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Abstract—The expected high complexity in future automo-
tive applications will require to frequently update electronic
devices supporting those applications. Even if in-car devices
are trusted, potential attacks on over the air exchanges impose
stringent requirements on both safety and security. To address
the formal verification of safety properties, we have previously
introduced the AVATAR UML profile whose methodology
covers requirement, analysis, design, and formal verification
stages [1]. We now propose to extend AVATAR to support
both safety and security during all methodological stages, and
in the same models. The paper applies the extended AVATAR
to an over-the-air protocol for trusted firmware updates of in-
car control units, with a special focus on design and formal
verification stages.

I. MOTIVATION AND OUTLINE

One promising avenue to decrease the number of fa-

tal traffic accidents is to rely on V2X1 communications

[2]. However, adding new in-vehicle services obviously

facilitates novel applications, but also imposes stringent

requirements on security and safety. Indeed, as explained

in [3], attacks on in-vehicle networks may have serious

consequences. More precisely, if an attacker could install

malicious firmware into a vehicle, then he might virtually

control and perform arbitrary actions on the on-board system

[4]. A way for an attacker to install such a firmware is

to attack the Over-the-Air (OTA) diagnosis and firmware

update procedure. Finally, V2X applications - including

remote flashing procedures - must be developed with a high

safety and security assurance level.

Several methodologies have already been introduced to

ensure a given level of security in embedded systems. For

example, Common Criteria include a formal certification

methodology that is unfortunately costly, paperwork ori-

ented, and that neither addresses safety issues nor attack pro-

tection. Many other methodologies cover the development of

critical embedded systems, with a formal verification stage

unfortunately only focused on safety properties, e.g., [5].

Formal methodologies could directly be used, but many of

them mainly target verification of a subpart of the system -

e.g., they target only the communication parts, i.e. communi-

cation protocols [6] - while letting the rest almost uncovered.

1V2X stands for any external vehicular communications such as Vehicle-
to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) communications.

Also, verification methodologies targeting the entire system

are often quite complex and demand specialized knowledge

[7]. Furthermore, approaches with partial or no automation

support may not be adequate for non-experimented users [8].

Our approach extends the safety-oriented environment

AVATAR with security constructs and verification tech-

niques. AVATAR is a Unified Modeling Language (UML)

profile targeting real-time embedded systems. AVATAR cov-

ers all usual methodological stages (requirement capture,

system analysis, system design, property modeling, and for-

mal verification) [1]. Further, AVATAR is fully supported

by TTool, an open-source toolkit offering a friendly front-

end for modeling and automated property verification [9].

In the scope of the EVITA project [2], we apply this novel

approach to formally secure an automotive safety critical

application. We target the verification of the Firmware

Updates (FU) protocol described in [10] which was recently

proposed as a V2X solution for remote and wired firmware

updates. Several approaches have already been used to

specifically verify firmware updates specifications [11], [12],

[13]. They nevertheless take questionable assumptions in

protocol verification such as weak access control and one-

way authentication (no vehicle authentication). Our approach

partially tackles these identified issues.

This paper is structured as follows. First, we present the

underlying in-car security architecture in Section II. Then,

Section III depicts how we extend AVATAR with security

in mind. The formal verification process is illustrated with

the FU protocol in Section IV. Verification results are then

presented in Section V. Section VI finally concludes the

paper.

II. SECURITY ARCHITECTURE AND VULNERABILITIES

Recent on-board Intelligent Transport (IT) architectures

comprise a very heterogeneous landscape of communication

network technologies (e.g., LIN, CAN, MOST, and FlexRay)

that interconnect in-car Electronic Control Units (ECUs)

[14]. The increasing number of such equipments triggers

the development of novel applications, and reciprocally but

it also introduces more complex requirements on safety and

security. Based on security requirements identified in [3],

we introduced a security architecture [15] that covers cross-

layer security in ECUs, targeting platform integrity, com-



munication channels, access control and intrusion detection,

by specifying software and hardware security mechanisms.

This security architecture is further enhanced with a set

of cryptographic protocols [16]. The combination of the

architecture and the protocols shall enforce the security

requirements identified for the respective use cases [14].

However, as stated in [17], the deployment of security proto-

cols may introduce vulnerabilities such as design vulnerabil-

ities (e.g., security flaws in protocol design), implementation

vulnerabilities (protocol implementation vulnerable to at-

tacks), configuration vulnerabilities (improper configuration

of components), and system vulnerabilities (host platform

vulnerable to attacks). Thus, the EVITA in-depth formal

analysis takes into account both security-related elements

of the architectures and cryptographic protocols. However,

this paper focuses on the verification of the cryptographic

protocols against configuration and system vulnerabilities

(see Section III-B).

III. FORMAL VERIFICATION METHODOLOGY

A. The AVATAR Profile

1) AVATAR: AVATAR is a SysML environment [1] with a

5-stage methodology: requirement capture, system analysis,

system design, property modeling and formal verification.

All those stages are supported with SysML diagrams. An

AVATAR design is made upon a SysML Block representa-

tion. A SysML Block is defined by a list of attributes, a list

of methods, a list of synchronous and asynchronous signals

and a SysML State Machine Diagram (SMD). A SMD

includes a set of states linked with transitions: the latter

are labeled with guards, actions on variables and method

calls. SMDs (see figure 3) also support signal sending and

receiving operators - respectively denoted by chanOut(),

chanIn() - and deterministic and non deterministic temporal

operators (e.g., timers).

TTool is an open-source toolkit [9] that supports several

UML profiles, e.g., TURTLE [18], DIPLODOCUS [19], and

AVATAR. In TTool, an AVATAR design can be checked

against safety properties at the push of a button: the un-

derlying formal language and toolkit (UPPAAL [20]) are

indeed totally hidden to the user.

2) Extending AVATAR for security purposes: All method-

ological stages of AVATAR have been extended as follows:

safety and security issues shall be modeled all together

on the same model, and safety and security properties

shall be provable from the same model. For example, the

requirement stage now supports security-oriented require-

ments and attack trees [21]. More precisely, the design and

verification stages are extended as follows:

a. Design: The design supports cryptographic-oriented

data types (e.g., keys) and SysML crypto Blocks defin-

ing cryptographic-oriented methods (e.g., encrypt(),
mac()). Communication channels between Blocks can

now be declared as public or private. Only public ones

can be listened to by an attacker. Security oriented mod-

eling pragmas can now be defined in SysML text notes.

The pragma #InitialCommonKnowledge B1.x B2.y

represents the fact that the attributes x and y of Blocks

B1 and B2 respectively have the same initial value.

This pragma is useful for modeling preshared keys, for

example.

b. Security Properties: Security properties to be verified

are also defined as pragmas. The #Confidentiality

B.dat pragma shall verify whether the attribute dat

of Block B remains confidential. The pragma #Au-

thenticity B1.st1.msg1 B2.st2.msg2 states that all

messages msg2 received by B2 in state st2 must be

authentic with respect to B1, i.e., they must have been

sent in msg1 by B1 after state st1.

c. Formal Verification: Extended AVATAR diagrams can

be formally verified against security properties, while

being still amenable to safety proof. For security proofs,

we have defined an AVATAR-to-ProVerif() translation

process and have implemented that process in TTool.

ProVerif is a toolkit for automatically proving confi-

dentiality and authenticity properties [22].

Finally, from an AVATAR design, confidentiality and authen-

ticity properties can now be modeled and proved at the push

of a button.

B. Target of Verification

Our AVATAR-based verification methodology relies upon

a Target of Verification: ToV := (S, SR,M,P,H,At, V T )
with:

• S is a set of representative - but non exhaustive -

behaviors of the system assets. S is represented with

UML Use Case, Interaction Overview, and Sequence

Diagrams.

• SR is a set of Security or safety Requirements rep-

resented by mean of SysML Security Requirements

Diagrams [3] which provide a hierarchical structure for

refinement and association to assets.

• M is an AVATAR Model abstracting the system spec-

ified in S.

• P represents properties derived from SR. P is repre-

sented in AVATAR using confidentiality and authentic-

ity pragmas (see Subsection III-A).

• H is a set of hypotheses and abstractions taken into

account during the modeling steps S → M and

SR → P . H also includes model constraints required

for verification, e.g., to state that a given key can not

be guessed.

• At is a model of attackers. Security properties in P are

verified with respect to an attacker At who challenges

M . AVATAR relies upon the Dolev-Yao attacker model

of ProVerif [22]: the attacker can listen, intercept, alter,

and inject messages over public channels.



• VT is a Verification Technique to prove whether

properties of P are satisfied by M . For safety

properties, V T depends on the approach described

in [1]: AVATAR handles the proof of liveness,

reachability, and deadlock-freedom properties. For the

verification of security properties, V T is the resolution

algorithm implemented in ProVerif [22].

At first, requirement and analysis stages produce SR and

S, respectively. Then, M is built at system design stage.

Property modeling stage defines P . The hypotheses H are

directly or implicitly taken as input in several stages. The last

two ToV components - At & V T -, are implicitly handled by

the TTool-to-Proverif() automatic translation function, and

by ProVerif itself, during the formal verification stage.

IV. VERIFICATION OF THE FIRMWARE UPDATES

PROTOCOL

The formal verification methodology described in previ-

ous Section is now applied to the FU protocol [10].

A. Protocol Analysis (S)

To simplify the modeling and description of S, the FU

Protocol is split into two sequential phases named Diagnosis

and Download, respectively. Even if the paper describes

only the Diagnosis phase, both phases were modeled and

verified. However, more details on the Download phase and

FU Protocol can be found in [10].

The Diagnosis phase consists in the initial exchanges be-

tween an external Diagnosis Tool (DT), the car Commu-

nications Control Unit (CCU) and the target in-car ECU

that requires the firmware update. Initially, DT establishes a

secure channel to efficiently communicate with the ECU. A

symmetric key Mk is thus generated by DT and transferred

to ECU (see figure 1, Messages 1 to 4). Once Mk is

distributed, subsequent exchanges between DT and the target

ECU are MAC protected with Mk. To be ready for flashing,

ECU should be turned to a programming mode (see figure

1, Messages 5 to 8). To be unlocked, the target ECU

challenges DT to compute a code Smk relying on a seed

Na - provided by ECU - and a factory preshared symmetric

key ssk (Smk := ComputeKey(Na, ssk)). The ECU

unlocks for programming only if both Smk codes match.

Then, the firmware is securely transferred from the Original

Equipment Manufacturer (OEM) server to the target ECU

through DT (Download phase).

B. Security Requirements (SR)

As a result of risk and threat analyses [3], a set of stringent

security requirements must be satisfied by the FU protocol.

Here are a subset of the most critical ones taken from SR.

More detailed security requirements can be found in [21].

Figure 1. Sequence diagram of the Diagnosis Phase

Figure 2. AVATAR Block diagram for Diagnosis phase in FU Protocol

• Firmware confidentiality (CSR.1): Firmware must be

kept confidential when transferred from OEM to DT

and from DT to the target ECU.

• Key confidentiality (CSR.2): Exchanges transferring or

using non-public keys must preserve key secrecy along

the whole flashing process.

• Internal Authenticity (ASR.1): Whenever an exchange

between CCU and ECU happens, the correspondence

between claimed and real authors must be ensured.

• External Authenticity (ASR.2): Whenever data is ex-

changed between DT utility and OEM server or be-

tween DT and in-car components, the correspondence

between claimed and real authors must be ensured.

C. Target of Verification Model (M)

The protocol model M is built taking S as reference.

An AVATAR Block is used for each Communicating Entity

(CE) in S - DT, CCU, ECU, and OEM (see figure 2). For

this case study, we only describe the modeling of the first

exchange in the FU Protocol. Other exchanges are captured

in a similar way. As shown in figure 1, that first exchange

comprises an encrypted key ({Mk} {pk ccu}), a time

stamp (ts1) and M1’s signature performed with DT’s secret

key (Sign(M1, sk dt)). The exchange must be represented

in the State Machine Diagrams (SMD) of both sending and

receiving Blocks. First, an initial state is defined in the



-DT sends M1 -CCU receives M1

Figure 3. First message exchange between DT and CCU in the FU Protocol

SMD of DT (see figure 3). Second, several predefined crypto

methods are called to build M1 as an outgoing transition of

the initial state. Indeed, dat1, dat2, and sign are assigned

to attribute Msgx, which captures {Mk} {pk ccu}, ts1,

and Sign(M1, sk dt), respectively. Once composed, Msgx

truly corresponds to M1 and is broadcasted via the public

output signal operator chanOut(Msgx). Therefore, the

SMD of CCU is accordingly designed to receive M1. Thus,

an outgoing transition from the initial state in the SMD

of CCU includes an input signal operator chanIn(Msgx)
that waits for M1 (see figure 3). After receiving M1,

the predefined method verifySign() is called to verify the

signature of M1. The boolean attribute resp retrieves the

answer: a wrong signature (not(resp) == true) leads to a

blocking state. Conversely, an authentic one (resp == true)

shall lead to valid states in the protocol. This modeling

pattern for message exchange is repeated for all other

Protocol Data Units.

D. Properties (P)

Each security requirement in SR is translated to one

or more properties in P . Properties are formalized in the

AVATAR model M by relying upon property pragmas as

defined in Section III-A. For instance, the Security Re-

quirement CSR.1 (see Subsection IV-B) is translated to the

pragma described on the first row of Table I. This pragma

models the confidentiality of the attribute firmware.

CSR.2 is translated as well into several analogous pragmas

thus modeling the confidentiality of the following secret

Block attributes: sk dt, sk ccu, sk ecu, sk oem, Mk, Na,

Smk and ssk. Along with that, ASR.1 expresses a mutual

authenticity whenever an exchange happens between the in-

car components CCU and ECU (CCU↔ECU). In addition,

and in compliance with ASR.2, mutual authentication is

also required with external car Communicating Entities

(CE) and for every exchange (DT↔CCU, DT↔ECU and

OEM↔DT). The second and third rows of Table I contain

pragmas depicting how to achieve the mutual authentication

of DT and CCU for message M1 and M4, respectively (see

figure 1, M1 and M4).

Table I
CONFIDENTIALITY AND AUTHENTICITY PRAGMAS

Pragma Semantics

#Confidentiality
OEM.firmware

Confidentiality of firmware
defined in OEM Block

#Authenticity DT.Send.M1
CCU.ValidSign.M1

Authenticity of M1

#Authenticity CCU.Send.M4
DT.ValidSign.M4

Authenticity of M4

Figure 4. Five elements in an AVATAR-ProVerif translation

E. Hypotheses (H)

Assumptions on values preshared by Blocks prior to

message exchanges - e.g., a key or seed - are explicitly con-

sidered within #InitialCommonKnowledge pragmas (see

Subsection III-A). Assumptions on the fact that values are

secret when the system starts are implicitly declared within

the #Confidentiality pragmas. According to Section II, we

assume that each CE Block is a trusted domain inside

of which operations are carried out securely. In contrast,

communication channels between CE Blocks are assumed

public, and thus possibly attacked. Even if cryptographic

methods declared in CE Blocks can be known by the attacker

At, non invertible ones - like Hash, MAC, or Signature -

prevent At for disclosing data that are taken as input by the

crypto method. Indeed, secret material is never revealed by

At unless the system model M has exploitable weaknesses.

Thus, At can not guess secret key values. Note that the ToV

approach does not consider computational attacks.

V. VERIFICATION AND RESULTS

The FU Protocol ToV can be verified at the push of a

button and thus no specialized knowledge is required. Here,

we briefly describe this automated verification process.

In a first step, the model M , the properties P and

hypotheses H - taken into account within M - are

automatically translated to a ProVerif specification, i.e. into

a set of Horn clauses. Figure 4 shows the translation to

ProVerif of a basic SMD transition. Furthermore, ProVerif

includes an attacker At described with a set of Horn clauses

{h ⇒ c} (hypotheses imply conclusions) thus reflecting the

knowledge the attacker may gain. For each clause cp ⇒ hp

associated to a pragma, the algorithm formally proves that

whenever the facts cp are reached, the facts in hp are

necessarily implied:



• Proof of confidentiality: For a pragma #Confidential-

ity B.dat, it is proved whether At can derive a chained

sequence of Horn clauses h1 ⇒ c1, . . . , hn ⇒ cn,

ci ⊂ hi+1, in which h1 is a subset of its gained

knowledge and dat is in cn, what discloses the secret

dat.

• Proof of authenticity: For each pragma #Authentic-

ity B1.State1.dat1 B2.State2.dat2, it is proved

whether the attacker At can partially or completely

impersonate B1. In such a case, B2 accepts at least one

message made by At thus breaking the correspondence

(injective agreement, [22]) between message origin

(B1) and destination (B2). Therefore, authenticity is

proved only if sender-receiver correspondence is pre-

served. Since B1 and B2 may interchange their roles

(B2 origin, B1 destination), an analogous pragma can

be accordingly written to achieve mutual verification of

authenticity.

Finally, At’s behavior is obviously defined according

to allowed operations - e.g., listen/inject only for public

channels - as well as by restrictions imposed by statements

in H - e.g., a given key is not guessable. Verification results

R(ToV ) for the Firmware Updates Protocol are shown in

Table II as a traceability matrix, with establishes a corre-

spondence between Security Requirements SR, Properties P,

and the verification result. Note that ‘X.o’ and ‘Y.d’ are used

to respectively shorthen origin and destination statements in

authenticity pragmas.

Table II
RESULTS FOR VERIFICATION OF THE FU PROTOCOL

Requirement SR Property P Result

CSR.1 Firmware

confidentiality
#Confidentiality firmware Satisfied

CSR.2 Key

confidentiality

#Confidentiality sk dt, sk ccu,

sk ecu, sk oem, Mk, Na, Smk, ssk
Satisfied

ASR.1 Internal

Authenticity

#Authenticity CCU.o ECU.d Satisfied

#Authenticity ECU.o CCU.d Satisfied

ASR.2 External

Authenticity

#Authenticity DT.o CCU.d Satisfied

#Authenticity CCU.o DT.d Satisfied

#Authenticity DT.o ECU.d Satisfied

#Authenticity ECU.o DT.d Satisfied

#Authenticity DT.o OEM.d Satisfied

#Authenticity OEM.o DT.d Satisfied

VI. CONCLUSIONS

The gain in complexity of in-vehicle SW/HW architec-

tures pushes current methodologies for developing such

systems to their limit. Even if safety properties have been

explicitly considered for a long time, methodologies for

handling both safety and security properties at the same time

are still to be defined. Relying on a well-known modeling

language (SysML), AVATAR is an integrated framework

suitable for designers. The automated formal verification

reduces the need for skills in formal techniques.

The new AVATAR security capabilities have been suc-

cessfully applied to the modeling and formal verification

of a Firmware Updates Protocol. Indeed, strong mutual

authentication as well as confidentiality were verified. Other

protocols and in-vehicle system components were also ver-

ified in the scope of the EVITA project, thus demonstrating

the applicability of AVATAR.

AVATAR shall now be extended with new security capa-

bilities, in particular integrity and freshness. AVATAR has

also been selected for modeling and proving both safety and

security properties in next generation aeronautics platforms,

and is thus expected to further evolve in the next years.
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