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Abstract—The paper shares an experience in using
the Systems Modeling Language (SysML) for the de-
sign and formal verification of UAVs. In particular, the
paper shows how our approach helps detecting early
design errors. A UAV in charge of taking pictures serves
as educational and running example throughout the
paper. The SysML model of the UAV is simulated and
formally verified using the free and open-source tool
named TTool. This educational case study gives the
authors of the paper an opportunity to draw lessons
from teaching SysML.

Index Terms—SysML, UAV, Educational Case
Study, Model Simulation, Model Formal Verification.

I. Introduction

THE purpose of the paper is to illustrate a Model-
Based Systems Engineering (MBSE) approach for

the development of a UAV (Unmanned Aerial Vehicle) and
the early detection of the potential design errors for such
vehicles. The benefits of MBSE over document-centric
approaches have been acknowledged in the literature [14].
With a MBSE approach, a model serves as a reference for
the early debugging of the system under design: the earlier
you detect design errors in the life cycle of the system,
the more possibilities you have to correct them with less
impact and the more you save development costs [29].

To implement a MBSE approach, a system designer
needs a modeling language, one or several tools and a
method guiding him or her through the use of the language
and the tool(s). In terms of language, the paper proposes
the use of SysML, the Systems Modeling Language co-
developed by OMG (Objet Management Group) and IN-
COSE (INternational COuncil on Systems Engineering),
and standardized by OMG [21]. Examples of the use of
SysML can be found in trains [6], helicopters [2], space
[32], Industry 4.0 [4] and medicine [3] [13]. For a survey
on SysML usage, one may refer to [9] and [33].

In terms of tools, the paper discusses the use of the
free and open-source SysML tool TTool [28]. TTool in-
cludes a SysML diagram editor, a model simulator, several
formal verification modules, code generators and a test
sequence generator. Whereas SysML is not associated with
a methodology, TTool is associated with an incremental
modeling approach [24]. This method has already been
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applied to several case studies [15] [25]. The case study
presented in this paper, a UAV in charge of taking pic-
tures, underlies for the first time the presentation of the
entire method.

The paper is organized as follows. Section II overviews
TTool, the SysML diagrams it supports and the method it
is associated with. Section III specifies the UAV that serves
as running example throughout the paper. Sections IV,
V respectively address modeling assumptions, requirement
capture, analysis, and design steps of the method exposed
in Section II. Discussion goes on in Sections VI and VII to
apply simulation and formal verification techniques to the
diagrams presented in Section V. Section VIII draw lessons
from teaching SysML and real-time systems modeling
using TTool. Section IX surveys related work. Section X
concludes the paper.

II. TTool
The Systems Modeling Language [21] is a diagrammatic

modeling language for systems engineering. At this point
it is important to note that the SysML standard defines
a notation, but not a way of using it. A real challenge
is therefore to convince practitioners of the benefits they
would have if they were to incorporate SysML into the
method in use in their development approaches and indeed
in their company.

TTool [28] customizes SysML [21] to meet the needs of
real-time systems modeling, addressing a specific part of
systems development where the most important problem
concerns matching the behavior of cooperating dynamic
systems (at least one of which is a computer system) [17].

TTool has been associated with a methodology that
applies to a broad variety of real-time systems. Modeling
with SysML and TTool is an incremental process that
starts with a very simplified model and progressively
alleviates modeling assumptions to come up with a more
realistic model. Each iteration in the incremental process
follows the trajectory depicted by Figure 1.

• Assumptions capture. Modeling Assumptions Di-
agrams are not part of the SysML standard, but are
a TTool extension. They describe the set of assump-
tions under which a system model is valid [24].

• Requirement capture. User and stakeholder re-
quirements are captured and related in requirement
diagrams.

• Analysis is use case driven. A use case diagram is
documented by scenarios (sequence diagrams) and
flow-charts (activity diagrams).
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• Design defines the architecture of the system in the
form of a block instance diagram 1. Each block has a
behavior expressed with a state machine diagram.

The simulator of TTool animates SysML design dia-
grams and enables early debugging of SysML models. The
model checker and the verification by abstraction module
of TTool deeply explore the behavior of the SysML model,
as soon as the state space of the latter is of reasonable size.

Next sections step-wise apply the method to the UAV
in charge of taking pictures.

III. Case Study
Recent technological advances have allowed enormous

progress in the development of UAVs. In the current case-
study, we focus on drones. Recent advances in drone
technology allow for more and more complex tasks to be
performed, for example the use of drones for autonomous
inspection purposes. For instance, Nokia suggests to use
drones to inspect towers, test line of sight and plan radio
sites with as goal the optimization of the telecommunica-
tion networks [18]. Boeing also investigates the usage of
drones for inspections [8]. The use of drones for inspection
of buildings during the construction process for example
is being studied, with as main goals to improve time
efficiency, to insure workers safety, and to automate as
much as possible the process [5]. Other examples include
monitoring sites, carrying out delicate operations with
dangerous/toxic products, delivering packages, etc.

In this paper, attention is focused on the use of drones
for inspection activities taking pictures of specific objects.
Such drones can be equipped with an embedded intelli-
gence allowing them to decide in real time the path to take,
which pictures to take, how to take them, when and how
to avoid (or bypass) fixed or moving obstacles. Moreover,

1Unlike standard SysML, the version of SysML supported by
TTool does not distinguish between Block Definition Diagrams and
Internal Block Diagrams. This is fully convenient for the style of
systems we have been working on: one instance of each block is
sufficient. Therefore we may merge the block definition and the block
instance.

the drone operates in an environment containing unpre-
dictable factors and communicates constantly with various
information sources.

The UAV should be able to take off autonomously, fly
in a stabilized way, and land at a specified destination
or whenever a critical situation is encountered. The main
focus here is that the UAV should take pictures at specified
locations. Without loss of generality, taking off, route
planning, obstacle avoidance, flying and landing actions
are not considered here. Only the software related to
taking pictures is modeled.

The above paragraph specifies the requirements associ-
ated with the UAV controller.

Pictures can be taken only when the drone is flying.
A remote control system located in a ground station can
send “take picture” orders to the drone. A picture order
contains the GPS position of the location where a picture
has to be taken. To know its current position, a drone has
an integrated GPS. When a picture location GPS point
is reached, with regards to a given threshold, the picture
is taken, and then stored on a CompactFlash removable
storage system. The system needs 2 seconds to take a
picture, and between 4 and 5 seconds to store it in on a
CompactFlash memory. Pictures may be remotely down-
loaded from the ground station using a download order.
Pictures can also be read directly from the CompactFlash
memory once the drone has come back from its mission.

IV. Modeling Assumptions and Requirements
Capture

A. Modeling Assumptions
Experience has shown that models, in the same ways as

this applies to software code, are scarcely self-contained
and need to be documented to facilitate their sharing
and reuse. In particular, when someone does not have
information about the simplifications made by the designer
of the model, or more generally, the assumptions made,
it becomes hard to understand the model as is. For this
reason, the authors of the paper advocate for an explicit
inclusion of modeling assumptions inside the SysML model
of the system. A Modeling Assumption Diagram (MAD),
which is not part of the standard SysML definition [21],
has accordingly been introduced into the version of SysML
supported by TTool [24].

In terms of syntax, a MAD defines a tree-structure
of boxes that contain the modeling assumptions. Pairs
of boxes may be linked to semantically associate two
assumptions. In Figure 2, the containment depicted by
a cross inside a circle allows one to split up a complex
assumption into elementary ones.

Like many SysML models published in papers and
books, the model discussed in this paper ignores the set-
up, shutdown and maintenance of the system. Unlike the
same paper and books, this paper clearly address these
limitations inside the SysML model using a Modeling
Assumption Diagram (Figure 2). Another designer can
easily trace down the reasons for these exclusions.
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Fig. 2: Modeling Assumptions Diagram representing what the model leaves apart

Since the method associated with TTool is incremental,
assumptions may evolve at each iteration. Consequently,
different modeling versions can be explicitly captured with
MADs. Figure 3 exemplifies this with two UAV versions
captured within the same SysML model. A first version
of the model assumes the UAV takes one picture, whereas
version 2 allows the ground station to set the number of
pictures taken by the UAV. In addition, the first version
of the model considers the CompactFlash memory has an
unlimited storage capacity, whereas version 2 of the model
decreases the memory capacity up to three pictures only.
Finally, versions 1 and 2 of the UAV model differ by air
turbulence handling or not.

B. Requirement Capture
The goal of system architecture activities is to define

a complete solution based on principles, concepts and
properties logically related and consistent with each other.
Such solution should have suitable characteristics and
properties, matching as well as possible to the problem
expressed by a set of system requirements, traceable to
mission/business and stakeholder requirements, and trace-
able throughout life cycle phases and corresponding engi-
neering tools (e.g. mechanical, electronics, software). This
underlines the necessity to obtain pertinent requirements
and explains why SysML supports requirement diagrams,
a type of diagram not taken on board by UML [20].

Usual tabular representations of requirements merely
list the latter and possibly organize them into chapters.
Since SysML is a language and not a method, there are
no constraints on writing style of requirements. In con-
trast, an advantage of requirement diagrams as available

in SysML is to encourage system designers to structure
and organize the requirements, and to show how the
latter relate to other modeling elements of other diagrams.
Each requirement node depicted by a box contains one
requirement together with its unique identifier, a text, and
a categorization between functional and non-functional
requirement.

Finally, SysML organizes requirements in a tree struc-
ture where pairs of requirements nodes are connected by
either of the following relations:

• Containment. An arrow terminating by a cross and
surrounded by a circle allows one to split up a high
level requirement into elementary ones.

• Refinement. The « refine » relation from R1 to R2
allows R2 to add more precision to R1.

• Derivation. The « deriveReqt » relation from R1
to R2 allows R2 to bring a technical solution to
functional requirement R1.

Figure 5 extracts requirements from Figure 4 and
uses the «satisfy» relation to link these requirements to
other diagrams belonging to the same SysML model.
TakingPicture is linked to the sequence diagram (Fig-
ure 5) developed during the analysis step of the trajectory
introduced in Section 2. TakingPicture is linked to a state
machine diagram developed during the design step of the
method depicted by Figure 5.

V. Analysis and Design
A. Analysis

Creating a SysML diagram is a matter of decision-
making. One of the major decisions the model designer has
to take is to clearly delimit the perimeter of the system
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<<versioning>>
{1->2}

<<versioning>>
{1->2}

<<versioning>>
{1->2}

<<System Assumption>>
NoTurbulence

Text="We first assume a perfect flight
thanks to the absence of turbulence"
Durability="Temporary"
Source="Model creator"
Status="Applied"
Scope="Modeling activity"

<<System Assumption>>
Turbulence

Text="The drone can encounter turbulence. The autopilot can
automatically adapt its flight orders as long as
the turbulence remains under a given threshold"
Durability="Temporary"
Source="Model creator"
Status="Applied"
Scope="Modeling activity"

<<Environment Assumption>>
UnlimitedMemory

Text="The capacity of the 
Compact Flash 
memory is unlimited"
Durability="Temporary"
Source="Model creator"
Status="Applied"
Scope="Modeling activity"

...
LimitedMemory

Text="The capacity of the 
Compact Flash 
memory is limited
to 3 pictures."
Durability="Temporary"
Source="Model creator"
Status="Alleviated"

<<System Assumption>>
OnePicture

Text="The system will take 
one picture"
Durability="Temporary"
Source="Model creator"
Status="Applied"

<<System Assumption>>
SeveralPictures

Text="The ground station shall
send a picture number to
the system."
Durability="Temporary"
Source="Stakeholder"
Status="Applied"
Scope="Modeling activity"

Fig. 3: Modeling Assumptions Diagram developed to manage versioning

<<deriveReqt>>

<<refine>>

<<deriveReqt>>

<<refine>>

<<satisfy>>

<<satisfy>>

<<Requirement>>
PictureProcessingSoftware

ID=0
Text="The system shall take pictures,
save them  and transmit them 
to a ground station."

<<Requirement>>
TakingPictures

ID=1
Text="The system shall take pictures at a position 
received from a ground station."
Kind="Functional"

<<Requirement>>
SavingPicture

ID=2
Text="The system will save pictures 
to make them readable when the
drone has come back from its mission."

<<Requirement>>
CompactFlash

ID=21
Text="The system shall save pictures
on a compact flash memory."
Kind="Functional"

<<Requirement>>
TransmittingPictures

ID=3
Text="The system shall transmit
images to a ground station
upon reception of a download order."

<<Requirement>>
TakingPictureAtTheRightPosition

ID=11
Text="The system will receive information 
from GNSS to compute its current location."
Kind="Functional"

<<Requirement>>
TimeToStore

ID=211
Text="The flash shall take 4 to 5 seconds
 to store one picture."
Kind="Non-functional"

<<Requirement>>
TakingPictureDuration

ID=12
Text="The system shall need 2 seconds
to take one picture."
Kind="Performance"

<<Element ref.>>
EISCDesign_Camera

<<Element ref.>>
EISC216_Design_CompactFlash

Fig. 4: Requirement Diagram for the UAV

he or she intends to design and possibly to develop. The
use case diagram, a pillar use case driven analysis, helps
to assist the model designer in this task.

The first action the use case diagram creator has to
take is to draw a rectangle characterizing the boundary of
the system. What the designer puts inside the rectangle is
what he or she sets out to design and develop. What he or
she places outside the rectangle refers to the environment
of the system and, clearly, designing the environment is
not part of the duties of the SysML model’s creator.

In terms of SyML syntax, the rectangle contains a set of
ovals that materialize the uses-cases containing the high-
level functions and services to be offered by the system.
Part of these functions makes the system interact with
its surrounding environment and the existence of these
interactions is depicted by links connecting the use cases
to a set of actors belonging to the environment. Other
types of links express relations between pairs of use cases
located inside the rectangle that delimits the boundary of
the system.

The use case diagram identifies the main functions and

services to be offered by the system. A common mistake
is to create a use case that is not a high-level function,
but an elementary one. If one considers a drink machine
controller, a correct use case may be Process Payment.
Compute Money or Return Change Back are elementary
actions one should not be developed in a use case diagram
but within an activity diagram documenting a use case.

On the other hand, the name of the use case, usually
characterized by a verb, must convey the point of view
of the system, not the point of view of the actors. Again,
for a drink machine controller, Process Payment conveys
the point of view of the system (the controller) whereas
Insert Coin would convey the point of view of the user
of the coffee machine.

Figure 6 depicts the use case diagram developed for the
UAV model taking into account the above mentioned rules.
The diagram uses «include» relations between pairs to
denote function inclusions: for instance, ManagePicture
necessarily includes two auxiliary functions to take and
send pictures, respectively.

While a use case diagram shows how the main functions
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Fig. 5: Requirements Linked to Other Diagrams

<<include>>

<<include>>

<<Actor>>

Autopilot

PictureProcessingSystem

<<Actor>>

CompactFlash

SendPicture

SavePicture

TakePicture
<<Actor>>

Camera

ManagePosition<<Actor>>

GNSSdevice

<<Actor>>

GroundStation

Fig. 6: Use Case Diagram

of the system interact with the outside environment, it
does not specify the type of messages or signals the system
uses to interact with the actors belonging to its environ-
ment. That role is dedicated to the sequence diagrams that
we use to document use cases in the form of scenarios.

Figure 7 depicts the scenario developed for the UAV
model and more precisely for the first version of that
model. Consequently, Figure 7 depicts a nominal sce-
nario for a perfect system and a perfect environment.
At this point, the two limitations (battery and memory
capacity) are not taken into account. The first version

of the UAV (Figure 7) takes exactly one picture. The
sequence diagram shows how the UAV receives an order
from the ground station, checks its current position against
the required position and corrects its location, takes one
picture, saves and transmits it to the ground station.

A sequence diagram represents one possible execution
scenario, while emphasizing on the exchanges between
the system and its environment (i.e. the interfaces of
the system under design). In no way it is intended to
represent the entire behavior of the system, nor to list
all the messages exchanged between the system and its
environment, or the messages exchanged inside the system.
The complete list of exchanged messages will appear on
the architecture modeled during the design step.

Nevertheless, developing one or several sequence dia-
grams helps model designers bridging the gap between
the use case diagram and architectural design, given the
former and the latter are functional and object-oriented,
respectively. Further, the sequence diagram allows discus-
sions with stakeholders. Last but not least, scenarios can
be later reuse as reference scenarios to be played during
testing.

Experience from teaching the use of SysML shows that
several conceptual issues are not always easy to grasp for
students. SysML textbooks and tutorials usually recom-
mend a four-step process to create a use case diagram:

1) define the boundary of the system;
2) identify the actors as external entities that interact

with the system;
3) identify the use cases from the goals of the actors;
4) establish the connections between actors and use
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flight

takePictureOrder(100,100)

gotoToPosition(100,100)

currentPosition(98,98)

takePicture

PictureWasTaken(pic){2..2}

savePicture(pic)

PictureWasSaved
{4..5}

transmitPicture()

picture(pic)

readPicture()

pictureData(pic)

currentPosition(99, 99)
currentPosition(100, 100)

GroundStation GNSSDevice CompactFlash PictureProcessingSystem

CorrectLocationReached

Camera

Human Operator sends the
coordinates of the place where 
the drone must take pictures.

Human Operator initiates the procedure.

Autopilot

ComputeSpeedAndDirection

Fig. 7: Sequence Diagram

cases, and set up relations between pairs of use cases.
Usually this methodology is illustrated using a simple

system. However, such illustrations do not avoid beginners
to be confused when in front of a screen or in front of a
white piece of paper. Where to start? Studies conducted
with students allowed to identify difficulties with choosing
the right type of relationship, defining the direction of the
extend relationship and proper naming of elements [35]
[36]. These results were confirmed by our own experience.
An important problem for students is to appreciate what
is supposed to be inside the box and what is supposed to
be outside (i.e. what is part of the system to be developed
and what is an external role). Our experience has shown
this to be a real blocking point, leading to students mixing
up internal and external roles. Maintaining the use cases at
the right level and not confusing high-level functions and
elementary actions is a major difficulty. Such a confusion
might lead to an unbalanced design of the system, mixing
main functions and implementation details. Other com-
mon beginners’ errors may include the absence of verbs
in use case names and the use of proper names for actors
rather than a common name representing a role.

B. Design
The design step first addresses a fundamental issue:

elaborating and fixing the architecture of the system.
In SysML, the architecture remains a static structure
depicting the system as a set of interconnected “boxes”.
Adding state-machine diagrams to the model enables de-
scribing the inner workings of the architecture blocks. This
”executable” model can thus be simulated and verified
taking into account both its architecture and its behaviour.

With SysML, the systems engineering community has
developed its own modeling language. At the same time,

the choice was made to propose SysML as a UML pro-
file. Therefore, SysML de facto reuses the object-oriented
principles of UML even at the price of renaming «class»
by «block» and describing systems architectures by block
diagrams2 instead of class diagrams.

The standardized version of SysML uses two architec-
tural diagrams: the block definition diagram (BDD) and
the internal block diagram (IBD). By contrast, the version
of SysML supported by TTool suggests to merge them
in one architectural diagram when the system is simple
e.g. there is one instance per block: this is the case of
the block diagram depicted by Figure 8. Note: The use
case diagram depicted by Figure 6 clearly identifies the
boundary of the system to be designed. The architecture
elaborated at the design step should therefore be lim-
ited to one block named PictureProcessingSystem. The
PictureProcessingSystem block cannot be simulated if
the signal input actions and signal output actions of its
state machine are not respectively triggered by output sig-
nal actions and input signal actions of the state machines
embedded in blocks that model the actors. In practice the
later are designed to accept all the signal emissions and
signal receptions offered by PictureProcessingSystem.
This explains why Figure 8 depicts a simulation-oriented
architecture with seven blocks instead of one.

The architecture of Figure 8 lists the signals respectively
accepted and emitted by the blocks. The way of creating
input and output signals can be sketched as follows. We
first introduce signals characterizing communication be-
tween the system (here, PictureProcessingSystem) and

2Blocks are to be defined in ”Block Definition Diagrams” and
blocks are to be instantiated and connected in ”Internal Block
Diagrams”
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<<datatype>>
Point

- x : int;
- y : int;

<<datatype>>
Speed

- x : int;
- y : int;

block

CameraDriver

- full = false : bool;

~ out pictureWasTaken()
~ in takePicture()

block

Autopilot

- currentPosition : Point;
- targetPosition : Point;
- currentSpeed : Speed;
- diffX : int;
- diffY : int;
- neg : int;

~ in gotoPosition(Point p)
~ out setSpeed(Speed s)
~ in getCurrentPosition(Point p)

block

GNSSDeviceDriver

- p : Point;

~ in setNewPosition(Point p)
~ out positionToPPM(Point p)

block

PictureProcessingManager

- p : Point;
- pTemp : Point;

~ in takePictureOrder(Point p)
~ in flight()
~ in currentPosition(Point p)
~ out gotoPosition(Point p)
~ in pictureWasTaken()
~ out savePicture()
~ out takePicture()
~ in pictureWasSaved()
~ in transmitPicture()
~ out picture()
~ in fullMemory()

block

CompactFlashDriver

- savingTimeMin = 9 : int;
- savingTimeMax = 11 : int;
- isFull = false : bool;

- isMemoryAvailable()

~ in savePicture()

block

TransmissionDevices

- p : Point;
- p1 : Point;
- p2 : Point;

~ out flight()
~ out takePictureOrder(Point p)

block

LocationManager

- speed : Speed;
- p : Point;
- turbulenceX : int;
- turbulenceY : int;
- turbulence = false : bool;
- alwaysTurbulence = false : bool;

~ out setNewPosition(Point p)
~ in getSpeed(Speed s)

This block contains 
the initial position

Fig. 8: Architecture of the UAV - Block Instance Diagram

its environment. The first list of signals directly stems from
the signals identified by sequence diagrams.

A state machine diagram depicts an extended fi-
nite state machine that may handle states, data, and
time. Figure 9 depicts the state machine associated with
PictureProcessManager block. The state machine han-
dles state changes, tests several attributes of the block (see
p.x), receives signals (e.g., see flight for a reception),
and emits signals (e.g., see gotoPosition(p) for a recep-
tion). One transition has an after(1,1) label modeling a
computation time.

The state machine depicted by Figure 9 gives the Memory
Recorder one behavior and makes it executable, a premise
to applying model simulation techniques.

VI. Model Simulation
A. Principles

The Simulator of TTool enables animation of state
machine diagrams. It takes as input syntactically and type-
checked SysML models and computes the initial global
state of the design model. Step by step firing of transitions
enables early debugging of the models by joint observation

of simulation traces in the form of sequence diagrams,
annotations on the SysML models themselves and display
of the state, variables and other elements contained in the
blocks the system is made up of. Random firing of transi-
tions enables exploring the behavior of the system until a
deadlock situation or a termination state is encountered.

B. Application to the UAV
The screenshot in Figure 10 shows the first steps of

the UAV model simulation. TTool outputs the simulation
trace in the form of a sequence diagram that can be
manually compared to the sequence diagrams and to other
diagrams elaborated in the previous steps of the trajectory.

Figure 11 depicts an animated version of the state ma-
chine of the CompactFlashDriver block. One may identify
which transitions have been fired by the simulator.

The simulator of TTool is of great help for early debug-
ging of the SysML models, finding out incorrectly initial-
ized variables, and unexpected message receptions. Joint
use of simulation traces and annotated state machines
offers two complementary angles to interpret the way
the model of the system progresses in terms of message

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JMASS.2020.3013325

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

currentPosition(pTemp)

gotoPosition(p)

takePictureOrder(p)

takePicture()

pictureWasTaken()

savePicture()

pictureWasSaved()

transmitPicture()

picture()

IDLE

flight()

InFlight

WaitingforCorrectLocation

CorrectLocationReached

InFlight

PictureTransmission

[ (p.x == pTemp.x) && (p.y == pTemp.y)]

after(2)

after(1)

[ else ]

Fig. 9: State Machine Diagram for PictureProcessingManager block

exchanges and time progression, the latter usually being
something difficult to apprehend when one starts learning
using such tools.

Simulation allows one to explore particular (or random)
execution paths in the state space of the global system.
Simulation heavily depends on the expertise of the model
creator in terms of capacity to pick the most relevant
exploration paths. Formal verification, which is the subject
of next section, is a much more systematic approach.

VII. Model Formal Verification
A. Properties

The simulator of TTool randomly explores potential
behaviors of the system where formal verification relies
on mathematics rather than chance. Numerous formal
verification approaches have been proposed ranging from
verification of systems models to program proof. All of
them capture a preliminary problem phrased by the fol-
lowing question: ”Which properties do you want verify on
your system or program?”.

Answering that question is not an easy task. Experience
in teaching SysML has regularly confirmed that point.

To help students, we give hints by categorizing properties
into general and specific properties. We further distinguish
between safety and liveness properties.

• General properties are the ones to be satisfied
by a broad variety of systems, if not all systems.
Examples include deadlock freeness, livelock freeness,
and capacity to return to initial state.

• Specific properties are proper to the system un-
der design. For a microwave oven, ”The heating pro-
cess cannot start as long the door remain open” is
a specific property. For Pilot to Air Control Tower
communication, ”Each request from the pilot will be
acknowledged by the Controller within 3 seconds” is
also a specific property.

• Safety properties express that the systems can
reach regular state but cannot reach error states. For
instance, the state ”Oven opened and heat on” should
not be reachable in a microwave oven.

• Liveness properties relate to actions or states that
are eventually reached, i.e. reached what ever the
execution of the system. For instance, when the heat
of microwave is started, it should eventually reach a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JMASS.2020.3013325

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

Fig. 10: Simulation Trace
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1

1

Fig. 11: Following up Simulation on a State Machine

heat-off state.
Depending on the properties to be verified, users of

TTool are offered three complementary techniques:
• reachability analysis,
• model checking, and
• verification by abstraction.

B. Reachability Analysis
Relying on a systematic analysis of the state space of

the system under design, reachability analysis outputs
a reachability graph representing all the valid execution
paths and states of the system starting from its initial
state. Figure 13 shows one possible representation for
this graph. Obviously, a graph with 671 states and 923
transitions cannot be analyzed by hand in a reasonable
time. Next sections bring solution to automate analysis.

It may happen the reachability graph of the model can-
not be computed because of the state explosion problem.
This not the case for the UAV that serves as running
example throughout this paper.

C. Model Checking
1) Principles: In [34], Fisman and Pnuelli define model

checking as the method by which a desired behavioral
property of a reactive system is verified over a given system
(the model) through exhaustive enumeration (explicit or
implicit) of all the states reachable by the system and
the behaviors that traverse through them. Figure 14 pic-
torially identifies three main steps. The model checker is
catered with a model of the system and a formal expres-
sion of the properties to be verified. The model checker
processes the model and the properties, and outputs a
”yes/no” answer stating whether the property is verified
or not. The model checker also traces execution paths that
leads to property violations. The tool must indeed help the
designer of the system interpreting verification results in
the light of the model of the system the tool was catered
with.

2) Accessibility of states and actions in the state ma-
chines: No need to write pragmas

3) Safety Pragmas: A safety pragma lists one or several
properties expressed as follows. Basically, a property p is
written as: p = A|E []| <> P or p = P1−− > P2
with:

• A means that the property P shall apply to all
paths starting from the initial state of the reachability
graph.
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Fig. 12: Reachability Analysis

Fig. 13: Reachability Graph of the UAV Model

• E means that the property P shall apply to at
least one oath starting form the initial state of the
reachability graph.

• [] means that the property P shall apply to all state
of the path.

• <> means that the property P shall apply to at least
one state of the path.

• −− > is the ”leads to” operator stating that P1 must
eventually be followed by P2. Thus, if P1 is true is
a given state s of the reachability graph, P2 must be
true in at least one state in all paths starting from s.

As an example, let us consider the safety pragmas given
in figure 15:

• A[]Autopilot.currentSpeed x >= Autopilot.neg
means ‘In all states of the reachability graph cur-
rentSpeed x of Autopilot is always greater or equal
to the neg attribute of Autopilot’

• E <> CompactF lashDriver.isFull == true means

‘There exists at least one state where the attribute
isFull of block CompactFlashDriver is equal to true’

• PictureProcessingManager.WaitingforCorrectLocation−
− > PictureProcessingManager.CorrectLocationReached
means that ‘Whevener the waitingForCorrect-
Location state of PictureProcessingManager is
reached, then the state CorrectLocationReached of
PictureProcessingManager is eventually reached’.
Said differently, the UAV always manages to reach a
requested waypoint.

Pragmas of the case study are given in Figure 15.
The internal model-checker of TTool is called to compute
the satisfaction of each pragma, and then results are
backtraced to diagrams, as shown in the lower part of
the figure. Alternatively, UPPAAL [30] can be called from
TTool to evaluate safety pragmas.
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Fig. 14: Model Checking SysML Models

Fig. 15: Checking Safety Pragmas

D. Verification by Abstraction
From a theoretical point of view, verification by ab-

straction reuses theories developed for Labeled Transition
Systems (LTS) [16]. Referring again to communication
systems, the reachability graph of the SysML model is
transformed into a LTS. Each transition involved in trans-
mitting a signal linked to the valued added service is
labeled by the name of the signal. Other transitions are
labeled by ‘nil’. The resulting labeled reachability graph is
minimized with the purpose of eliminating the transitions
labeled by ‘nil’. The output of the minimization is termed
as ‘quotient automaton’.

A user can select actions of interests (dialog window of
the left, actions can be ignored of selected) and then obtain
a minimized graph as show on the right of Figure 16.

For instance, the designer of the UAV model may decide
to limit the view of the system to receiving instructions
from the ground station, taking one picture, saving it on
memory and transmitting it to the ground station. He or
she selects the signals to be preserved accordingly. From a
reachability graph of 674 states and 927 transitions, he or
she obtains a quotient automaton of 17 states and 19 tran-

sitions. Because of its size, the quotient can be analyzed by
human eye. It further characterizes the service offered by
the drone management system. Therefore verification by
abstraction pretty well applies to layered design of systems
[25].

VIII. Lessons learned
This section sums up the lessons learned in teaching

SysML over the past decade and using the UAV addressed
in this paper amongst others as educational case study.

A. Software Engineering Background
SysML has been designed with systems modeling in

mind and, consequently, its use cannot be envisioned
outside of a coherent system engineering curriculum. The
authors of this paper strongly believe that SysML courses
should be preceded by a system engineering course.

First, to make the student familiar with the concept of
life cycle, and to prepare him or her to understand when
specific SysML diagrams must be used (e.g. for use case
driven analysis).
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Fig. 16: Verification By Abstraction

Second, the system engineering course should include a
”Writing good requirements” chapter. As a matter of fact,
SysML being a notation and not a method, the SysML
standard does not define the way of writing the ”text”
field that enables encapsulation of requirements inside
”boxes” stereotyped by «Requirement» in the requirement
diagram.

Third, the system engineering course should include a
chapter on architectural design and validation, particu-
larly focusing on interface definition and layered design.

B. Abstractions
Making abstractions at the right abstraction level is the

keystone of modeling activity. The use of SysML raises
several problems with this respect.

Difficulties also arise with time management in both the
SysML model and the simulator of TTool. Each transition
contains a clause ‘after (Tmin, Tmax)’ to say the transi-
tion may not fire before Tmin units of time after being
enabled (e.g. by a message reception) and no later than
Tmax units of time after the transition was enabled. By
default: Tmin = Tmax = 0. The simulator implements a
firing transition policy where the transitions whose Tmin
and Tmax clauses are different from 0 cannot be fired
before all transitions fireable at t=0 are fired.

C. Incremental modeling
It is fundamental to explain the students not to try

building up a complete model before starting any simu-
lation or verification session. It is preferable to follow an
incremental process, thus starting with a core model that
strongly simplifies the system and progressively alleviates
the modeling assumptions to create more realistic models
and eventually completes the modeling process that is
sufficiently detailed.

D. Inter-diagram Consistency
A SysML model is usually made up of several diagrams.

Like the UML language it roots in, SysML raises the
following question: given a model M, how to maintain
consistency between the many diagrams included in M?

Considering a use case diagram documented by one or
several sequence diagrams, making the sequence diagrams
consistent with the use case diagram particularly requires
to not create inside the sequences diagrams an actor that
does not appear in the use case diagram. TTools offers a
solution to achieve that goal: it enables generating lifelines
of sequence diagrams from a use case diagram. This is an
example of synthesizing a new diagram from an existing
one and this is also an example of facility offered by TTool,
not by other SysML tools. The offer will remain limited
because some synthesis problems remain undecidable in
the general case, for instance, generating an architecture
of block diagrams from a collection of sequence diagrams.

E. Learning by example
Students (but maybe also engineers) often build new

models by ”imitation” of existing ones. The user-
friendliness of a SysML tool not only depends on its user-
interface, but also on a library of sample models provided
with that tool. It is further important to work on use case,
architectural and behavioral patterns.

IX. Related Work
This section surveys related work on two issues ad-

dressed by this paper: usage of SysML for UAV modeling
and formal verification of SysML models. Discussion is
then extended to detailed design in SysML in association
with SysML.

A. SysML and UAVs
In [41] Gadelha et al. advocate for joint use of Product

Line Engineering (PLE) and Model-Driven Engineering
(MDE) approaches to develop families of UAVs. SysML
and MARTE are jointly used to support requirements
specification, design, validation, and simulation. Code gen-
eration is also included. The Common Variability Lan-
guage (CVL) is used to transform generic product line
models into specific product models, which increases the
degree of reuse.

In [40] Steurer et al. present a SysML profile, i.e. a
customization of the SysML language, termed as ‘UDP’,
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an acronym for ‘UAV Dependability Profile.’ The paper
proposes a methodology that integrates dependability
analysis within a MBSE approach in early phases of the
system development. The methodology associates Dual
graph Error Propagation Model (DEPM) and SysML-
based structural modeling of mechatronic systems.

In [42] Ballard et al. acknowledge the benefits of using
MBSE to formalize interactions between subsystems in
the design process, thus easing the transfer of informa-
tion between parties. In particular, diverse requirements
must be altered and tracked between the requesting, re-
sponding, and evaluating parties. The paper demonstrates
modeling patterns and a tool that translates information
from native-model form into a text-based format. It also
presents tools to support source selection process of the
acquirer. Making use of the patterns - the sources from
which requirements text is generated, Evaluation and Esti-
mation Models are also presented: they can act directly on
the responses from the contractors. The Evaluation Model
assists the verification process by ensuring numerical re-
quirements are satisfied. The Estimation Model compares
the values claimed by the contractors with historically
expected values, in order to support the focus of examina-
tion for the source selection experts. A fourth tool offers
a method of extracting historical traceability for model
elements.

B. Formal Verification of SysML Models
In [39], Gabmeyer et al. have proposed a taxonomy

of formal verification techniques for software models. In
this section, discussion focuses on recent papers addressing
simulation and formal verification in the context of SysML.

In this paper, simulation, reachability analysis and
model checking are applied to design diagrams, namely
block diagrams that model the architecture of the system
and state machine diagrams that model the inner workings
of the blocks. Other authors have addressed simulation
and formal verification based on scenarios expressed in
the form of sequence diagrams or flow-chart depictions of
activities based on activity diagrams.

In [38], Ouchani et al. present a formal verification
framework for checking of SysML activity diagrams. The
latter are mapped into the input language of the proba-
bilistic model checker PRISM. A calculus dedicated to ac-
tivity diagrams is proposed and the mapping to PRISM si
formalized. The approach is applied to an online shopping
system and to real time streaming protocols.

C. SysML and Detailed Design in Simulink
In this paper, modeling is achieved at system level and

so is formal verification of SysML models. Other papers
have associated SysML modeling at system level with
detailed design in Simulink.

In [12], Liu and Cao associate the SysML tool Rhapsody
with Simulink to design a UAV flight control system.
Rhapsody enables simulating the discrete/event part of

the system behavior but misses a continuous-time simu-
lator. This is why Simulink is used for. Accordingly Liu
and Cao essentially discuss the use of SysML blocks and
SysML state machines, and briefly survey other diagrams.

Associating a SysML tool and Simulink has also been
discussed in the context of test sequence generation.
In [37], Gonzales et al. propose a SysML-based modeling
methodology for model testing of CPSs, and a SyML-
Simulink co-simulation framework.

X. Conclusions
Unmanned vehicles fall in the category of systems that

capture complex design problems and question the ben-
efits and potential of Model-Based System Engineering
approaches. How to make a language, a tool and a method
accepted by UAV designers is a really challenging issue.

This paper advocates for a MBSE approach based on
SysML, the widely adopted standard throughout industry
for system modeling. Unlike papers that limit the use of
SysML to a industrial drawing, this paper proposes to
use the free software TTool to consider SysML models
for early detection of design errors in the life cycle of a
UAV. SysML models are debugged using the simulator of
TTool and more systematically explored using two com-
plementary formal verification techniques: model checking
and verification by abstraction.

Acknowledgement
The authors would like to acknowledge the support of

Luc Müller–Ripalda in the early phases of this manuscript.

References
[1] Agarwal, B., Transformation of UML Activity Diagrams into

Petri Nets for Verification Purposes, International Journal of
Engineering and Computer Science, vol. 2, no.3, pp. 798-805.

[2] Andersson, H, Herzog, E, Johansson G., Johansson, O., Ex-
perience from introducing Unified Modeling Language/Systems
Modeling Language at Saab Aerosystems, Vol. 13, Issue 4, Winter
2010, pp. 369-380.

[3] Apvrille, L., Saqui-Sannes, P. de, Requirements Analysis, Book
chapter in Embedded Systems: Analysis and Modeling with
SysML, UML and AADL, Edited by F. Kordon, J. Hugues, A.
Canals and A. Dohet, Ed. ISTE /Wiley, May 20, 2013, ISBN-13:
978 1848215009.

[4] Arantes, M., Bonnard R., Mattei A.-P., Saqui-Sannes P. de,
General Architecture for Data Analysis in Industry 4.0 using
SysML and Model Based System Engineering, 12th Annual IEEE
International Systems Conference (SysCon 2018), April 2018,
Vancouver, BC, Canada.

[5] R. Ashour et al., Site inspection drone: a solution for inspecting
and regulating construction sites, IEEE 59th International Mid-
west Symposium on Ciruits and Systems, 16-19 October, Abu
Dhabi, 2016.

[6] Baduel, R., Chami, M., Bruel J.-M., Ober I., SysML Models
Verification and Validation in an Industrial Context: Challenges
and Experimentation, European Conference on Modeling Foun-
dations and Applications (ECMFA 2018), LNCS, volume 10890,
pp. 132-146.

[7] Blondelle, G., Bordeleau, F., Exertier, D., Polarsys: A New
Collaborative Ecosystem for Open Source Solutions for Systems
Engineering Driven by Major Industry Players, Insigight, Vol. 18,
no.2, August 2015, pp. 35-38.

[8] V. Khumalo. Boeing uses drones for inspection. [Online, 2015].
Available: http://www.rocketmine.com/boeing-uses-drones-for-
inspection/, last accessed April 17, 2018.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JMASS.2020.3013325

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



14

[9] Bone, M., Cloutier, R., The Current State of Model Based
Systems Engineering: Results from the OMGâĎć SysML Request
for Information 2009, 8th Conference on Systems Engineering
Research, March 2010, Hoboken, NJ, USA.

[10] Fernandez J, Lopez, J., Patricio Gomez, J, Reengineering the
Avionics of an Unmanned Aerial Vehicle, IEEE Aerospace and
Electronic Systems Magazine, vol. 31, no. 4, pp. 6-13, April 2016.

[11] Ifx-OMEGA, https://www.irit.fr/ifx/.
[12] X. h. Liu and Y. f. Cao, Design of UAV Flight Control System

Virtual prototype using Rhapsody and Simulink, 2010 Interna-
tional Conference On Computer Design and Applications, Qin-
huangdao, 2010, pp. V3-34-V3-38.

[13] Kayal, I., Farid, A., The Need for Systems Tools in the Practical
Of Clinical Medicine, Systems Engineering.

[14] Madni, A., Sievers, M., Model-based systems engineering: Mo-
tivation, current status, and research opportunities, Systems
Engineering, May 2018.

[15] Mattei, A-P., Loures, L., Saqui-Sannes, P. de, Escudier, B.,
Feasibility study of a multispectral camera with automatic pro-
cessing onboard a 27U satellite using Model Based Space System
Engineering, IEEE Systems Conference April 2017, Montreal, Qc,
Canada.

[16] Milner, R., Communication and Concurrency, Prentice Hall,
1989.

[17] Motus, L., Time Concepts in Real-Time Software, IFAC Pro-
ceedings Volumes, Vol. 25, Issue 11, June 1992, pp. 1-10.

[18] L. Tung. Nokia puts telco drones to work inspecting cell towers.
[Online, 2015]. Available: http://www.zdnet.com/article/nokia-
puts-telco-drones-to-work-inspecting-cell-towers/, last accessed
April 17, 2018.

[19] UPPAAL, http://www.uppaal.org/.
[20] OMG, UML, Unified Modeling Language, December 2017,

https://www.omg.org/spec/UML/2.5.1/.
[21] OMG, SysML, Systems Modeling Language 1.5, May 2017,

http://www.omg.org/spec/SysML/1.5/.
[22] Ouchani, S., Ait Mohamed, O., Debbabi, M., 2014, A formal

verification framework for SysML activity diagrams, Expert Sys-
tems with Applications, (41) 6, pp. 2713-2728.

[23] Rhapsody, https://www.ibm.com/us-
en/marketplace/architect-for-systems-engineers.

[24] Saqui-Sannes, P. de, Apvrille, L., 2016, Making Modeling As-
sumptions an Explicit Part of Real-Time Systems Models, 8th
European Congress on Embedded Real Time Software and Sys-
tems (ERTS), Toulouse, France, pp. 27-29

[25] Saqui-Sannes, P. de, Vingerhoeds, R., Apvrille, L, EarlyCheck-
ing of SysML Models applied to protocols, 12th International
Conference on Modeling, Optimisation and Simulation (Mosim
2018), June 2018, Toulouse, France.

[26] Le Sergent, T, SCADE: A Comprehensive Framework for Crit-
ical System and Software Engineering, International SDL Forum
2011, LNCS, volume 7083.

[27] TINA, http://projects.laas.fr/tina/.
[28] TTool, https://ttool.telecom-paristech.fr/.
[29] Ullah, I., Tang, D. and Yin, L. (2015), Engineering Change

Implications on Product Design: A Review of the Literature,
International Conference on Education, Management and Com-
puting Technology (ICEMCT-15), Atlantis Press, Tianjin, pp.
1679âĂŞ1691

[30] UPPAAL, http://www.uppaal.org/.
[31] Vernadat, F., Percebois, c., Farail, P., Vingerhoeds, R.,

Rossignon, Alain, Talpin J.-P., Chemouil D., The TOPCASED
Project - A Toolkit in OPen-source for Critical Applications
and SystEm Development, Data Systems In Aerospace (DASIA
2006), Berlin, Germany, ESA, May 2006.

[32] Wassem, M., Usaman Adiq, M., Application of Model-Based
Systems Engineering in Small Satellite Conceptual Design: A
SysML Approach, IEEE Aerospace and Electronic Systems Mag-
azine, Vol. 33, Issue 4, April 2018.

[33] Wolny, S, Mazak, A., Carpella, C., Geist V., Wimmer, M.,
Thirteen Years of SysML: a Systematic Approach, Software and
Systems Modeling, May 2019.

[34] D. Fisman and A. Pnueli, Beyond regular model checking, 21st
conference on Foundations of Software Technology and Theoret-
ical Computer Science, LNCS 2245, pp. 156170, 2001.

[35] H. Kruus, T. Robal, Tarmo, G. Jervan, Teaching modeling in
SysML/UML and problems encountered, 25th EAEEIE Annual
Conference (EAEEIE), 2014, pp. 33-36.

[36] J. Holt, S., Perry, SysML for systems engineering, IET, 2008.
[37] C. A. GonzÃąlez, M. Varmazyar, S. Nejati, L.C. Briand,

Y. Isasi, Enabling Model Testing of Cyber-Physical Systems.
ACM/IEEE 21th International Conference on Model Driven En-
gineering Languages and Systems (MODELS 2018), New York,
NY, USA, 2018.

[38] S. Ouchani, O. Ait Mohamed, M. Debbabi, A formal verification
framework for SysML activity diagrams, Expert Systems with
Applications, Vol 41, no6, May 2014, pp. 2713-2728

[39] S. Gabmeyer, P. Kaufmann,ÂůM. Seidl, M. Gogolla, G. Kap-
pel, A feature-based classification of formal verification tech-
niques forsoftware models, Software Systems Model (2019)
18:473âĂŞ498.

[40] M. Steurer, A. Morozov, K. Janschek, K.-P. Neitzke, SysML-
based Profile for Dependable UAV Design, IFAC-PapersOnLine,
Vol.51, No.24, pp. 1067-1074 (2018).

[41] P. G. Gadelha Queiroz, R. T. Vaccare Braga, Combining
MARTE-UML, SysML and CVL to Build Unmanned Aerial
Vehicles, ICSEA 2014 : The Ninth International Conference on
Software Engineering Advances, Nice, France, October 2014.M.
Ballard, A. Baker, R. Peak, S. Cimtalay, D. Mavris, Facilitating
the Transition to Model-Based Acquisition, 2020.

[42] M. Ballard, A. Baker, R. Peak, S. Cimtalay, D. Mavris, Facili-
tating the Transition to Model-Based Acquisition, 2020.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JMASS.2020.3013325

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


