
Combining STPA with SysML Modeling
Fellipe Guilherme Rey de Souza
Department of Computer Science

Instituto Tecnológico de Aeronáutica
São José dos Campos, Brazil

fellipeguilhermerey@gmail.com

Juliana de Melo Bezerra
Department of Computer Science

Instituto Tecnológico de Aeronáutica
São José dos Campos, Brazil

juliana@ita.br

Celso Massaki Hirata
Department of Computer Science

Instituto Tecnológico de Aeronáutica
São José dos Campos, Brazil

hirata@ita.br

Pierre de Saqui-Sannes
ISAE-SUPAERO, Université de Toulouse, France

pdss@isae-supaero.fr

Ludovic Apvrille
LTCI

LTCI, Télécom Paris, Institut polytechnique de Paris
Sophia Antipolis, France

ludovic.apvrille@telecom-paris.fr

Abstract—System-Theoretic Process Analysis (STPA) is a tech-
nique, based on System-Theoretic Accident Model and Process
(STAMP), to identify hazardous control actions, loss scenarios,
and safety requirements. STPA is considered a rather complex
technique and lacks formalism, but there exists a growing interest
in using STPA in certifications of safety-critical systems devel-
opment. SysML is a modeling language for systems engineering.
It enables representing models for analysis, design, verification,
and validation of systems. In particular, the free software TTool
and the model-checker UPPAAL enable formal verification of
SysML models. This paper proposes a method that combines
STPA and SysML modeling activities in order to allow simulation
and formal verification of systems’ models. An automatic door
system serves as example to illustrate the effectiveness of the
proposed approach.

Index Terms—STPA, SysML, method, safety analysis, formal
verification.

I. INTRODUCTION

System-Theoretic Accident Model and Processes (STAMP)
is an accident causality model, based on systems theory [1].
System-Theoretic Process Analysis (STPA) [2] is a technique,
based on STAMP, to identify hazardous control actions, loss
scenarios, and safety requirements. STPA is considered a
rather complex technique since it requires a different analysis
perspective compared to other hazard analysis techniques, such
as Fault Tree Analysis [3] and Failure Mode and Effects Anal-
ysis [4]. STPA derives an analysis in terms of control actions,
feed-backs, and other interactions. There exists a growing
interest in using STPA because STPA has been claimed to be
able to identify more loss scenarios and safety requirements
due to hazards in the concept stage of the development life
cycle [2]. However, STPA lacks formalism [5] to be employed
with verification tools.

The Systems Modeling Language (SysML) has been
adopted by the Object Management Group (OMG) as a stan-
dard [6]. Engineering organizations employ SysML along with
methods and tools throughout the development life cycle of
systems. However, it remains unclear how these developers can
take advantage of using both STPA and SysML technology,

CNPq (grant numbers 403921/2016-3 and 306186/2018-7)

including methods and tools. In that context, a prime objective
of this paper is to help answering the following question: “How
can a systems engineer benefit from STPA in identifying loss
scenarios and safety requirements, and using SysML to support
the validation and verification of systems’ properties?”.

This paper proposes a method that combines and takes ad-
vantages of STPA with SysML modeling activities, including
simulation and formal verification of systems models. STPA
provides directives to identify safety requirements of a system,
based on investigations of the system control structure (in fact
a system model). SysML can help to represent such model
and to analyze it, mainly using simulation to validate safety
requirements, and formal verification of safety properties of
interest. Moreover, using SysML diagrams, we can structure
STPA analysis by clarifying and clearly specifying the assump-
tions, the requirements, the boundaries of the system, and the
interactions between its components.

This paper is organized as follows. Section II briefly
presents STPA. Section III characterizes SysML and associates
it with a tool and a method. Section IV surveys related work.
Section V proposes a method that combines STPA and SysML
modeling. It also discusses the case study (a door control
system). Section VI summarizes contributions, discusses the
proposed approach and outlines future work.

II. STPA

Systems-Theoretic Accident Model and Processes (STAMP)
[1] is based on three concepts: (i) a Control Structure, which
is a hierarchical representation of the system under analysis
where upper-level components impose constraints on lower-
level components; (ii) a Process Model, namely a model of the
process being controlled; and (iii) Safety Constraints, namely
restrictions that the system components must satisfy to assure
safety.

System-Theoretic Process Analysis (STPA) [2] is a tech-
nique based on STAMP for accident analysis. STPA has four
main steps. (1) Define the Purpose of the Analysis aims to
identify losses, hazards, and the system boundary. (2) Model
the Control Structure captures functional relationships and



interactions using STAMP. (3) Identify Unsafe Control Actions
identifies the potentially Unsafe Control Actions (UCA) and
associated safety constraints. For each Control Action (CA),
namely a command usually issued towards the controlled
process, the analyst must identify cases where a CA can be
hazardous. (4) Identify Loss Scenarios reveals potential causes
of issuing UCAs. For each UCA identified earlier, the goal
is to discover scenarios and associated causal factors that
can lead the system to a hazardous state, and to generate
safety requirements. In general, each unsafe control action can
be inverted to define a safety constraint. Safety constraints
and requirements assist designers in eliminating or mitigating
the potential causes of unsafe control and the occurrence of
hazards.

III. SYSML MODELING

Recognized as an enabling technology for Model-Based
Systems Engineering, SysML is a graphical modeling lan-
guage that applies to a broad variety of systems. The SysML
standard at OMG [6] states that “SysML supports the specifi-
cation, analysis, design, verification, and validation of systems
that include hardware, software, data, personnel, procedures,
and facilities.” The SysML standard [6] defines a notation, not
the way of using it. Therefore, SysML needs to be associated
with a method supported by one or several tools.

There are many tools that describe models in SysML, part
of them further enabling model simulation and verification.
Examples of tools include Cameo Systems Modeler [7], En-
treprise Architect [8], Modelio [9], Rhapsody [10], SCADE
Architect [11], Papyrus [12], and TTool [13]. Since SysML is
not a method, and given a MBSE approach relies on a triptych
(language, tools, method), one needs to associate a method
with the tools used to develop the SysML models. A SysML
tool is usually associated with a method that can be tuned to
meet the method already in use in the company or institution
where the tool is being deployed.

Among previously listed tools, TTool is a free and open-
source toolkit to edit UML and SysML diagrams. It also
enables SysML models simulation and formal verification
against safety (using UPPAAL [21]), security, and perfor-
mance properties. TTool supports AVATAR [14], a customized
SysML for the modeling and formal verification of real-time
embedded systems. For simplicity, the remainder of the paper
will use ‘SysML’ and not ‘AVATAR’. The method associated
with TTool includes the following phases: Model Assumptions
Expression (that describes the set of assumptions that make the
model valid [15]), Requirement Capture (that intends to elicit
user, stakeholder, and system requirements), Analysis (that
is use-case driven. For instance, applying use-case, sequence
and activity diagrams), Design (that describes the systems
architecture in the form of a block diagram and gives each
block a behavior modeled by a state machine diagram), and
Model Simulation and Verification (that allow checking the
system model against design errors and verifying whether the
requirements are satisfied or not).

IV. RELATED WORK

Dakwat and Villani [16] propose a method combining
STPA and the UPPAAL Model Checker in order to provide
a formal representation of the system under analysis and the
threats identified by STPA. They argue that their combination
improves the knowledge about the system under design and
the consistence of the design changes proposed to tackle the
safety constraints identified in STPA. They neither use SysML
modeling nor employ a development method.

Pétin et al. [17] propose the combination of SysML and for-
mal methods to capture and structure safety requirements and
model-checking techniques for formal verification purposes.
However, they do not use STPA and therefore miss taking
advantage of its benefits.

Krauss et al. [18] present the approach that integrates
STPA with tool-chains based on SysML/UML modeling tool
Enterprise Architect (EA). They discuss the risks related to the
integration of STPA and introduce the software tool SAHRA
to help in the integration. There is no intent for formal
verification.

Hurley and Wankel [19] present an approach for designing
for safety using STPA with Model Based Systems Engineering
(MBSE). The approach uses safety constraints (for identified
hazards) to model the state machine diagram and verify its
behavior. However, their approach does not enable formal
verification.

V. METHOD TO COMBINE STPA AND SYSML
MODELING ACTIVITIES

The proposed method shall follow the activities depicted
by Fig. 1. We group the activities into two sets: STPA and
SysML: the upper and lower parts refer to the use of SysML,
while the part in the middle refers to STPA activities. In order
to describe and illustrate the use of the method, we consider
an example of a door system. The door system has a controller
that opens the door when sensing the presence of a person.
Otherwise, it closes the door. The controller also opens the
door if an emergency signal is received. Below, we explain
the activities included into the method.

A. Model Assumptions

Fig. 2 depicts the modeling assumption diagram developed
to focus on the logic of the controller, leaving apart the set-up
and shutdown of the controller, as well as its maintenance.
Also, the controller is supposed to be failure-free. And so are
the devices the controller is connected to.

B. Capture Requirements

This activity identifies the requirements for the system
and its components. Fig. 3 depicts a requirement diagram
developed for the model of the door. Due to space limitations,
not all the requirement diagrams are shown here. Below,
we enumerate a few more requirements. In relation to the
controller, the requirements are as follows: the system issues
an ‘open door’ command when either sensing the presence
of person or receiving the emergency signal; and the system



Fig. 1. Method that combines STPA and SysML modeling activities

Fig. 2. Modeling Assumptions Diagram

issues a ‘close door’ command when sensing the absence of
person close to the door.

With respect to sensors, the requirements are as follows:

• The system shall sense the presence of persons close to
the door,

• The system shall sense the absence of persons close to
the door,

• The system shall detect the position of the door (closed,
opening, open, closing), and

• The system shall receive the emergency signal from other
systems.

For the actuator, the requirement is as follows: the system shall
open or close the door according to the command issued by
the controller.

Fig. 3. Main Requirement Diagram

C. Identify losses and hazards

A loss involves something valuable to stakeholders. Losses
may include a loss of human life, human injury, property or
equipment damage, and environmental damage. Hazard is a
system state or set of conditions that, together with a particular
set of worst-case environmental conditions, will lead to a loss
[2]. In STPA, it is required to associate hazards to losses.

In the activity Identify losses and hazards, we identify the
following losses (accidents) for the door system: “Person being
hit by a closing door” (L1) and “Person being trapped inside
the building” (L2). L1 and L2 are identifiers of the losses.
We identify the following hazards: “Door closes on a person
in the doorway” (H1) and “Person unable to exit during an
emergency” (H2). The hazard H1 leads to the loss L1 while
H2 leads to L2.

This STPA activity has some common tasks with the two
previously shown SysML activities, Model assumptions and
Capture requirements. The assumptions and system require-
ments are also identified in this STPA activity. We opt to leave
the identifications in SysML activities because the assumptions
and requirements are specified using SysML diagrams, allow-
ing a better integration.

D. Model the control structure

A hierarchical control structure is a system model that is
composed of feedback control loops. An effective control
structure enforces constraints on the behavior of the system.
Constraints avoid hazardous states of the system. In a control
structure, the controller provides control actions to control
some process and to enforce constraints on the behavior of
the controlled process.

The control algorithm represents the controllers decision-
making process. It determines the control actions to provide.
Controllers also have process models that are used by algo-
rithms to make decisions. Process models include states of
the process being controlled or other relevant aspects of the



Fig. 4. Control structure of door system.

system or the environment. Process models are updated in part
by feedback used to observe the controlled process. In Fig.
4, we illustrate the result of the activity Model the control
structure for the door system.

E. Identify unsafe control actions

An Unsafe Control Action is a control action that, in a
particular context and worst-case environment, will lead to
a hazard. There are four ways a control action can be unsafe:
(i) not providing the control action leads to a hazard; (ii)
providing the control action leads to a hazard; (iii) providing
a potentially safe control action but too early, too late, or in
the wrong order; and (iv) the control action lasts too long
or is stopped too soon (for continuous control actions). In
the activity Identify unsafe control actions, the unsafe control
actions identified for the door system are shown in Table I (in
the first column).

F. Identify loss scenarios

A loss scenario describes the causal factors that can lead
to the unsafe control actions and to hazards. Two types of
loss scenarios must be considered: (i) “Why would Unsafe
Control Actions occur?” and (ii) “Why would control actions
be improperly executed or not executed, leading to hazards?”.

In the activity Identify loss scenarios, we will consider only
the control algorithm logic. For this, we assume that actuators,
sensors, links to issue control actions and receive feedback,

Fig. 5. Use case diagram of the door system

controller hardware, and communications with other systems
are reliable. We also assume that the controlled process be-
haves reliably. In this situation, the control actions are properly
executed always. Therefore, the occurrence of unsafe control
actions is due to an inadequate control algorithm.

In Table I (in the second column), we show the requirements
that apply to the control algorithm of the door system. We may
note that safety requirement SR3 is a more specific than SR1,
so SR1 could be removed. SR3 is SR1 with time restriction.
We are going to keep SR1 for the purpose of analysis.

G. Perform analysis

In terms of system analysis, use case diagrams and sequence
diagrams can be employed. In terms of design, the architecture
and behaviors are respectively defined by a block diagram and
state machines diagrams. Here we use a use-case diagram.

Fig. 5 depicts the use case diagram for the door system. It
shows the actors (sensors and actuators) and the use cases
to process the signals outgoing from the sensors. The use
cases ProcessPresence and ProcessEmergency include Issue-
ControlAction. The benefit of this diagram is to confirm if
components and interactions that compose the system were
correctly identified in the designed control structure.

H. Perform design

The block diagram in Fig. 6 models the architecture of the
door system. We use SysML blocks to model system blocks
(including DoorController, DoorActuator, DoorSensor, and
PhysicalDoor), and to model environment inputs (including
EmergencySensor and PresenceSensor). Inside each block in
the block diagram, there is a state machine diagram that
establishes the behavior of the block. Asynchronous con-
nection channels between pairs of blocks enable conveying
the signals that must be transmitted, as described here. The
PresenceSensor block shall send presenceSignal (indicating
that there is a person in the doorway) or noPresenceSignal
(otherwise) values to DoorController. The PresenceSensor
block also register its presenceState with true (with a person)
and false (without a person).

The EmergencySensor block shall send emergenceSignal to
DoorController in case of emergency. The EmergencySensor
block also keeps emergenceState with true (when emergency)
or false (with no emergency). The DoorSensor block shall



TABLE I
UNSAFE CONTROL ACTIONS, ASSOCIATED SAFETY CONSTRAINTS AND ASSOCIATED SAFETY REQUIREMENTS TO THE CONTROL ALGORITHM

Unsafe Control Actions Safety constraints Safety requirements to the control algorithm
Door controller does not provide open door
command when emergency.

Not Provided: In an emergency, the door always
must open.

SR1: Door controller shall provide open door
command when emergency

Door controller does not provide open door
command when a person is on the doorway.

Not Provided: The door never must close if
there is a person on the doorway.

SR2: Door controller shall provide open door
command when person is on the doorway.

Door controller provides open door command
late when emergency.

Wrong Time or Order: Whenever there is an
emergency, the door must be opened for evac-
uation in time.

SR3: Door controller shall provide open door
command immediately when emergency.

Door controller stopped open door command
too soon when emergency.

Too Soon: Whenever there is an emergency, the
door should be opened completely.

None. The controller has issued the command
to the actuator, but the actuator has not followed
adequately.

Door controller provides close door command
when a person is on the doorway.

Provided: Sensors should prevent the door from
closing when there is a person on the doorway.

SR4: Door controller shall not provide close
door command when person is on the doorway.

Door controller provides close door command
when emergency.

Provided: During an emergency, the door con-
troller must not close the door.

SR5: Door controller shall not provide close
door command when emergency.

Door commanded closed too early, before per-
son finishes entering/exiting

Wrong Time or Order: Sensors should prevent
the door from closing when there is a person on
the doorway.

SR6: Door controller provides close door com-
mand after 5 seconds after opening.

receive doorState from PhysicalDoor and send to DoorCon-
troller. The door can have four states: closed (0), opening
(1), open (2), and closing (3). The Actuator block receives
openDoor or closeDoor commands from DoorController and
sends to PhysicalDoor.

The block diagram is globally similar to the control structure
diagram shown earlier (in Fig. 4). In fact, both provide
the required information to design the block diagram using
SysML. However, there exist few differences between both
representations. In the control structure, the emergency signal
comes from the environment. In the block diagram, there is
a specific block to indicate emergency, called EmergencySen-
sor, which waits for 15 seconds to detect an emergency. It
was a particular implementation decision, aiming to simulate
emergency. However other simulation design could be made.

Another difference is that the input (person entering/exiting)
and output (person inside/outside) of the control structure is
somehow modelled by the block PresenceSensor (in Fig. 7).
The PresenceSensor block is responsible for detecting the
presence and absence of a person close to the door. It is
modeled as a process that continuously detects no presence
(absence) of a person, waits for 10 seconds, detects five
consecutive presences, and later repeats this behavior five
times. Again the PresenceSensor implementation reflects a
particular choice, so other simulation design could include
presence randomness.

The state machine diagrams of the controlled process (in
this case, the door itself), the actuator, and the door position
sensor are straightforward and are not shown here. Fig. 8
presents the state machine diagram of the door controller,
which is the focus of the design. Both the block diagram
and the state machine diagrams have to satisfy the system
and safety requirements shown in Table I. DoorController
can receive presenceSignal and then go towards opening the
door (in fact sending the openDoor command only if the
door is closed or closing). The DoorController can receive
emergenceSignal and go towards opening the door due to
emergency. In this case, it reuses the flow previously defined Fig. 6. Block diagram of the door system



Fig. 7. The state machine of the presence sensor

for receiving the presenceSignal. The DoorController can
receive noPresenceSignal and then go towards closing the door
(in fact sending the closeDoor command only if the door is
opening or open).

I. Perform simulation and formal verification

In the Perform simulation and formal verification activity,
we firstly explore the simulation feature of TTool. Running the
simulation, we can see in the DoorController state machine
that many execution paths have been performed thanks to
the green check quotes (see Fig. 8). To better understand
the different execution paths, TTool also supports step-by-step
simulation and breakpoints.

Simulation aids us to check whether all paths of the model
are being explored. In the door system, firstly we observed that
the IssuedCloseDoor state was not being reached. Investigating
the model, we verified that there was no situation where we
need to close a door already open or opening. Indeed, before
this situation happens, the system detects an emergency. We
then updated the EmergencySensor to inform emergency after
50 seconds (incrementing the previously set value).

Regarding formal verification, we use TTool and the model
checker UPPAAL [21]. A first interesting possibility is to
check the system for reachability and liveness properties.

Reachability of an action p means there exists at least one
execution trace in which p is executed. Liveness of p means
that in all possible execution traces, p is executed [21]. By
investigating reachability and liveness of the state Towards-
DoorOpenEmergency of DoorController, we found that both
properties are satisfied. If we change EmergencySensor to
not send any emergence signal, both properties are no longer
satisfied. Thus, it is another way to verify whether the control
being designed is consistent.

TTool also helps identifying deadlock situations. The
“Searching for absence of deadlock” situations property is not
satisfied. Through the generated Reachability Graph, TTool
indicates cases of deadlock. Analyzing the model, we observe
that we designed EmergencySensor and PresenceSensor with
end points. If we eliminate these end points (by allowing an
infinite loop in the last state), the “Searching for absence
of deadlock situations” property is now satisfied. It shows
that the deadlocks were due to the finalization of execution
of components, and not because of a modeling problem in
DoorController.

With respect to the safety requirements indicated in Table
I, we can specify the properties to be formally verified.
The associated safety properties (known as safety pragmas in
TTool) are shown in Fig. 9, as well as their results: a green
mark indicates that the property is satisfied, whilst a red mark
shows that the property is not satisfied. In all cases, we check
the “leads to” property. Given the two actions p and q, the
expression “p leads to q” (or p → q) means that q will always
be executed at least once after p.

For “SR1: Door controller shall provide open
door command when emergency” requirement,
we write the “EmergencySensor.SentEmergency →
DoorController.TowardsDoorOpenEmergency” property.
The property is satisfied, confirming the SR1 requirement.
The SR3 requirement is similar to SR1. In order to verify SR3
in TTool, we need to consider a deadline for ‘immediately’,
for instance less than x units of time.

One recommendation here is that, in order to use the leads to
operator (also denoted as →), we need to consider those states
in the state machine diagrams which represent the desired
situations to be verified. For the SR1 requirement, the states
are SentEmergency and TowardsDoorOpenEmergency. This
directive serves as a modeling guideline during the Perform
design activity. It also confirms the importance of interactive
cycles between the Perform design activity and the Perform
simulation and formal verification activity.

For the “SR2: Door controller shall provide open door
command when a person is on the doorway” requirement,
we firstly use the “PresenceSensor.PersonInDoorway →
DoorController.IssuedOpenDoor” property. The property is
not satisfied. Observing DoorController, we verify that the
door can be already open or opening, and then it is not
necessary to provide open door again. We then argue that the
SR2 requirement needs to be updated to consider the door
states.

We then write the “PresenceSensor.PersonInDoorway →



Fig. 8. State machine diagram of the door controller with simulation results

Fig. 9. Safety properties of the door system

DoorController.TowardsDoorOpen” property for SR2 require-
ment. In this case, we consider that a person in the doorway
will make the door controller let the door open (issuing a
open door command just if necessary). The property is true,
confirming SR2 requirement. We observe that, when applying
the proposed method, we can need to perform improvements
in the safety requirements (defined in Identify unsafe control
actions activity), due to the challenge of establishing safety
properties to be formally verified.

Considering the “SR4: Door controller shall not
provide close door command when person is on the
doorway” requirement, we establish the following
property: “PresenceSensor.presenceState==true →
PhysicalDoor.doorState==2”. It means that whenever
PresenceSensor detects a person, the door will be open
(represented by state numbered as 2). In this way, the
DoorController does not issue any ‘close’ command, since
the door is kept open. The property is satisfied, which
confirms SR4 requirement is met.

For “SR5: Door controller shall not provide close
door command when emergency” requirement, we
state the “EmergencySensor.emergencyState==true →

PhysicalDoor.doorState==2” property. The property
is structured similarly to the one associated with SR4
requirement. It means that whenever we have an emergency,
the door will be open. In this way, the DoorController does
not issue any close command, since the door is kept open.
The property is then satisfied, confirming SR5 requirement is
met.

For “SR6: Door controller provides the close door command
after 5 seconds after opening”, a simple inspection in the state
machine diagram of DoorController indicates that it takes 5
seconds before issuing the closeDoor command.

VI. CONCLUDING REMARKS

Combining STPA with SysML modeling in a development
method enables to develop and verify the system in a more
systematic manner, taking advantage of the integration of
TTool and UPPAAL. With the approach, we are able to
translate the STPA safety requirements into properties to be
verified by UPPAAL from TTool. A simple example illustrates
the use of our approach. We consider that the approach is
effective in finding the safety requirements and verifying if
the designed SysML models satisfy these requirements or not.
We believe that the approach is a pragmatic way to employ
formal verification for safety-critical system development.

Thanks to our proposed method, we identified two chal-
lenges. The first one is related to SysML modeling and more
specifically to the elaboration of the state machine diagrams of
the components. We constructed the diagrams by attempting
to satisfy the functional requirements. It is a try and error
approach. Later we verify if the state machine diagrams satisfy



the STPA safety requirements or not. In doing so, we come
across the our second challenge, which is to map the STPA
safety requirements into properties in TTool/UPPAAL. We
believe that some research is needed in helping to systematize
these tasks.

Rinehart et al. [20] point out that many academic research
papers involve small toy example cases whereas practitioner
reports tend to focus on lessons learned and experience of large
systems, without presenting how the complexity is handled.
This is a presentation dilemma. Here, we used an illustrative
system to better detail the method. So, the method can be
applied consistently considering more complex scenarios. We
argue that both simulation and formal verification can gain
even more relevance in case of complex scenarios.

In case of complex scenarios, we could face some real-world
issues. Although the proposed method is easy to understand
and apply, the size of a real scenario can demand high effort
in modeling and analysis. Diagrams can then be difficult to
generate and maintain; while many formal properties can be
needed. A possible approach is to decide which part of the
system is really critical, and apply the method only to this
part. In this way. the analysis is more focused on what is
needed.

In this paper, the links, actuators, controlled process, and
sensors are assumed to be reliable. The example needs to be
adjusted to encompass degraded situations (unreliable links
or components). In this case, the step Identify loss scenarios
should consider scenarios of degraded situations, which would
result into additional safety requirements. If we consider the
occurrence of faults such as the error of presence detection of
the sensor, then the safety requirements associated to presence
detection error of the sensor shall be identified and met. For
instance, the requirement can be “DoorSensor shall have a
reliability of 99.9%”, which can be addressed with sensor
redundancy. Therefore, it is interesting to use the proposed
method to systems that have more specific requirements related
to loss scenarios.

Another avenue to explore deals with the automation of the
method. Souza et al. [22] show that STPA can be systematized
and automated. They developed a tool (called WebSTAMP),
which aids analysts throughout the analysis process in a
more automated and comprehensive way, and it aims to be
a collaborative tool. We believe that is possible to combine
WebSTAMP and TTool, having our method as foundation.
This is part of a broader project that aims to provide users of
STPA and TTool with a methodological assistant that would
guide newcomers to the language, the tool, and the method.
The idea is to take advantage of the STPA analysis already
supported by WebSTAMP. We can add steps in WebSTAMP
to elaborate SysML diagrams in TTool, according to our
proposed method. So WebSTAMP would have access to such
diagrams. We can also implement a way to analysts define
in WebSTAMP a formal property for each identified safety
requirement. An integration of WebSTAMP with TTool, can
then support the formal verification, by adding properties to
the model and submitting the model to UPPAAL analysis.

REFERENCES

[1] N. Leveson, Engineering a Safer World: Systems Thinking Applied to
Safety,. MIT Press, 2011.

[2] N. Leveson and J. Thomas, STPA Handbook, 2018,
https://psas.scripts.mit.edu/home/, last accessed 2019/5/6.

[3] C. Ericson II. “Fault tree analysis - a history”, Proceedings of the 17th
International System Safety Conference, August, 1999.

[4] MIL-STD-1629A, Military Standard - Procedures for Performing a
Failure Mode, Effects and Criticality Analysis, Department of Defense,
Washington, DC, November 1980.

[5] E. Harkleroad, A. Vela, and J. Kuchar, Review of Systems-Theoretic
Process Analysis (STPA) Method and Results to Support NextGen
Concept Assessment and Validation, Project Report ATC-427, MIT
Lincoln Laboratory, Washington, DC, October 2013.

[6] SysML.org, OMG Systems Modeling Language Version 1.5, 2017,
https://sysml.org, last accessed 2019/7/1.

[7] O. Casse, SysML in Action with Cameo Systems Modeler, ISTE,
November 2017.

[8] Entreprise Architect, https://sparxsystems.com/, last accessed 2019/7/9.
[9] Modelio, https://www.modeliosoft.com/en/modules/sysml-

architect.html, last accessed 2019/7/9.
[10] Rhapsody, https://www.ibm.com/us-en/marketplace/systems-design-

rhapsody, last accessed 2019/7/10.
[11] T. Le Sergent, A. Le Guennec, S. Gerard, Y. Tanguy, and F. Terrier,

“Using SCADE System for the Design and Integration of Critical
Systems,” SAE Technical Paper 2011-01-2577, 2011.

[12] S. Grard, C. Dumoulin, P. Tessier, and B. Selic, “Papyrus: A UML2 tool
for domain-specific language modeling”, Model-Based Engineering of
Embedded Real-Time Systems (MBEERTS 2007), pp. 361-368.

[13] TTool, http://ttool.telecom-paristech.fr/, last accessed 2019/7/9.
[14] G. Pedroza, D. Knorreck, and L. Apvrille, “AVATAR: a SysML environ-

ment for the formal verification of safety and security properties”, The
11th IEEE Conference on Distributed Systems and New Technologies,
Paris, France, 2011.

[15] P. de Saqui-Sannes and L. Apvrille, “Making modeling assumptions an
explicit part of real-time systems models”, 8th European Congress on
Embedded Real Time Software and Systems (ERTS). Toulouse, France,
January 2016.

[16] A. Dakwat and E. Villani, “System safety assessment based on STPA
and model checking”, Safety Science, Vol.109, Nov. 2018, pp 130-143.

[17] J. Pétin, D. Evrot, G. Morel, and P. Lamy. “Combining SysML and
formal methods for safety requirements verification”. 22nd International
Conference on Software Systems Engineering and their Applications,
Dec 2010, Paris, France.

[18] S. Krauss, M. Rejzek, and C. Hilbes, Tool qualification considerations
for tools supporting STPA, Procedia Engineering 128 (2015 ) 15-24. 3rd
European STAMP Workshop, STAMP EU 2015.

[19] M. Hurley and J. Wankel, “Safety guided design using STPA and
model based system engineering (MBSTPA)”, 2019 STAMP Workshop,
last accessed on 2019/7/2. http://psas.scripts.mit.edu/home/2019-stamp-
workshop-presentations/

[20] D. Rinehart, J. Knight, and J. Rowanhill, “Understanding what it means
for assurance cases to work”. NASA/CR2017-219582, (2017).

[21] G. Behrmann, A. David, and K. G. Larsen. “A Tutorial on UPPAAL”
Formal Methods for the Design of Real-Time Systems, 2004.

[22] F. Souza, D. Pereira, R. Pagliares, S. Nadjm-Tehrani, and C. Hirata,
WebSTAMP: a web application for STPA & STPA-Sec, International
Cross-industry Safety Conference (ICSC) - European STAMP Workshop
& Conference (ESWC). Vol 273. 10.1051/matecconf/201927302010.


