
Model-Based Programming for Multi-Processor
Platforms with TTool/DIPLODOCUS and OMC

Andrea Enrici1, Julien Lallet1, Renaud Pacalet2, Ludovic Apvrille2, Karol Desnos3,
and Imran Latif1

1 Nokia Bell Labs, Centre de Villarceaux, 91620 Nozay, France,
firstname.secondname@nokia-bell-labs.com,

2 LTCI, Télécom ParisTech, Université Paris-Saclay, 75013 Paris, France
firstname.secondname@telecom-paristech.fr

3 INSA Rennes, IETR, UBL, CNRS UMR 6164, 35708 Rennes, France,
firstname.secondname.@insa-rennes.fr

Abstract. The complexity of today’s multi-processor architectures raises the
need to increase the level of abstraction of software development paradigms above
third-generation programming languages (e.g., C/C++). Code generation from
model-based specifications is considered to be more efficient with respect to tra-
ditional paradigms where software is mainly developed from code. However, ex-
isting model-based approaches typically generate application software in SoC-
programming languages (e.g., C/C++, OpenCL, Verilog/VHDL) without con-
sidering the optimization of non-functional properties (e.g., memory footprint,
scheduling). This paper proposes a novel approach and tools where system-level
models are compiled into standard C code while optimizing the system’s mem-
ory footprint. We show the effectiveness of our approach with the model-based
programming of UML/SysML diagrams for a 5G decoder. From the compiled C
code, we generate both a software implementation for a Digital Signal Proces-
sor platform and a hardware-software implementation for a platform based on
hardware Intellectual Property (IP) blocks. Overall, our optimizations achieve a
memory footprint reduction of 80.07% in the first case and 88.93% in the second
case.

Keywords: Model-Based Engineering, MPSoC Programming, UML/SysML

1 INTRODUCTION

In order to support the data need of Internet of things and cloud computing, 5G networks
are expected to provide a 10x higher data-rate with regards to 4G networks. Future ar-
chitectures supporting 5G networks will probably be based on both dedicated circuits in
base stations and on more flexible computing solutions such as cloud systems equipped
with both programmable and configurable components (CPUs, Digital Signal Proces-
sors - DSPs, Field Programmable Gate Arrays - FPGAs). Because of the high complex-
ity and heterogeneity of these architectures, developing signal-processing application
will become a nightmare for engineers. Thus, a new programming paradigm is needed
in order to increase the quality (e.g., scheduling, memory footprint) and productivity

2 Andrea Enrici et al.

(e.g., correct-by-construction code generation) of application software development.
Model-Driven Engineering (MDE) [Schmidt, 2006] is widely accepted as a promis-
ing software development paradigm to answer the above-mentioned issues. MDE com-
bines domain-specific modeling languages to abstract the structure, behavior and re-
quirements of a system under design, with transformation engines and generators. The
latter analyze models and produce artifacts such as source code, simulation, verifica-
tion inputs or alternative model representations. In the context of MDE, model-based
code generation is incorrectly seen as a replacement for programming. On the contrary,
it actually is an alternative programming paradigm, where the languages aim at ab-
stracting software systems rather than hardware computing mechanisms [?]. Similarly
to programming languages, also modeling languages have features (e.g., UML relation-
ships) that are well suited to described certain things (e.g., relations among functions or
classes) and are not suited to describe some other things (e.g., access and indexing of
arrays).
The process of creating models from existing software systems is well understood.
However, the reverse process of compiling model-based specifications into executable
implementations still remain an open issue. Here, multiple challenges arise from the
desire to generate code for different architecture topologies (e.g., IP-based platforms,
Multi-Processor Systems-on-Chip - MPSoC), implementations (i.e., software, hardware
and mixed hardware-software) and execution units (e.g., DSPs, CPUs, Hardware Ac-
celerators).
In this paper we propose tools and a methodology to enhance the application software
development for MPSoC platforms from system-level models. Our approach for model-
based programming is centered around a model development environment, TTool/DI-
PLODOCUS [TTool, 2017a, Apvrille et al., 2006] and the Optimizing Model Com-
piler [Enrici et al., 2018] (OMC). TTool/DIPLODOCUS allows the creation, editing
and debugging of UML/SysML diagrams, while OMC is a model-to-code compiler that
takes as input system-level models (i.e., application, communications and architecture).
It converts them into Intermediate Representations (IRs) and attempts to optimize the
system’s memory footprint. OMC produces as output standard C code for the memory
allocation and scheduling of signal-processing operations, regardless of the system’s fi-
nal realization technology (e.g., FPGA, Application Specific Integrated Circuit - ASIC).
As a practical case study we propose the model-based design of a 5G datalink-layer
decoder. The C program compiled from the decoder’s models is transformed into exe-
cutable implementations for (i) a DSP-based platform (software executable file further
compiled with GNU/gcc) and (ii) a hardware IP-based platform (FPGA bitstream) by a
traditional software compiler and a SoC design tool (Xilinx SDx).
The rest of the paper is organized as follows. Section 2 positions our work with respect
to related contributions. The overall methodology for model-based programming is pre-
sented in Section 3. This is followed by the structure of a generic model compiler in Sec-
tion 4. The model development environment that we selected, TTool/DIPLODOCUS,
is briefly described in Section 5. The Optimizing Model Compiler (OMC) is presented
in Section 6. Section 7 shows how TTool/DIPLODOCUS and OMC are applied to pro-
gram the 5G decoder. Section 8 concludes this paper.

MPSoC Model-Based Programming 3

2 RELATED WORK

In the context of UML-based MDE, code generation for SoCs is based on a direct
translation of UML modeling assets into constructs of a target language (e.g., a UML
block becomes a C function), according to precise translation rules [Vanderperren et al.,
2012]. Many works propose one-to-one translation rules for SoC languages such as
C [Nicolas et al., 2014], C++ [Ciccozzi et al., 2012], Verilog [Bazydlo et al., 2014],
VHDL [Moreira et al., 2010] and SystemC [Mischkalla et al., 2010,Xi et al., 2005,Tan
et al., 2004]. A representative work that uses one-to-many translation rules is Gaspard2
(Graphical Array Specification for Parallel and Distributed Computing) [Gamatie et al.,
2008, DaRTteam, 2009], a MDE SoC co-design framework based on MARTE [OMG,
2017]. Thanks to the notion of Deployment, in Gaspard2, an Elementary Component (a
resource or a functionality in a MARTE model) is related to implementation code that
specifies low-level behavioral or structural details in a usual programming language
(e.g., C/C++) for formal verification, simulation, software execution and hardware syn-
thesis.
Executable UML (xUML) or executable and translatable UML (xtUML) [Mellor and
Balcer, 2003, Mellor and Balcer, 2002] defines both a software development methodol-
ogy and a highly abstract software language that combines a subset of UML’s graphical
notation with executable semantics and timing rules. When programming in xUML, a
system’s application is captured in the metamodel. The model compiler comprises some
library code and a set of rules that are interpreted against the metamodel to produce text
for a target SoC (e.g., C++ classes, C structs; VHDL specifications for hardware reg-
isters). However, the overall architecture of the generated SoC is defined by the model
compiler itself (i.e., its translation rules). As opposed to our approach, xUML considers
a platform-independent model as the only input. To the best of our knowledge, no work
exists that attempts to optimize the performance of code generated from the xUML sub-
set.
The Foundational Subset for Executable UML Models (fUML) [fUML, 2016] and the
Action Language for fUML (Alf) [Alf, 2017] standard were created to make xUML
models detailed enough and well specified for detailed programming and machine exe-
cution. The goal of fUML is to go beyond xUML in specifying a reasonable subset of
UML with a precise semantics, in order not to be specific to any executable modeling
methodology. The syntax of Alf is borrowed from Java, C, C++ and C# to specify the
behavior and computation (concurrent data-flow semantics) of graphical fUML mod-
els. xUML, fUML and Alf are essentially focused on specifying a semantics suitable to
generate executable code from UML graphical models. With respect to this, our work
goes one step further. Our model compiler demonstrates that non-functional properties
of a system denoted with UML/SysML diagrams can be improved before code genera-
tion, with a significant impact on the performance of the final executable (e.g., memory
footprint reduction).
In the 2011 edition of MODELS, the work in [Floch et al., 2011] illustrated how MDE
techniques (e.g., meta-metamodels, meta-tools, Domain Specific Languages) can be
applied to help in solving or simplifying issues such as code maintainability and sus-
tainability, interfacing with external tools, semantics preserving of the Intermediate
Representation transformations and code generation. While [Floch et al., 2011] tries to

4 Andrea Enrici et al.

bridge the gap between model-based optimizations and abstract representations of pure
software systems, our work transforms system-level models that also include hardware
components (e.g., on-chip RAM memories).
The landscape of industrial tools that generate SoC implementations of signal-processing
applications from models is also very rich, e.g., National Instruments LabVIEW Com-
munications System Design [Labview, 2017], MATLAB (MAtrix LABoratory) [Math-
works, 2017], GNU Radio [GNURadio, 2017]. While our compilation approach targets
multi-processor architectures, these tools translate models that describe the functional-
ity of a system to be executed onto single-processor architectures where data are pro-
cessed onto a single unit.
The MPSoC Application Programming Studio (MAPS) [Leupers et al., 2017, Sheng
et al., 2013] is a work that shares many commonalities with our approach. MAPS is
a compilation framework for heterogeneous MPSoCs that targets streaming applica-
tions. The most important difference between our contributions and MAPS is the input
formalism. MAPS takes as input specifications written in the CPN (C for Process Net-
works) programming language. The latter is an extension of the C language that adds
features to describe the modeling constructs (processes and channels) of Kahn Process
Networks [Kahn, 1974]. MAPS’ core component is the CPN-to-C compiler. It scans
and parses CPN input files and first builds an Abstract Syntax Tree (AST) for each pro-
cessor in the target platform. The AST is transformed to produce plain C code, where
the CPN extensions are transformed into platform-specific API calls (e.g., FIFO prim-
itives). In our case, the data-flow semantics of DIPLODOCUS UML/SysML diagrams
is equivalent to that of KPNs while it allows to handle more complex communication
schemes (e.g., DMA transfers).

3 MODEL-BASED PROGRAMMING FLOW

In the embedded systems community, nearly 90% of the software developers nowadays
use C and C++ [?] that have an underlying sequential programming model. Neverthe-
less, multi-processor platforms cannot be efficiently programmed with the constructs
proposed by classical sequential programming languages (e.g., functions in C, meth-
ods in C++, arrays in C/C++). The reason being that, such constructs have a low level
of abstraction that is not sufficient to tackle the complexity of the services and hard-
ware computing paradigm offered by multi-processor architectures. These constructs
cannot be translated by compilers into executable instructions in a way that improves
the quality and productivity of software, from the user perspective. For these reasons,
we advocate that modeling languages (e.g., UML/SysML/MARTE, SDF, KPN, AADL,
Simulink) that provide higher-level abstractions (e.g., channels, actors) are more suit-
able to the task of programming structural aspects (e.g., memory footprint, scheduling)
of multi-processor platforms.
Fig. 1 illustrates the methodology that we propose to develop executable implementa-
tions from system-level specifications expressed in a modeling language. These spec-
ifications are written in a MDE development environment, step (1) in Fig. 1, such as
those described in [Gerstlauer et al., 2009]. Here, the system under design is described
in a modeling language where models are used to capture the system’s functionality

MPSoC Model-Based Programming 5

Library of
platform-specific

functions

(3) Models
compilation

(4) Source
program

translation

Source program

Executable
implementation

(2) Design
Space

Exploration

(1) Model
specifications
development

MDE
development
environment

Source models

Fig. 1. The software development flow of executable implementations from system-level models.

(i.e., behavior) and the target platform (i.e., the behavior and structure of the available
resources). In this phase, models are used as the primary artifact for software develop-
ment. Models are created, edited and debugged (e.g., formal verification, simulation,
profiling) until legal specifications are obtained. Such specifications respect the syntax
and semantics of the modeling language and design constraints. This is similar to the
way code is created, edited and debugged in traditional Integrated Development En-
vironments (IDE) such as Eclipse [The Eclipse Foundation, 2017]. Subsequently, step
(2) in Fig. 1, a Design Space Exploration (DSE) phase takes place, where alternative
partitions (i.e., mappings) of the system’s functionality onto the available resources are
explored until a solution that satisfies some desired requirements (e.g., power consump-
tion, latency, throughput) is found to be realized.
Next, model-based specifications for the best mapping are compiled into a source pro-
gram, step (3) in Fig. 1, expressed in a programming language (e.g., C/C++). From
this point, code becomes the primary artifact for software development as in traditional
software engineering methodologies. Further development may take place where, for
instance, the program produced by the model compiler is manually completed with
code from an external library (e.g., I/O specific code, platform-specific code for OS or
middleware).
A final implementation is produced by means of a further translation step, (4) in Fig. 1.
This implementation can be realized entirely in software (e.g., an application that runs
on top of an Operating System onto a general-purpose control processor) or in hardware
(e.g., a hardware IP-based design) or both (e.g., some functionalities are executed by a
general-purpose control processor and some are accelerated in hardware). In the case of

6 Andrea Enrici et al.

implementations that require some functionality to be realized in hardware, the trans-
lation is performed by a Computer Aided Design (CAD) toolsuite (e.g., Xilinx Vivado
High Level Synthesis). In case of pure software implementations, the translation occurs
by means of a traditional programming-language compiler (e.g., GNU/gcc/g++, clang,
TurboC). In the next section, we describe the generic structure of a sytem-level model
compiler.

4 THE STRUCTURE OF A MODEL COMPILER

As shown in Fig. 2, the structure of the compiler that we propose in this paper is in-
spired by those of classical compilers [Torczon and Cooper, 2007] for programming
languages. The main difference lies in the level of abstraction at which our compiler
operates, known as system-level [Gerstlauer and Gajski, 2002]. Classical compilers
target uni-processor platforms centralized around a single processing element (e.g., a
general-purpose control processor, a specialized Digital Signal Processor - DSP) that
is connected via a bus to a memory unit. On the contrary, the scale at which a model
compiler operates is the one of an entire multi-processor platform that is composed of
several computation, communication and storage units. For instance, the back-end in
a programming language compiler generates code that allocates array pointers to CPU
registers. In evolution with this, code produced by the back-end in a model compiler,
allocates data arrays to entire memory areas (e.g., banks in a DRAM memory).
In the following, we present an overview of such a model compiler, regardless of the
input modeling language. We conclude this section with a discussion about the im-
pact of modeling languages and programming languages onto the implementation of a
multi-processor compiler.

Scanner,
Parser

System-level
optimizations

Front End

Middle End

Back End
Code

generator

Source program

Optimized IR

IR

Model-based
specifications

Fig. 2. The structure of a system-level compiler.

4.1 Overview

The front-end in Fig. 2 is dedicated to "understanding", with scanning and parsing
techniques, input specifications denoted in a specific modeling language. Knowledge

MPSoC Model-Based Programming 7

about the structure and behavior of the system under design (e.g., dependencies be-
tween functions, mapping constraints) is encoded into Intermediate Representations,
IR in Fig. 2 (e.g., a directed graph). By definition, in programming-language compilers,
an Intermediate Representation is an abstraction of the given source code. In the context
of modeling-language compilers where the input specifications are models themselves,
also IRs are models. The IR’s structure or the modeling language used to express such
an IR thus becomes the IR’s metamodel. It follows that the process of producing IRs
from input models is a model-to-model transformation.
The purpose of the middle-end in Fig. 2 is to attempt to rewrite IRs in a way that is
more convenient to optimize the performance of the final implementation in terms of
memory management, power consumption, throughput, etc. Such a rewriting results in
a second intermediate representation, Optimized IR in Fig. 2. This optimized IR must
respect the partitioning of functions onto resources defined by the Design Space Explo-
ration phase (Fig. 1), in order to comply to the DSE’s design constraints (e.g., latency,
throughput, power consumption). For instance, if this partitioning is static, a function
f that has been allocated to unit u1, f cannot migrate to a different unit u2 at run-time.
Examples of optimizations that can be performed at this stage are: optimizations that
reduce the memory occupancy of storage units, scheduling optimizations that minimize
the workload of processing and communication units. To perform these optimizations,
as shown in Fig. 2, the middle-end also takes as input models of the system’s platform
and mapping. This is not the case of middle-ends for uni-processor compilers, where
only the back-end takes as input information about the target platform.
In terms of the granularity level of optimizations, working at system-level of abstraction
allows to focus on parallelism patterns (e.g., task-level) that are more coarse-grained
than those in classical programming-languager compilers (e.g., basic blocks). As a con-
sequence, the compiler benefits from managing smaller IRs with respect to equivalent
IRs produced from input specifications based on programming languages. In turn, this
enables the compiler to implement more agressive performance evaluation, data-flow
analysis (e.g., global analysis) and program transformations.
In Fig. 2, the back-end is a code generator that translates a mapping configuration into
a program (Source progam in Fig. 2) expressed in a high-level programming language
(e.g., C/C++). It takes as input both a library of platform-specific functions and models
for the platform, mapping and functionality of the system under programming, from
the MDE development tool. The souce program must be behaviorally equivalent to the
intermediate representations and the input models. The back-end schedules the execu-
tion of computation and communication operations, manages the allocation of physical
memory regions and selects constructs of the source program’s language that corre-
spond to those in the IRs.
In multi-processor platforms, processing units are typically provided with dedicated
tool-chains (e.g., C compilers, linkers and assemblers). The model compiler’s back-end
generates code that is further translated by these processor-specific tool-chains (Source
program translation in Fig. 1). In this sense, a model compiler can be seen as a meta-
compiler that coordinates standard uni-processor compilers.

8 Andrea Enrici et al.

4.2 Discussion

Generally speaking, the input specifications’ formalism impacts a compiler’s interme-
diate representations and the functionality implemented by each building block (front-
end, middle-end and back-end). Three types of formalisms can be used to program
multi-processor platforms: modeling languages (e.g., UML/SysML/MARTE, SDF, KPN,
AADL, Simulink), parallel programming languages (e.g., POSIX threads [?], MPI [?],
OpenMP [?]) and sequential programming languages (e.g., C/C++). In this subsection
we address two aspects that have the most profound impact: (i) how parallelism is ex-
pressed and (ii) the granularity level of a formalism’s constructs. For a more in-depth
discussion we refer the reader to [?]
How parallelism is expressed influences the functionality implemented in the compiler’s
front-end. In this context a marking line can be drawn between sequential and parallel
formalisms. When sequential programming languages are used, the compiler’s front-
end must implement dedicated techniques to extract parallelism from sequential code
(i.e., static analysis, dynamic analysis, speculative execution). Conversely, this added
complexity is absent with formalisms that naturally express parallelism.
The second most important criteria that impacts a compiler’s implementation is the
granularity level offered by a formalism’s constructs to manipulate data and control in-
structions (e.g., data structures and operations on these data structures). This impacts
the size and expressiveness of the compiler’s intermediate representations, the opti-
mizations that can be performed on these IRs as well as the source code that can be
generated by the compiler’s back-end. In this context, a marking line can be drawn be-
tween modeling and programming languages. Modeling languages typically abstracts
away the low-level constructs used by programming languages to manipulate data and
control instructions (e.g., pointers, variable initialization). As such, intermediate repre-
sentations that are derived from modeling languages are lighter (e.g., graphs of smaller
size) and can be used to perform more aggressive optimizations (e.g., global data-flow
analysis). The implementations of these optimizations in the compiler’s middle-end is
significantly facilitated by the absence of pointers in modeling languages. However,
the abstractions offered by modeling languages often prevent the compiler’s back-end
to generate complete software implementations. These implementations must be either
manually completed by the user, or require the user to accompany the input models with
specifications written in programming languages that are then used by the compiler’s
back-end to produce a complete implementation (e.g., Alf for fUML). In either case, the
additional specifications correspond to low-level operations that manipulate and access
data structures (e.g., arrays, structs, lists).

5 MODEL-BASED DEVELOPMENT IN TTOOL/DIPLODOCUS

In the context of our research on the efficient programming of signal-processing systems
for MPSoC platforms, we selected UML/SysML as modeling language and TTool/DIPLODOCUS
as a development environment for model-based specifications.
The choice of using UML/SysML as modeling language is motivated by the following
reasons. First, it is widely used in the software development community where it was
initially created as a specification language to abstract large software systems. Here,

MPSoC Model-Based Programming 9

UML/SysML Activity diagrams have become an established notation to capture con-
trol and data-flow at various level of abstractions. Their semantics makes them particu-
larly suited to describe the behavior of the systems we target. With respect to sequential
programming languages, UML/SysML diagrams express parallelism explicitly and of-
fer richer contructs than other concurrent modeling languages such as SDF [Lee and
Parks, 1995] and KPN [Kahn, 1974]. The latter do not express the internal behavior of
processing and communication operations that are modeled in terms of black-boxes in-
terconnected by data dependencies. Instead, such an internal behavior can be expressed
by means of UML/SysML Activity diagrams that a compiler’s middle-end can analyze
in the attempt to optimize the system’s behavior.
TTool/DIPLODOCUS [TTool, 2017c] is a framework for the hardware/software co-
design of data-flow systems from UML/SysML diagrams. It was selected as it is open
source, lightweight and offers system-level modeling and debugging features that are
unavailable in concurrent tools for UML design of embedded systems. More precisely,
TTool [TTool, 2017a] is the name of the toolkit that allows to create, edit and validate
UML/SysML diagrams for different profiles (e.g., Avatar [TTool, 2017b], SysMLSec [TTo,
2017]). DIPLODOCUS [Apvrille et al., 2006,Apvrille, 2008] is the profile dedicated to
the hardware/software co-design of data-flow systems.

Model
improvements

(4)

(4)

(4) (4)

Application
model

Communication
model(s)

Platform
model

Mapping
model

Model
Validation

Model compilation (5)

(3)

(2)

(1.1) (1.3) (1.2)

CPU1 MEM1 DMA1

BUS1

com1

com2

OP1

OP3

OP2

OP4

ch34

ch24

ch13

ch12

Application model (1.1)

Communication models (1.3)

Platform model (1.2)

OP1-4
com1

com1

com1

ch12
...

ch34

Mapping model (2)

BUS1

CPU1 MEM1 DMA1

Fig. 3. The Ψ -chart development methodology (left side) and a graphical visualization of its
constituent models (right side) that are supported by TTool/DIPLODOCUS.

Fig. 3 shows the model development methodology (called Ψ -chart [Enrici et al., 2017])
that is supported by TTool/DIPLODOCUS to design source models for the compiler
OMC, Section 6. In TTool/DIPLODOCUS, the functionality of the system under de-
sign (Application model, 1.1 in Fig. 3) is denoted with SysML Block Definition and
Block Instance diagrams that are composed by a set of blocks interconnected by data
and control dependencies via ports and channels. The internal behavior of each block
is described by a SysML Activity Diagram. An application model is based on the two
following abstraction principles:

– Data abstraction: only the amount of data exchanged between application blocks
is modeled. Internal decisions that depend on the value of data are expressed in

10 Andrea Enrici et al.

terms of non-deterministic and static operators (i.e., conditional choices based on
the value of random variables).

– Algorithmic abstraction: algorithms are described using abstract cost operators that
express the complexity of processing items in terms of the number of operations
required to transform data (e.g., number of integer operations).

The above abstraction principles have been defined as TTool/DIPLODOCUS targets
early design and DSE, when not all the details about a system’s application (e.g., value
and type of data) and platform (e.g., Operating System, size and policy of cache memo-
ries for a CPU) are known. The validation of the effectiveness of these abstractions has
been described in [Jaber 2011], where TTool/DIPLODOCUS was used for the design
of the physical layer of a LTE base station jointly with Freescale Semiconductors.
The resources of the system under design (Platform model, 1.2 in Fig. 3) are denoted
with a UML Deployment Diagram that represents a set of interconnected resources,
e.g., bus, CPU and its operating system, DMA, memory. These resources are charac-
terized by performance parameters (e.g., the scheduling policy and the number of cores
for a CPU) that are used for validation and debugging purposes (e.g., simulation, formal
verification).
The communication protocols (e.g., DMA transfers) are captured with dedicated di-
agrams (Communication models, 1.3 in Fig. 3) separately from the application and
platform [Enrici et al., 2014]. UML Activity Diagrams capture the steps that com-
pose a communication protocols (e.g., configuration, acknowledgement) while UML
Sequence diagrams denote message exchanges among master and slave components.
A partitioning of the system’s functionality onto the available resources (Mapping model,
2 in Fig. 3) is created from a platform model where dedicated UML artifacts are added
to map the computations and their dependencies. The abstract cost operators are as-
signed a value according to the performance characteristics (e.g., operating frequency)
of the platform’s units.
Designs in TTool/DIPLODOCUS can be validated (step 3 in Fig. 3) by simulating the
workload of computations and data-transfers [Knorreck, 2011]. A formal verification
engine [Knorreck, 2011] is also available to verify system properties (e.g., liveness,
reachability, scheduling). Validation can be performed both manually via the tool’s GUI
or automatically via a set of scripts that configure the simulation and formal verification
engines to evaluate different mapping alternatives. The simulator’s GUI also provides a
rich set of debugging features that, for instance, allow the user to animate and execute
UML/SysML diagrams step-by-step, inspect variables’ values, save and load execution
traces.
Models are iteratively debugged, validated and improved (steps 3-4 in Fig. 3), until legal
specifications can be compiled into implementations (step 5 in Fig. 3).

6 OMC: THE OPTIMIZING MODEL COMPILER

In this section, we describe an implementation of the model compiler in Fig. 2 that
results into OMC (Optimizing Model Compiler), Fig. 4. The current implementation
is the result of a continuous research work that first started with the code genera-
tion engine in [Enrici et al., 2017]. With respect to the latter, OMC’s middle-end has

MPSoC Model-Based Programming 11

been extended with memory allocation optimizations and the back-end has been ex-
tended with the capability to target any platform whose architecture can be designed
in TTool/DIPLODOCUS. Similarly to Integrated Development Environments for pro-
gramming languages (e.g., Eclipse), TTool/DIPLODOCUS allows to select OMC as
model compiler by means of a plugin.

Graph generator

TTool/
DIPLODOCUS

Memory
optimizer

Front End

Middle End

Back End

hCDFG

C program
generator

hCDFG', MEGs

UML/SysML
scanner and parser

Source C program

UML/SysML
models

Library of
implementation

specific
functions

Fig. 4. The structure of OMC, the Optimizing Model Compiler

6.1 Front-end

The front-end in Fig. 4 converts UML/SysML models4 that describe a system’s func-
tionality into a first intermediate representation: hCDFG, a hierarchical Control and
Data Flow Graph. The latter is defined as a directed multigraph G =< N,E >. N is
a set of nodes derived from a DIPLODOCUS Block Definition diagram that capture
both data and control operations; each node n ∈ N is itself a graph that describes the
internal behavior of an operation (derived from DIPLODOCUS Activity diagrams).
E is a set of edges that capture the data and control dependencies among operations
(relations among DIPLODOCUS Blocks). This intermediate representation is derived
from UML/SysML diagrams which have a data-flow execution semantics. As a conse-
quence, the hCDFG’s has the execution semantics of a Synchronous Data-Flow (SDF)
graph [Lee and Parks, 1995]. In a SDF graph, nodes (actors) represent processing en-
tities interconnected by a set of First-In First-Out (FIFO) data queues. An actor starts
execution (firing) when its incoming FIFO(s) contains enough tokens, it cannot be pre-
empted and produces tokens onto its outgoing FIFO(s). The number of tokens con-
sumed/produced by each firing is a fixed scalar that is annotated with the graph edges.
As actors have no state in the SDF Model of Computation (MoC), if enough tokens are
available, an actor can start several executions in parallel. For this reason, SDF graphs
naturally express the parallelism of signal-processing applications and can be statically

4 These models are specified in .xml format by TTool/DIPLODOCUS.

12 Andrea Enrici et al.

analyzed during compilation for memory allocation optimizations.

6.2 Middle-end

In this version of the compiler’s middle-end, Fig. 5, we propose a system-level mem-
ory optimizer that minimizes the footprint of the logical buffers associated to edges in
the hCDFG. We differentiate between logical and physical buffers. A physical buffer
defines a range of memory addresses of a physical memory device (e.g., a Random Ac-
cess Memory - RAM). A logical buffer, instead, is a virtual address space that can be
mapped onto one or multiple physical buffers.

Value and Loop
analyzer

Memory and
throughput analyzer

Platform
independent
Static Analysis

Memory Footprint
optimizer

UML
to IR

hCDFG

hCDFG', MEGs

Platform
dependent
Static Analysis

G

Mapping
model

Fig. 5. The Optimizing Model Compiler’s middle-end

Value and Loop analyzer Value analysis in traditional program analysis attempts to
determine the values in a processor’s registers for every program point and execu-
tion context [Torczon and Cooper, 2007]. Similarly, this step aims to assign a value
to the control variables that determine the size and direction of the data-flows among
signal-processing operations, for every execution scenario. The analyzer starts from the
hCDFG source vertex’ graph. The latter is traversed and a value is assigned for all its
variables. This determines a value to the consumption and production rates of hCDFG
edges as well as to the number of initial tokens that the source vertex exchanges with
its neighbors. The latter are iteratively examined and the variables’ values are propa-
gated to their neighbors until the hCDFG sink vertex is reached. In case these values
cannot be determined exactly (e.g., presence of random operators in the input models),
the analyzer attempts to determine a lower and an upper bound.

Memory and throughput analyzer The results of the Value and Loop analyzer are
used to determine the memory footprint and the throughput of each hCDFG vertex.
The throughput is given by the amount of data that is exchanged on the edges of

MPSoC Model-Based Programming 13

a hCDFG node. As edges in the hCDFG are associated to logical First-In-First-Out
(FIFO) buffers, the throughput of all edges of a hCDFG node determines its memory
footprint. The throughput and the memory footprint is computed by multiplying the
tokens exchanged on input/output edges by the size of the tokens’ data type that is
specified in the input DIPLODOCUS models (e.g., int16, cpx32).
The values determined by the Value and Loop analyzer and by the Memory and Through-
put analyzer are annotated to the hCDFG graph that results into hCDFG’.

Memory footprint optimizer Our optimizer implements a variant of the allocation
techniques presented in [Desnos et al., 2014] that we adapted to allow the sharing of
input and output buffers of actors, similar to one of the memory reuse techniques pre-
sented in [Desnos et al., 2016b]. Essentially, the optimizer performs a series of graph
transformations to deduce a set of graphs that specify relations among logical buffers
that can or cannot share physical memory.
The hCDFG graph in Fig. 4 is transformed first into a single-rate SDF, where the pro-
duction and consumption rates on each FIFO are made equal. The single-rate SDF is
transformed into a Direct Acyclic Graph (DAG) by isolating one iteration of the single-
rate SDF and by ignoring FIFOs with initial tokens. The DAG graph contains two types
of memory objects:

– Communication buffers that are used to transfer tokens between consecutive actors.
– Feedback/pipeline buffers that store feedback FIFOs, i.e., buffers corresponding to

(feedback) edges whose input and output port are associated with the same actor.

Our work differs from [Desnos et al., 2014] as, in the latter, a DAG also expresses
an estimation of an actor’s internal memory (e.g., the stack space of a task allocated
by an Operating System). This is because we target platforms composed of IP blocks
(Section 7) for which OMC does not need to allocate extra buffers for the IPs’ internal
working memory.
From the mapping model, scheduling information is added to the DAG. Subsequently, a
Memory Exclusion Graph (MEG) is derived. Nodes in the MEG represent logical mem-
ory objects: FIFO buffers whose size is equal to the number of tokens in the single-rate
SDF. Edges in the MEG link logical FIFO buffers that cannot be allocated to over-
lapping physical buffers. The MEG is then updated with mapping information from
the input models that specifies the execution constraints (scheduling) for each signal-
processing operation. This allows to remove edges (exclusion relations) between nodes
in the MEG. The purpose of this operation is to merge logical buffers so that physical
buffers in the executable code can share common memory regions, thus reducing the
total footprint of the software application produced by OMC.
At this point, the heuristics proposed in [Desnos et al., 2014] is applied to compute a
lower bound for the memory of the physical buffers. This bound is defined in [Fabri,
1979] as the weight of a Maximum Weight Clique (MWC). A clique is a subgraph of
MEG vertices within which each pair of vertices is linked with an edge. As the mem-
ory objects of a clique cannot share memory space because they mutually exclude each
other, the weight of a clique gives a lower bound to the amount of memory that must be
allocated for all of the clique’s buffers. This amount is equal to the sum of the sizes of

14 Andrea Enrici et al.

all clique’s buffers. The pseudo-code of the heuristics proposed in [Desnos et al., 2014]
is shown in Algorithm 1.

Algorithm 1: The MWC heuristics
/* C = the clique */
/* nbedges = number of edges in C */
/* cost(·) = cost function of C */
/* v = generic vertex in C */
/* w(v) = weight of vertex v */
/* N(v) = neighbor vertices of v */
/* |N(v)| = lowest number of v’s neighbors */

1 C←V
2 nbedges← |E|
3 foreach v ∈C do
4 cost(v)← w(x)+∑v′∈N(v) w(v′)
5 end
6 while |C|> 1 and 2·nbedges

|C|·(|C|−1) < 1.0 do
7 Select v∗ f rom V that minimizes cost(·)
8 C←C\{v∗}
9 nbedges← nbedges−|N(v∗)∩C|

10 foreach v ∈ {N(v∗)∩C} do
11 cost(v)← cost(v)−w(v∗)
12 end
13 end
14 Select a vertex vrandom ∈C
15 foreach v ∈ {N(vrandom)\C} do
16 if C ⊂ N(v) then
17 C←C∪{v}
18 end
19 end

In each iteration of the main loop (lines 6-13) in Algorithm 1, minimum cost vertices v∗

are removed from C (line 8). If multiple vertices have the same cost, the vertex v with
the lowest number of neighbors |N(v)| is removed. If the number of neighbors is equal,
then the vertex v with the smallest weight w(v) is removed. If there are still multiple
vertices with equal properties, a random vertex vrandom is selected. The loop iterates
until the vertices in C form a clique. This condition is verified, line 6, by comparing
the edge density of a clique with the edge density of the MEG subgraph formed by the
remaining vertices in C. The edge density of a clique is defined as the ratio between
existing exclusions and all possible exclusions. Such density is equal to 1.0 in the case
of the complete MEG. The number of edges, nbedges, is decremented at line 9 by the
number of edges in L that link the removed vertex v∗ to vertices in C. Lines 10-12 up-
date the costs of the remaining vertices for the next iteration. The complexity of the
heuristic algorithm is of the order of magnitude of O(|V |2), where |V | is the number of

MPSoC Model-Based Programming 15

vertices of the MEG subgraph.
This MEG is further split into separates MEGs, one for each memory unit in the target
platform onto which physical buffers must be allocated. This split is perfomed accord-
ing to the algorihm described in [Desnos et al., 2016b], where FIFO buffers whose
producer and consumer are mapped onto different processors are duplicated in different
MEGs.

6.3 Back-end

OMC’s back-end, Fig. 6, translates hCDFG’ and the MEGs into a C program that can
run as a user-space application on top of a general-purpose Operating System. The back-
end is composed of three code generators. The Memory Manager code generator gener-
ates a static memory allocation for the buffers in the Memory Exclusion Graph. Buffers
whose lifetimes overlap are assigned to dedicated memory areas, whereas buffers whose
lifetimes do not overlap are assignd to shared memory areas. The Scheduler code gener-
ator produces a static scheduling of operations that corresponds to the scheduling used
by the middle-end to produce the MEG graphs. The Operation code generator translates
each operation in hCDFG’ with 3 C routines for initialization, execution and clean-up
purposes (Fig. 4). Initialization and clean-up routines are called once, when the program
starts and terminates, respectively. These routines manipulate the software data struc-
tures that are needed by processing units in the target platform to prepare and clean
up the execution of a node in hCDFG’. Execution routines (implementation-specific
functions in Fig. 4) are added to each actor from an external library. They trigger the
execution of an operation on the hardware.

Memory Manager
code generator

Scheduler code
Generator

Operation code
generator

hCDFG',
MEGs

Library of
implementation

specific functions

Source C program

Fig. 6. The Optimizing Model Compiler’s back-end

In the current implementation of the compiler, the body of execution routines must be
manually written by a user and included in the final source code via dedicated C header
files. These execution routines specify, at a lower level of abstraction, the implementa-
tion details of the signal-processing algorithms that are described, at system-level, by

16 Andrea Enrici et al.

the input UML/SysML diagrams. Given the real-time nature of the systems that we
aim to program, it is mandatory to specify these algorithms with a less abstract lan-
guage (i.e., C) that offers constructs which match more closely the characteristics of
the underlying hardware execution platform (e.g., memory alignment of struct fields to
accelerate DMA transfers). In analogy with traditional C programs that embed assem-
bly code for functionalities that are time-critical, our UML/SysML programs embed C
code for functionalities that are time-critical at system-level of abstraction.

6.4 Discussion

In this version of the model compiler, we did not include any environment for the anal-
ysis of the IRs’ models and their transformations as this goes out of the scope of our
current research interests. As described in [Floch et al., 2011], techniques such as gener-
ative approaches, model mapping, Domain Specific Languages and metamodel instru-
mentation exist to guarantee the correctness and maintainability of IR transformations.
However, due to scalability reasons, their use is difficult to apply to research compilers.
It is, however, a practically surmountable problem that can be solved by developing
additional features to the model compiler. In the context of the case study of Section 7,
we manually verified the equivalence between (i) the relations in graphs hCDFG and
hCDFG’ (ii) the scheduling of operations in the output C program and (iii) the inter-
operation dependencies in the input models.

Portability This implementation of the model compiler addresses platforms where
the scheduling of operations is centrally executed by a single general-purpose control
processor. The latter configures and dispatches the execution of operations to a set of
physically distributed units (e.g., DSPs, DMAs, IPs), according to events generated
upon the consumption/production of data by computation and communication opera-
tions. For each platform, a dedicated library of implementation-specific functions must
be provided by re-using those from other projects as templates. To target designs where
the control code of an application is fragmented into separate executables that each run
onto different CPUs, OMC must be extended to produce multiple executables, include
synchronization primitives among multiple units, etc..
In order to use this OMC’s implementation with a MDE tool other than TTool/DIPLO-
DOCUS, the user needs to write a new plug-in for the front-end’s scanner and parser.
The existing plug-in can be used as a template to reduce development efforts.

Debugging In our model-based programming approach, debugging is done at dif-
ferent locations: in TTool/DIPLODOCUS, in the output C program (OMC’s output,
Fig. 6) and the library’s implementation-specific functions (e.g., Valgrind, gdb). Trans-
formations of the Intermediate Representations can be manually debugged by com-
paring the data-flow relations among nodes in hCDFG, hCDFG’ and those between
SysML blocks in the input models. Also, simulation and formal verification techniques
in TTool/DIPLODOCUS can be used to guarantee the correctness of the input UML/SysML
models with respect to design requirements.

MPSoC Model-Based Programming 17

7 CASE STUDY

According to the methodology in Fig. 1, we used TTool/DIPLODOCUS and OMC to
develop software from the UML/SysML models of a 5G decoder for the uplink (SC-
FDMA), single antenna case, Physical Uplink Shared channel (xPUSCH), based on the
specifications in [Verizon, 2015].
The algorithm of the signal-processing operations (application) that compose the 5G
decoder is shown in Fig. 7. Data coming from the air are received and converted into
digital samples in the RF/ADC block (not considered in our implementation). Digital
samples are converted to the frequency domain (DFT) information carriers are demapped
(Sub-carrier Demapping) and samples converted back to the time domain (IDFT).
The flow of received information is demodulated (64QAM Demodulation), decoded
(LDPC Decoder) and assembled (Code Block Concatenation, Remove CRC blocks)
into a transport block to be further processed by higher network layers.
We captured this application with a SysML Block Definition diagram containing 11
SysML Composite Block Components (1 for each signal-processing operation in Fig. 7
as well as one source and one sink components). Each Composite Block Component
contains 2 SysML Primitive Block Components that are, in turn, each associated to a
UML Activity diagram. By way of example, Fig. 8a shows the SysML block compo-
nents of operation 64QAM Demodulation. Here, the primitive block F_QAMDemod de-
notes the ensemble of the control operations (e.g., determining the amount of samples
to process) that govern the primitive block X_QAMDemod. The latter captures the process-
ing operations that transform input samples into demodulated output samples. Fig. 8b
shows the the UML Activity diagrams of the primitive block X_Demod. This UML Ac-
tivity diagram is representative of the behavioral models of all the 5G decoder opera-
tions. Here, the amount of input and output samples is received from F_QAMDemod, oper-
ator (1) in Fig. 8b. Subsequently, a for-loop (2 in Fig. 8b) iteratively reads numBitsPerSampleIN
samples from an input channel (3 in Fig. 8), processes them (4 in Fig. 8) and writes
numBitsPerSampleOUT samples to an output channel (5 in Fig. 8). In Fig. 8, variables
numBitsPerSampleIN and numBitsSampleOUT model 32-bits samples. The algorithm
of the demodulation operations in Fig. 8 is abstracted by means of the cost operator
EXECC(min,max). The latter captures the complexity of an algorithm in terms of its
minimum and maximum number of operations onto complex data.
Table 1 lists the data produced and consumed by operations in Fig. 7, for an input sub-
frame composed of 14 OFDM symbols and 41 LDPC code blocks.
In this case study we programmed two target platforms. One is Embb [Embb, 2017],
a generic baseband architecture dedicated to signal-processing applications. Embb is
composed of a Digital Signal Processing (DSP) part and a general purpose control part.
The DSP part is composed of a set of Digital Signal Processing Units (DSPUs) intercon-
nected by a crossbar. Each DSP unit is equipped with a Processing Sub-System (PSS)
as computational unit, a Direct Memory Access controller (DMA) and a local memory
called the Memory Sub-System (MSS). These DSPUs can be seen as programmable
IPs that are more flexible than traditional fully hard-wired accelerators. The general
purpose control part is composed of a RAM memory and of a CPU that configures and
controls the processing operations performed by the DSPUs and the data transfers.
The architecture of the second target platform, a hardware IP-based platform is com-

18 Andrea Enrici et al.

Descrambling

64QAM
Demodulation

Sub-carrier
demapping

N-point
DFT

LDPC
decoder

M-point
IDFT

Remove
Cyclic

Prefix (CP)

Code
Block

Concatenation

Check and
remove

CRC RX transport
block

41 code blocks

14 OFDM symbols

from
RF/ADC

Fig. 7. The block diagram of the 5G decoder that is designed and programmed in this case study.

QAMDemod

X_QAMDemod

F_QAMDemod

getReqArg (numBitsPerSymbolIN, numBitsPerSymbolOUT)

SubCarrierDemap_ChOut(numBitsPerSymbolOUT)

SubCarrierDemap_ChIn(numBitsPerSymbolIN)

for(i=0;i<num_symbols;i = i+1) inside loop

exit loop

numBitsPerSymbolIN

(a) (b)

(1)

(2)

(3)

(4)

(5)

Fig. 8. The SysML block diagram (a) and UML Activity (b) diagram for operation 64QAM
Demodulation.

MPSoC Model-Based Programming 19

Table 1. Input/Output data of the decoder operations

Operation Input Output
Remove CP 30720 samples (14 OFDM

symbols)
2048 samples (1 OFDM

symbol)
DFT 2048 samples 2048 samples

Sub-carrier demapping 2048 samples 1200 samples
IDFT 1200 samples 1200 samples

Demodulation 1200 resource elements 7200 soft bits
Descrambling 7200 soft bits 7200 soft bits
LDPC decoder 1944 soft bits 1620 hard bits

Code Block Concatenation 1620 hard bits 66416 hard bits
Remove CRC 66416 hard bits 66392 hard bits

posed of a programmable and of a configurable subsystem. The programmable subsys-
tem executes control functions as well as signal-processing operations whose perfor-
mance are not time critical. It is composed of a CPU and a RAM memory. The config-
urable subsystem accelerates performance-critical operations onto a dedicated hardware
IP block that can be selected by Xilinx SDx [Xilinx, 2017] from the source C program
produced by OMC. An IP block includes a processing core, a local memory and a DMA
engine, similarly to a DSPU in Embb.
Thanks to the similarities in the structure of the two target platforms, we captured their
architecture in the UML Deployment diagram of TTool/DIPLODOCUS in Fig. 9. In

<<CPU>>

Main CPU

<<MEMORY>>

Main Memory

<<BRIDGE>>

<<BUS>>
Main Bus

Digital Signal Processing part

General-Purpose Control Part

<<BUS>>

Crossbar

<<HWA>>

PE[1..*]
Main

Bridge

Fig. 9. The UML Deployment Diagram of a generic instance of Embb and of the hardware IP-
based platform.

Fig. 9, the left-hand part describes the subsystem where the processing of data is ac-
celerated. Here, a PE (Processing Element) block models the architecture of a DSPU
in Embb or a hardware IP block. The TTool/DIPLODOCUS model of a PE’s internal
architecture is depicted in Fig. 10. The right-hand side of Fig. 9 captures the control
part of our two target platforms: a CPU and a memory units interconnected by a bus
unit.
To program the two platforms, we instantiated a model such as the one in Fig. 9 that
contains two Processing Elements for Embb and one Processing Element for the IP-

20 Andrea Enrici et al.

based platform. The mapping information that results from the Design Space Explo-
ration phase (Fig. 1) for each platform is listed in Table. 7.

<<BUS-RR>>
PE_Internal_Interconnect

<<BRIDGE>>
PE_Bridge

<<MEMORY>>
PE_Local_Memory<<DMA>>

PE_DMA

<<CPURR>>

Processing_Core

to global interconnect

Fig. 10. The UML Deployment Diagram for the generic architecture of a Processing Element
(PE) in Fig. 9.

Table 2. Memory footprint of the 5G decoder logical buffers and mapping configuration

Operation Memory footprint [bytes] Mapping
Input Output Embb IP-based platform

Remove CP 122880 14×8192 Main CPU (sw) Main CPU (sw)
DFT 8192 8192 FEP DSPU (hw) Main CPU (sw)
Demapping // // Data transfer Main CPU (sw)
IDFT 4800 4800 FEP DSPU (hw) Main CPU (sw)
Demodulation 4800 7200 FEP DSPU (hw) Main CPU (sw)
Descrambling 7200 7200 Main CPU (sw) Main CPU (sw)
LDPDC Decoder 1944 202.5 LDPC DSPU (hw) IP block (hw)
Code Block Concatena-
tion

202.5 8302 Main CPU (sw) Main CPU (sw)

Remove CRC 8302 8299 Main CPU (sw) Main CPU (sw)

7.1 The model compilation

The optimization techniques used by our model compiler reduce the memory footprint
by sharing the physical buffers among operations that are mapped to a given execution
unit. To understand this optimization, Table 7 also shows the memory footprint of the
logical buffers for the 5G decoder operations.
In the case of Embb, in Table 7, three sets of logical buffers can be identified, B0, B1, B2,
that are associated to operations mapped onto the Main CPU, the FEP DSPU and the
LDPC DSPU, respectively. For the Main CPU the logical buffers are B0 = {RemoveCP-
-DFT, Demodulation-Descrambling, Descrambling-LDPCDecoder, LDPCDecoder-
-CodeBlockConcatenation, CodeBlockConcatenation-RemoveCRC}. For unit FEP
DSPU, the buffers are B1 = {RemoveCP-DFT, DFT-IDFT, IDFT-Demodulation, Demodulation-
-Descrambling}. For unit LDPC DSPU the buffers are B2 = {Descrambling-LDPCDecoder,

MPSoC Model-Based Programming 21

LDPCDecoder-Descrambling}.
For the IP-based platform, based on the mapping in Table 7, we identify 2 sets of logi-
cal buffers, B3, B4, that are associated to operations mapped onto the Main CPU and
the IP block, respectively. For the Main CPU the logical buffers are B3 = {RemoveCP-
-DFT, DFT-Demapping, Demapping-IDFT, IDFT-Demodulation, Demodulation-
-Descrambling, Descrambling-LDPCDecoder, CodeBlockConcatenation-Remo-
veCRC}. For the IP core, the logical buffers are B4 = {Descrambling-LDPCDecoder,
LDPCDecoder-CodeBlockConcatenation}.
For each set of buffers above, the middle-end produces a Memory Exclusion Graph. As
mentioned in Section 6, the middle-end duplicates, in the Memory Exclusion Graphs,
buffers whose producer and consumer operations are mapped onto different execution
units. For instance, buffer Descrambling-LDPCDecoder is present in both B0 and B2,
when compiling for Embb, and in both B3 and B4, when compiling for the IP-based
platform.

When programming Embb, the back-end allocates 8192 bytes for B1 to the local
memories of the FEP DSPU, which is equal to the size of RemoveCP-DFT. It allocates
1944 bytes for B2 to the local memory of the LDPC DSPU, which is equal to the size of
buffer Descrambling-LDPCDecoder, and 8302 bytes for B0 to the Main CPU memory,
which is equal to the size of buffer CodeBlockConcatenation-RemoveCRC. Assigning
separate physical buffers to each of the logical buffers would have allocated 50976
bytes to the FEP local memory (the size of all logical buffers in B1), 2147 bytes to the
LDPC processor’s local memory (the size of all logical buffers in B2) and 39399 bytes
to the main CPU memory (the size of B0). Compilation reduces the memory footprint
of 83.88%, 9.46% and 78.93% for each of these three units, respectively. Overall, it
reduces by 80.07% the memory used by the final executable code, with respect to pure
translation-based approaches.
For the IP-based platform, the back-end allocates 8302 bytes for B3 to the main CPU
memory (the programmable system), which is the size of buffer CodeBlockConcatenation-
-LDPCDecoder, and 1944 bytes for B4 to the hardware IP-core memory (configurable
system), which is the size of buffer DescramblingLDPCDecoder. A pure translation-
based approach would have reserved 90375 bytes (the size of B3) and 2147 bytes (the
size of B4) to the main CPU and the hardware IP-core memories, respectively. Our
compilation achieves a memory footprint reduction equal to 90.81% and 9.46%, re-
spectively, for these two units. Overall, this reduces by 88.93% the memory used in the
mixed hardware-software implementation.

These advanced memory optimizations were possible thanks to two types of analy-
sis performed by the compiler’s middle-end. First, thanks to the lifetime analysis of
buffers, that is derived from the data dependencies and the scheduling information as
described in Section 6. Secondly, thanks to the static analysis performed on the UML
Activity diagrams that describe the internal behavior of each signal-processing opera-
tion (Fig. 5). This static analysis allows to retrieve information about the data depen-
dencies that are internal to operations. More in details, if the input and output buffers
of an operation have disjoint lifetimes (i.e., the input buffer is read before an output

22 Andrea Enrici et al.

buffer of equal size is first written), these buffers can be allocated in the same physi-
cal memory space. For instance, the behavior described by the UML Activity diagram
in Fig. 8 for the demodulation operation is representative for the models of all the 5G
decoder operations. Here, numBitsPerSymbolIN data from the input channel (opera-
tor 3 in Fig. 8b) is always read before numBitsPerSymbolOUT data are written to the
output channel (operator 5 in Fig. 8b). Hence, a subrange in the input logical buffer of
size numBitsPerSymbolIN/4 bytes can be shared with the output logical buffer, when
allocated to physical memory5. Similar techniques that take advantage of internal data
dependencies are presented in [de Greef et al., 1997, Desnos et al., 2016a].

The middle-end in OMC optimizes an application’s memory footprint by accounting for
the mapping information of SDF actors onto a platform’s execution units. This schedul-
ing update does not impact the overall timing properties of the final executable. Specif-
ically to this 5G decoder, its real-time properties are limited by two factors. First, by
the lack of parallelism between operations that is inherent to the application in Fig. 7.
Secondly, by the absence in the target platforms of multiple units capable to process
different OFDM symbols in parallel. Because of the limited size of the FPGAs onto
which we prototyped our platforms, it was only possible to instantiate one Front-End
Processor unit and one LDPC processor in Embb as well as one hardware IP-block
in the second platform (due to Design Space Exploration constraints). For instance, in
Embb, the availability of only one FEP unit does not allow to pipeline the execution of
operations DFT, Demapping, IDFT and Demodulation for consecutive OFDM symbols.

7.2 The target program translation

In the case of Embb, the target C program is translated into an executable with GNU/gcc
v.5.4.0 cross-compiled onto Ubuntu v.16.04.4. This executable (a pure software imple-
mentation of the input models) runs on the main CPU in Fig. 9 as a user-space ap-
plication for Linux v.4.4.0-xilinx. In terms of the library of implementation specific
functions that are necessary to produce a complete source C program, 371 functions
were included in the source C program produced by OMC.
In the case of the IP-based platform, we translate the target C program with Xilinx
SDx [Xilinx, 2017] into a mixed hardware-software implementation. The output of the
Xilinx SDx translation process are a Linux image and an .elf file for the software part
of the implementation, to be executed by the CPU of the programmable subsystem. The
executable for the hardware part of the implementation is a FPGA bitstream. The latter
is loaded into the target FPGA’s configurable fabric by a Linux image that runs onto
the FPGA’s control processor (not represented in our models). The number of functions
included to the source C program produced by OMC amounts to 33.

5 We remind to the reader than in our DIPLODOCUS model, each operation reads a cer-
tain amount of input data, num_samples, that are expressed on 32 bits. Thus the size of
num_samples samples corresponds to num_samples/4 bytes.

MPSoC Model-Based Programming 23

7.3 Discussion

With respect to programming approaches based on un-optimized model translations
(Section 2), we showed that optimizing non-functional properties (i.e., memory foot-
print) of models can result in significant performance improvement. These improve-
ments do not alter the semantics of the source models. In this case study, models do
not require to be accompanied by additional specifications for their semantics to be
correctly translated by the compiler. The reason for this is that an invertible mapping
relation exists between the constructs of a SysML Block Definition diagram (i.e., blocks
and relationships) and structural constructs in C (i.e., functions and arrays in C). This
mapping relation, also called interpretation [Seidewitz, 2003], gives the models mean-
ing with respect to the system under design that models abstract away. The latter is,
ultimately, the software (e.g., C code) and not the signal-processing operations (e.g., a
Fast Fourier Transform) of a system under design [Selic, 2003].
However, when this mapping relation is not invertible, code cannot be generated from
models without the support of an external formalism that precisely specifies the models’
semantics. This is the case for the Action Language Alf [Alf, 2017] and the Founda-
tional Subset for Executable UML, fUML [fUML, 2016]. In our case study, this can
be seen if attempting to produce code that implements the internal behavior of signal-
processing operations from DIPLODOCUS Activity diagrams (Fig. 8). The DIPLODOCUS
profile abstracts away operations that manipulate data and control instructions with a
cost operator EXEC(·) [Apvrille et al., 2006]. The latter is a natural number that ex-
presses the amount of operations on integer, EXECI(·), or custom EXECC(·) numbers.
For instance, given two arrays of integers Ā and B̄ of size n and m, respectively, the
element-wise multiplication of Ā× B̄ would be abstracted as EXECI(n×m). How-
ever, the same cost operator may as well represent the element-wise sum Ā + B̄, or
the element-wise difference Ā− B̄. This formally explains the reason why source code
produced by OMC from DIPLODOCUS models, must be manually completed by the
user with calls to operation-specific functions that contain the C code modeled by
DIPLODOCUS Activity diagrams.

8 CONCLUSION

This paper proposes a software development flow to program parallel platforms (e.g.,
Multi-Processor Systems-on-Chip) from system-level models. The flow we proposed
produces application software specified in a thid-generation language (i.e., C). It com-
bines the UML/SysML toolkit TTool/DIPLODOCUS [TTool, 2017a], as model devel-
opment environment, with OMC (the Optimizing Model Compiler [Enrici et al., 2018])
as a source-to-source compiler that translates UML/SysML diagrams into C code. Our
contributions were applied to program a 5G decoder onto a multi-processor platform
and onto an IP-based platform. In future work, we will extend our case study with the
complete design of an encoder chain and we will extend the middle-end with other op-
timizations (e.g., power consumption).
Based on the discussion in sub-section 7.3, we conclude that model-based code gener-
ation does not always replace software development based on programming languages.

24 Andrea Enrici et al.

More in details, model-based code generation is an advantageous paradigm when the
mapping relation between constructs in the modeling and programming languages is in-
vertible. This occurs between constructs that describe the structure of a software system
(e.g., blocks in a SysML Block Definition diagram map to C functions and vice-versa,
classes in a UML Class diagram map to Java classes and vice-versa). These constructs
can be efficiently translated into compiler’s IRs and analyzed to optimize structural
properties of the system under design. This is exemplified by the memory footprint
optimizations that we presented in this paper. Another structural property that can be
optimized while increasing the software quality and productivity is the scheduling of
the operations executed by the system under design.
Conversely, modeling constructs that capture the behavioral aspects of a system under
design (e.g., UML Activity diagrams) cannot be invertibly mapped to equivalent con-
structs in programming languages. Additional languages (e.g., Alf for fUML) must then
be used to fill the semantic gap between an input model and its output program.
For these reasons, it is our belief that the quality and productivity of software develop-
ment for multi-processor embedded systems cannot be improved by relying only on the
high-level abstractions (e.g., UML/SysML blocks and channels) offered by modeling
languages. The latter must be efficiently integrated by tools and methodologies to the
constructs that already exist in sequential programming languages to abstract the ma-
nipulation of data and control instructions (e.g., operations on arrays and structs in the
C language). We believe that the tools and approach proposed in this paper are a good
starting point in this direction, rather than an arrival point.

Bibliography

[TTo, 2017](2017). TTool/SysMLSec. http://sysml-sec.telecom-paristech.fr.
[Alf, 2017]Alf (2017). Action language for foundational uml (alf). http://www.omg.org/

spec/ALF/.
[Apvrille, 2008]Apvrille, L. (2008). Ttool for diplodocus: An environment for design

space exploration. In NOTERE, pages 28:1–28:4.
[Apvrille et al., 2006]Apvrille, L., Muhammad, W., Ameur-Boulifa, R., Coudert, S., and

Pacalet, R. (2006). A uml-based environment for system design space exploration.
In ICECS, pages 1272–1275.

[Bazydlo et al., 2014]Bazydlo, G., Adamski, M., and Stefanowicz, L. (2014). Translation
uml diagrams into verilog. In HSI, pages 267–271.

[Ciccozzi et al., 2012]Ciccozzi, F., Cicchetti, A., and Sjodin, M. (2012). Full code gener-
ation from uml models for complex embedded systems. In STEW.

[DaRTteam, 2009]DaRTteam (2009). Graphical array specification for parallel and dis-
tributed computing (gaspard2). http://www.gaspard2.org/.

[de Greef et al., 1997]de Greef, E., Catthoor, F., and de Man, H. (1997). Array placement
for storage size reduction in embedded multimedia systems. In ASAP, pages 66–
75.

[Desnos et al., 2014]Desnos, K., Pelcat, M., Nezan, J., and Aridhi, S. (2014). Memory
analysis and optimized allocation of dataflow applications on shared-memory mp-
socs. Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, pages 1–19.

[Desnos et al., 2016a]Desnos, K., Pelcat, M., Nezan, J., and Aridhi, S. (2016a). On mem-
ory reuse between inputs and outputs of dataflow actors. ACM Transactions on
Embedded Computing Systems, pages 30:1–30:25.

[Desnos et al., 2016b]Desnos, K., Pelcat, M., Nezan, J.-F., and Aridhi, S. (2016b). Dis-
tributed Memory Allocation Technique for Synchronous Dataflow Graphs. In SiPS
2016.

[Embb, 2017]Embb (2017). http://embb.telecom-paristech.fr/.
[Enrici et al., 2014]Enrici, A., Apvrille, L., and Pacalet, R. (2014). A uml model-driven

approach to efficiently allocate complex communication schemes. In MODELS,
pages 370–385.

[Enrici et al., 2017]Enrici, A., Apvrille, L., and Pacalet, R. (2017). A model-driven engi-
neering methodology to design parallel and distributed embedded systems. ACM
TODAES, 22(2):34:1–34:25.

[Enrici et al., 2018]Enrici, A., Lallet, J., Latif, I., Apvrille, L., Pacalet, R., and Canuel,
A. (2018). A Model Compilation Approach for Optimized Implementations of
Signal-Processing Systems. In Modelsward, pages 25–35.

[Fabri, 1979]Fabri, J. (1979). Automatic storage optimization. Courant Institute of Math-
ematical Sciences, New York University.

[Floch et al., 2011]Floch, A., Yuki, T., Guy, C., Derrien, S., Combemale, B., Rajopadhye,
S., and France, R. B. (2011). Model-driven engineering and optimizing compilers:
A bridge too far? In MODELS, pages 608–622.

26 Andrea Enrici et al.

[fUML, 2016]fUML (2016). http://www.omg.org/spec/FUML/1.2.1/.
[Gamatie et al., 2008]Gamatie, A., Beux, S. L., Piel, E., Etien, A., Atitallah, R. B., Mar-

quet, P., and Dekeyser, J. L. (2008). A model driven design framework for high
performance embedded systems. http://hal.inria.fr/inria-00311115/en.

[Gerstlauer and Gajski, 2002]Gerstlauer, A. and Gajski, D. D. (2002). System-level ab-
straction semantics. In 15th International Symposium on System Synthesis, pages
231–236.

[Gerstlauer et al., 2009]Gerstlauer, A., Haubelt, C., Pimentel, A. D., Stefanov, T. P.,
Gajski, D. D., and Teich, J. (2009). Electronic system-level synthesis method-
ologies. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 28(10):1517–1530.

[GNURadio, 2017]GNURadio (2017). Gnu radio. http://gnuradio.org/.
[Kahn, 1974]Kahn, G. (1974). The Semantics of a Simple Language for Parallel Program-

ming. In IFIP Congress, pages 471–475.
[Knorreck, 2011]Knorreck, D. (2011). UML-Based Design Space Exploration, Fast Sim-

ulation and Static Analysis. PhD thesis, Telecom ParisTech.
[Labview, 2017]Labview (2017). Labview communications system design. http://www.ni.

com/labview-communications/.
[Lee and Parks, 1995]Lee, E. A. and Parks, T. M. (1995). Dataflow process network. Pro-

ceedings of the IEEE, 83(5):1235–1245.
[Leupers et al., 2017]Leupers, R., Aguilar, M. A., Eusse, J. F., Castrillon, J., and Sheng,

W. (2017). MAPS: A Software Development Environment for Embedded Multicore
Applications, pages 917–949. Springer Netherlands.

[Mathworks, 2017]Mathworks, T. (2017). https://www.mathworks.com/solutions/
model-based-design.html.

[Mellor and Balcer, 2002]Mellor, S. J. and Balcer, L. (2002). Executable UML: A Foun-
dation for Model-Driven Architecture. Addison Wesley.

[Mellor and Balcer, 2003]Mellor, S. J. and Balcer, M. J. (2003). Executable and
translatable uml. http://www.omg.org/news/meetings/workshops/\\UML_2003\
_Manual/Tutorial4-Balcer.

[Mischkalla et al., 2010]Mischkalla, F., He, D., and Mueller, W. (2010). Closing the gap
between uml-based modeling, simulation and synthesis of combined hw/sw de-
signs. In DATE, pages 1201–1206.

[Moreira et al., 2010]Moreira, T. G., Wehrmeister, M. A., Pereira, C. E., Petin, G. F., and
Levrat, E. (2010). Automatic code generation for embedded systems: From uml
specifications to vhdl code. In International Conference on Industrial Informatics,
pages 1085–1090.

[Nicolas et al., 2014]Nicolas, A., Penil, P., Posadas, H., and Villar, E. (2014). Automatic
synthesis over multiple apis from uml/marte models for easy platform mapping
and reuse. In Euromicro DSD, pages 443–450.

[OMG, 2017]OMG (2017). Uml profile for marte: Modeling and analysis of real-time
embedded systems. http://www.omg.org/omgmarte/.

[Oracle, 2017]Oracle (2017). Netbeans ide. https://netbeans.org.
[Schmidt, 2006]Schmidt, D. C. (2006). Model-driven engineering. Computer, 39(2):25–

31.
[Seidewitz, 2003]Seidewitz, E. (2003). What Models Mean. IEEE Software, 20(5):26–32.

MPSoC Model-Based Programming 27

[Selic, 2003]Selic, B. (2003). The Pragmatics of Model-Driven Development. IEEE Soft-
ware, 20(5):19–25.

[Sheng et al., 2013]Sheng, W., Schürmans, S., Odendahl, M., Bertsch, M., Volevach, V.,
Leupers, R., and Ascheid, G. (2013). A Compiler Infrastructure for Embedded
Heterogeneous MPSoCs. In PMAM, pages 1–10.

[Tan et al., 2004]Tan, W. H., Thiagarajan, P. S., Wong, W. F., Zhu, Y., and Pilakkat, S. K.
(2004). Synthesizable systemc code from uml models.

[The Eclipse Foundation, 2017]The Eclipse Foundation (2017). Eclipse. http://www.
eclipse.org.

[Torczon and Cooper, 2007]Torczon, L. and Cooper, K. (2007). Engineering a Compiler.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition.

[TTool, 2017a]TTool (2017a). TTool. http://ttool.telecom-paristech.fr.
[TTool, 2017b]TTool (2017b). TTool/Avatar. http://ttool.telecom-paristech.fr/avatar.html.
[TTool, 2017c]TTool (2017c). TTool/DIPLODOCUS. http://ttool.telecom-paristech.fr/

diplodocus.html.
[Vanderperren et al., 2012]Vanderperren, Y., Mueller, W., He, D., Mischkalla, F., and De-

haene, W. (2012). Extending uml for electronic systems design: A code generation
perspective. In Design Technology for Heterogeneous Embedded Systems, pages
13–39.

[Verizon, 2015]Verizon (2015). 5g specifications. http://www.5gtf.org/.
[Xi et al., 2005]Xi, C., JianHua, L., Zucheng, Z., and Yaohui, S. (2005). Modeling systemc

design in uml and automatic code generation. In ASP-DAC, pages 932–935.
[Xilinx, 2017]Xilinx (2017). Sdx development environment. https://www.xilinx.com/

products/design-tools/\\all-programmable-abstractions.html.

