restrictions
and the calculation becomes position-dependent. The subsystem of calculating the trac-
tion effective and speed restrictions is therefore critical to achieving train safe running.
Nowadays, Communication Based Train Control (CBTC) system is the main method
of rail transit (both urban and high-speed train) which adopts wireless local area net-
works as the bidirectional train-ground communication [28]. To increase the capacity
of rail transit lines, many information-based and digital components have been applied
for networking, automation and system inter-connection, including general communi-
cation technologies, sensor networks, and safety-critical embedded control system. A
large number of subsystems consisting of modern signaling systems of railways, there-
fore, system integration is one of the key technologies of signaling systems; it plays a
significant role in maintaining the safety of the signaling system [26].

This paper uses a subsystem which called Traction Control Unit system (TCU) from
signaling system of high-speed railway. We use this TCU system to illustrate the model
transformation from engineering level to detailed architectural level and verified the
instance models. The functional modules such as calculation and synchronization will
be transformed using our approach, and then non-functional properties such as timing
correctness and resource correctness will be verified by schedule analysis tool Ched-
dar [22].

First, we start with component functional views and physical view analysis by de-
signing system models in Arcadia (shown in figure of TCU 6 [27]). The functions of



Traction Control Unit

Alarm

Tractional coefficient

GeoMaps

GPS value

Setting value

Maps

Position

HMI

Locomotive

Operation Display

GPS

BaliseSensor

20ms

30ms

Voter

Voter

Acc/Dec value

status

sync
msg

coefficient

Restriction

Restricted 
condition

c_mrin

c_prin
c_rout

status

c_cv

c_sv

c_rv

calculating speed value

Calculating Acc/DecSynchronizer

sync

c_cc
c_scc

c_cs

Expected speed

c_sec
c_cs

Current speed
60ms

Acc/Dec value

40ms

Fig. 7. AADL model of TCU system

the traction control system are to collect the external data by sensors such as a speed
sensor. The data from Balise sensors is used to determinate the track block, and then
it is going to seek the speed restriction conditions by matching accurate positioning (if
the track blocks are divided fine enough) and digital geometric maps data. Meanwhile,
calculating speed unit received the speed data from GPS and speed control commands
from HMI (Human-Machine Interface) periodically. GPS data provides speed value pe-
riodically (we set a period of 30 seconds in this case), and HMI data sustainedly send
the operation command with the period of 20 seconds till the value changed (e.g., ex-
pected speed value), then the calculating unit has to output an acceleration value and
export to the locomotive mechanical system. Although they are periodic, the external
data do not always arrive on time due to transmission delay or jitter. Therefore, we
should use a synchronizer to make sure they are synchronized. Otherwise, the result
would be wrong with asynchronous data. Similarly, to ensure the correctness of the
command of acceleration (or deceleration), we applied a voting mechanism which can
ensure the result is correct as much as possible. The voter must have the synchronized
signal and restriction condition to dedicate to output the acceleration coefficient request
to the locomotive system. The AADL diagram is shown in figure 7 [27].

5.2 Model transformation

Using the Arcadia2AADL tool, the metamodel of the TCU system in Capella is trans-
lated into the corresponding AADL metamodel with the rules and approach which de-
scribes in section 4. For instance, on the one hand, the function class is translated into
the thread in AADL. To analyze the timing properties, several attributes also have been
added such as protocol type, deadline, execution time, period.



On the other hand, the physical part element Node translates to the processor in this
case. Differ from simple physical Node in Arcadia; the processor element attaches rich
properties such as scheduling protocol (scheduler type), process execution time. The
allocation relationships on both physical and functional parts are translated into AADL
as well.

5.3 Schedule verification

The external data and internal process work sequentially is an essential safety require-
ment of the system, and each task should be scheduled properly. However, in real-world,
the risk of communication quality and rationality of scheduling must be taken into ac-
count. Therefore, the schedule verification is a way to evaluate system timing property.
An Ada framework called Cheddar which provides tools to check if a real-time applica-
tion meets its temporal constraints. The framework is based on the real-time scheduling
theory and is mostly written for educational purposes [16].

1 thread implementation synchronizer . impl
2 properties
3 Dispatch Protocol => perodic;
4 Period => 100 ms;
5 Deadline => 100 ms;
6 Compute Execution Time => 50..60ms;
7 end synchronizer . impl;
8
9 thread implementation calalculating . impl

10 properties
11 Dispatch Protocol => perodic;
12 Period => 100 ms;
13 Deadline => 100 ms;
14 Compute Execution Time => 30ms..40ms;
15 end calalculating . impl;
16
17 thread implementation gps. position
18 properties
19 Dispatch Protocol => perodic;
20 Period => 40 ms;
21 Deadline => 40 ms;
22 Compute Execution Time => 30ms..40ms;
23 end gps. position ;
24
25 thread implementation HMI.setting
26 properties
27 Dispatch Protocol => perodic;
28 Period => 30 ms;
29 Deadline => 30 ms;
30 Compute Execution Time => 20ms..30ms;
31 end HMI.setting ;

Listing 1.4. Setting of scheduling properties



Listing 1.4 shows a set of 4 periodic tasks (cal, pos, sync and setting) of TCU
respectively, defined by the periods 100, 100, 40 and 30, the capacities 60, 40, 30 and
20, and the deadlines 100, 100, 40 and 30. These tasks are scheduled with a preemptive
Rate Monotonic scheduler (the task with the lowest period is the task with the highest
priority).

For a given task set, if a scheduling simulation displayed XML results in the Ched-
dar. One can find the concurrency cases or idle periods (see left of figure 8, comprise
the software part and physical device part). People change the parameters directly and
reload simulation; a feasible solution can be applied instead. After tuning, finally, the
appropriate setting has displayed as in right of figure 8. According to this simulation
result, people can correct the properties value in AADL, thereby ensure the correctness
of system behavior timing properties.

(a) Schedule 1 with idel time (b) Schedule 2 with compact time

Fig. 8. Simulation results of tasks schedule

6 Related work

We have presented our approach to extending SysML-based engineering framework
Capella to AADL and analyzed the relationships among Arcadia and AADL models in
different view at the metamodel level. Likewise, a considerable number of studies have
been proposed on ”language extension, modeling languages integration and composable
language components”. This section provides a brief introduction to these works.

The complexity of the development of CPS has been the significant problems which
puzzle the developers. It is not only from the nature of problems but also from the de-
velop languages. Elaasar et al. has discussed [6] about the limit of UML which exacer-
bate the complexity of development, and proposed an approach to reduce the complex-
ity of UML tools by implementing and adapting the ISO 42010 standard on architecture
description.

Efficient integration of different heterogeneous modeling languages is essential.
Modeling language integration is onerous and requires in-depth conceptual and tech-
nical knowledge and effort. Traditional modeling language integration approaches re-



quire language engineers to compose monolithic language aggregates for a specific task
or project. Adapting these aggregates to different contexts requires vast effort and makes
these hardly reusable. Arne Haber et al [11] presented a method for the engineering of
grammar-based language components that can be independently developed, are syntac-
tically composable, and ultimately reusable.

In despite of existing a lot of studies on the combining SysML and AADL [4] or
on the extending SysML with AADL [2]. Differ from the above studies, our approach
dedicates to smoothly combine engineering platform Capella/Arcadia, AADL and its
annex, and our approach can be easily applied to other languages through fine-tuning.
In practice, one could design global system at a high level and then seamlessly refine
the models within AADL and its annex for further analysis such as scheduling. In other
words, our approach can properly extend Arcadia’s design and analysis capabilities to
AADL, while essentially keeping its independence.

An approach for translating UML/MARTE detailed design into AADL design has
proposed by Brun et al. [3]. Their work focuses on the transformation of the thread
execution and communication semantics and does not cover the transformation of the
embedded system component, such as device parts. Similarly, in [25], Turki et al. pro-
posed a methodology for mapping MARTE model elements to AADL component. They
focus on the issues related to modeling architecture, and the syntactic differences be-
tween AADL and MARTE are well handled by the transformation rules provided by
ATL tool, yet they did not consider issues related to the mapping of MARTE proper-
ties to AADL property. In [19], Ouni et al. presented an approach for transformation of
Capella to AADL models target to cover the various levels of abstraction, they take into
account the system behavior and the hardware/software mapping. However, the formal
definition and rigorous syntactic of transformation rules are missed.

Behjati et al. describe how they combined SysML and AADL in [2] and provided
a standard modeling language (in the form of the ExSAM profile) for specifying em-
bedded systems at different abstraction levels. De Saqui-Sannes et al. [4] presented an
MBE with TTool and AADL at the software level and demonstrated with the flight
management system. Both of their works do not provide the description in a formal
way.

In industrial domain applications, Suri et al [24] proposed a model-based approach
for complex systems development by separating the behavior model and execution logic
of the system. Moreover, they used UML based languages to model system behavior and
connected the behavior models to external physical API of CPS. It focuses on providing
a solution for the modularity and interoperability issues related to Industry 4.0 from a
systems integration viewpoint.

S. Apel et al [1] also studied on different model driven methods for heterogenic
systems for Electric vehicle. They have tried to evaluate how model-driven engineering
(MDE) combined with generative frameworks can support the transfer from platform
independent models to deployable solutions within the logistical domain.

The work of Kurtev [14] is used in the x-ray machine, it provided a family of
domain-specific languages that integrate existing techniques from formal behavioral
and time modeling. F. Scippacercola [21] have explored the application of model-driven
engineering on the interlocking system (a subsystem of signaling system of the rail-



way). They discussed how to reduce efforts and costs for development, verification, and
validation in a critical system.

The modeling language scientists have proposed some specific methods to weave
the models as well as metamodels formally such as [13], Degueule has proposed Melange,
a language dedicated to merging languages [5], and similar works like [20]. However,
the structural properties are not supported.

Compared with current studies, the approach proposed in this paper has the follow-
ing features:

1. A proper subset of AADL has been chosen as the transformation target including
functional software composition, execution platform. We use it to describe contin-
uous behaviors of Cyber-Physical System.

2. All of the transformations is considered at metamodel level, and then a synthesized
metamodel can be used to create concrete AADL models for further analysis.

3. Transformation rules are formally defined, and then it is readable by human and
easier to verify the correctness of transformation.

7 Conclusions and future work

In this paper, we proposed a language-based design approach for combining different
modeling design artifact (called views). At the beginning of this paper, we explicitly
introduce the workflow of the proposed approach. Then we give the definition of syntax
and semantics of our language. We selected system engineering methodology Arcadia
(based on SysML) and architectural design language AADL as a vehicle for demonstrat-
ing the effectiveness of our approach and of model combination language for scheduling
verification. We did so for two reasons. Firstly, the integrating of heterogeneous compo-
nents and elaborate model integrity concept in system design are challenging problems
while using numerous model language to describe different views of one system (or
subsystem). Since our proposed language is generic enough to extract pertinent subsets
of languages, if it works well for combining Arcadia and AADL, it should also work
for the others, less demanding major modifications and extra cost of learning. Secondly,
Enriching the functional design with scheduling ability can discover the conflicts in the
early stage and improve the performance of CPSs in practice in a better way. Hence,
Our language is competent for combining the composition of several heterogeneous
artifacts (views) into a sound and consistent system model.

Especially, we give a formal description of the key modeling elements of Arcadia
and AADL, respectively. Then we give some example of transformation rules which
guide transforming from these Arcadia metamodels to AADL formally. Finally, a case
study of train traction controlling system is used to demonstrate the transformation
from engineering concerned design into an architectural refinement design which can
be further analyzed by scheduling properties to find flaws of functional design.

Although our proposed language-based approach is effective and has been proven
by many instances in practice, there are some drawbacks to use our approach: i) people
have to spend times to learn the syntax of rules, and the writing of rule is error-prone.
ii) the traceback function is not yet implemented automatically.



In our future work, we will try to build a graphic interface to write rules, and the
writing errors of the rule can be detected. We also have to implement the traceback of
simulation results, which is sketched in our workflow with the arrow in dotted line. The
results must be used automatically by upstream modeling framework. To this end, we
have to extract the critical information from cheddar outputting file and transform to
an appended file of modeling tool which can be recognized by the tool and hint user
in somehow. Secondly, we will study the transformation rules for more elements of
Arcadia and also for comprehensive SysML elements, even for other UML-like profiles
such as MARTE. At the same time, we will continue to explore the AADL and its annex
to support more analysis and formal verification of system design. Besides, the safety-
critical systems have become a trend in industrial files. We will study the extension of
AADL with verification of safety properties with transformation methodology.

References

1. Apel, S., Mauch, M., Schau, V.: Model-driven engineering tool comparison for architec-
tures within heterogenic systems for electric vehicle. In: 2016 4th International Conference
on Model-Driven Engineering and Software Development (MODELSWARD). pp. 671–676
(Feb 2016)

2. Behjati, R., Yue, T., Nejati, S., Briand, L., Selic, B.: Extending SysML with AADL concepts
for comprehensive system architecture modeling. In: European Conference on Modelling
Foundations and Applications. pp. 236–252. Springer (2011)

3. Brun, M., Vergnaud, T., Faugere, M., Delatour, J.: From UML to AADL: an Explicit Execu-
tion Semantics Modelling with MARTE. In: ERTS 2008 (2008)

4. De Saqui-Sannes, P., Hugues, J.: Combining SysML and AADL for the design, validation
and implementation of critical systems. In: ERTS2 2012 (2012)

5. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jezequel, J.M.: Melange: A meta-
language for modular and reusable development of dsls. In: Conf on Software Language
Engineering. pp. 25–36. ACM (2015)

6. Elaasar, M., Noyrit, F., Badreddin, O., Gérard, S.: Reducing uml modeling tool complexity
with architectural contexts and viewpoints. In: MODELSWARD. pp. 129–138 (2018)

7. Ergin, H., Syriani, E., Gray, J.: Design pattern oriented development of model transforma-
tions. Computer Languages, Systems & Structures 46, 106–139 (Nov 2016)

8. Feiler, P.H., Gluch, D.P.: Model-based engineering with AADL: an introduction to the SAE
architecture analysis & design language. Addison-Wesley (2012)

9. Garlan, D.: Modeling challenges for cps systems. In: 2015 IEEE/ACM 1st International
Workshop on Software Engineering for Smart Cyber-Physical Systems. pp. 1–1 (May 2015).
https://doi.org/10.1109/SEsCPS.2015.8

10. Group, O.M.: OMG Systems Modeling Language (May 2017)
11. Haber, A., Look, M., Perez, A.N., Nazari, P.M.S., Rumpe, B., Vlkel, S., Wortmann, A.: Inte-

gration of heterogeneous modeling languages via extensible and composable language com-
ponents. In: 2015 3rd International Conference on Model-Driven Engineering and Software
Development (MODELSWARD). pp. 19–31 (Feb 2015)

12. Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics and All That Stuff, Part I:
The Basic Stuff (Aug 2000)

13. Jezequel, J.M.: Model driven design and aspect weaving. Software and Systems Modeling
7(2), 209–218 (2008)

14. Kurtev, I., Schuts, M., Hooman, J., Swagerman, D.J.: Integrating interface modeling and
analysis in an industrial setting. In: MODELSWARD. pp. 345–352 (2017)



15. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: 2008 11th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing. pp.
363–369. IEEE (2008)

16. Marcé, L., Singhoff, F., Legrand, J., Nana, L.: Scheduling and Memory Requirements Anal-
ysis with AADL. In: SIGAda. pp. 1–10. ACM (2005)

17. McCracken, D.D., Reilly, E.D.: Backus-naur form (bnf) (2003)
18. OMG: OMG Unified Modeling Language (Apr 2015)
19. Ouni, B., Gaufillet, P., Jenn, E., Hugues, J.: Model Driven Engineering with Capella and

AADL (2016)
20. Ramos, R., Barais, O., Jezequel, J.M.: Matching model-snippets. In: Conf on Model Driven

Engineering Languages and Systems. pp. 121–135. Springer (2007)
21. Scippacercola, F., Pietrantuono, R., Russo, S., Zentai, A.: Model-driven engineering of a

railway interlocking system. In: 2015 3rd International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD). pp. 509–519 (Feb 2015)

22. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar - a flexible real time scheduling
framework. SIGAda pp. 1–8 (2004)

23. Stahl, T., Voelter, M., Czarnecki, K.: Model-driven software development: technology, engi-
neering, management. John Wiley Sons, Inc. (2006)

24. Suri, K., Cuccuru, A., Cadavid, J., Gérard, S., Gaaloul, W., Tata, S.: Model-based develop-
ment of modular complex systems for accomplishing system integration for industry 4.0. In:
MODELSWARD. pp. 487–495 (2017)

25. Turki, S., Senn, E., Blouin, D.: Mapping the MARTE UML profile to AADL. In: ACES-MB.
pp. 11–20 (2010)

26. Wang, J., Wang, J.: A New Early Warning Method of Train Tracking Interval Based on CTC.
IEEE Transactions on Intelligent Transportation Systems pp. 1–7

27. Zhao, H., Apvrille, L., Mallet, F.: Meta-models combination for reusing verification tech-
niques. In: 7th International Conference on Model-Driven Engineering and Software Devel-
opment. pp. 39–50. SCITEPRESS-Science and Technology Publications (2019)

28. Zhu, L., Zhang, Y., Ning, B., Jiang, H.: Train-ground communication in CBTC based on
802.11 b: Design and performance research. In: CMC’09. pp. 368–372. IEEE (2009)


