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Abstract

The objective of the EVITA project is to design, verify, and prototype an architecture for
automotive on-board networks where security-relevant components are protected against
tampering, and sensitive data are protected against compromise. Thus, EVITA will pro-
vide a basis for the secure deployment of electronic safety aids based on vehicle-to-vehicle
and vehicle-to-infrastructure communication. Security will cover various aspects such as
dependability, integrity, authenticity, or even privacy. In order to introduce security is-
sues into the product life cycle in an early stage of the process, model oriented approaches
must be adjusted to take into account the security mechanisms. This document provides
the results achieved when verifying the EVITA architecture and protocols with respect to
the security requirements for automotive on-board networks.
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1 Introduction

1.1 Objectives of the EVITA Project

The objective of the EVITA project is to design, verify, and prototype an architecture for
automotive on-board networks where security-relevant components are protected against
tampering, and sensitive data are protected against compromise. Thus, EVITA will pro-
vide a basis for the secure deployment of electronic safety aids based on vehicle-to-vehicle
and vehicle-to-infrastructure communication.

Security will cover various aspects such as dependability, integrity, authenticity, or
even privacy. In order to introduce security issues into the product life cycle in an early
stage of the process, model oriented approaches must be adjusted to take into account the
security mechanisms. In EVITA we have first identified security requirements (see [17])
and have then designed an architecture (see [19]) and the security protocols to be used
which are introduced in [18].

1.2 Scope and Outline of the Document

This document is concerned with the security analysis of architecture and protocols de-
signed in EVITA with respect to the security requirements. This document gives a brief
summary of our approach and presents the analysis results. Deliverable D3.4.4 will then
formalize the attacks identified in [17] and analyze whether they can be prevented through
the EVITA security architecture according to its analysis in this document.

In Section 2 we give a brief summary of our verification approaches. We further discuss
limitations of these approaches and issues (such as attacks) mentioned in [19] which we do
not take into account because of not being relevant for EVITA. Section 3 then provides
the verification results concerning the security protocols to be used in EVITA, while
Section 4 discusses the verification of the overall EVITA architecture, building on the
protocol verification results.
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2 The Approach

2.1 Overview

One category of security requirements listed in [17] is of a type that cannot be met by a
single security mechanism. An example is the driver of a car needing some message to be
authentically originated by a sensor of another car (requirement Authenticity 5 of [17]).
The driver, a human being, cannot verify digital signatures or MACs. Another example
is a device not being able to execute a mechanism (e.g. because of restricted resources)
that is needed to meet a specific requirement. In [17] for example, we have identified a
non-repudiation requirement, namely that the eTolling-Service Provider shall be able to
prove the authenticity of the Billing-Information, based on the aggregated sensor data
(requirement Proof-of-Authenticity 1 of [17]). However, the sensor is not able to perform
digital signatures, a mechanism usually applied for non-repudiation purposes. We call
this type of security requirements global composition requirements.

An approach particularly suitable to verify that the EVITA architecture and protocols
meet this type of requirements is to use the Security Building Blocks (SeBBs) introduced
in [13]. In that we have used SeBBs to refine abstract requirements identified in [17]
towards more concrete requirements that can be met by the EVITA architecture and
protocols. In the current task however, we use the SeBBs in the reverse way. Based
on the assumptions on both the EVITA Hardware Security Module (HSM) described in
[19] and the protocols described in [18], the SeBBs either enable proofs that the global
composition requirements listed in [17] indeed are met or point to assumptions that are
needed to carry out a proof but that can not adequately be assumed to hold.

Another category of requirements listed in [17] is related to aspects of time and avail-
ability. Examples are Freshness 103 and Availability 108. The first example refers to the
case when the flashing of an ECU is being performed: an old flashing command should
not be sent to a given ECU (replay attack). The second example refers to the maximum
response time of the braking command whenever a driver or another vehicle trigger that
command. Since the SeBBs available so far are not useful for modeling and proving such
requirements, another more appropriate verification framework is used here. While this
approach is not restricted to a particular level of abstraction and can therefore in princi-
ple also handle global composition requirements, once the need arises to include several
different mechanisms and protocols, we are faced with the well-known state space explo-
sion problem. Hence, when verifying that the EVITA architecture and protocols meet
time and availability related requirements, we focus on particular parts of mechanisms
and protocols, specifying them in a less abstract way. This approach is called bounded
magnifying view.

Both approaches complement each other very well: Indeed, the bounded magnifying
view focusses more on specific parts of the EVITA system, while its verification results are
used by the global composition approach to ensure that the overall EVITA architecture –
e.g. the HSM – and protocols meet the security requirements.

In Sections 2.2 and 2.3, we give a brief summary of and extensions to the bounded
magnifying view approach and the global composition approach, respectively.
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2.2 The Magnifying View Approach

2.2.1 Introduction

The magnifying view approach targets the verification of security properties over subsys-
tems of the EVITA architecture. A subsystem might be limited to a subset of ECUs, and
within ECUs, to a subset of hardware elements: CPUs, memories, HSM, sensors / actu-
ators, etc. Also, for a given subset, only a limited number of functional elements might
be considered, as well as a subset of cryptographic protocols: this is why this approach
is named bounded magnifying view. Thus, cryptographic protocols are modeled indepen-
dently from the use cases for which those protocols have been conceived. Additionally,
some hardware constraints might be taken into account at this modeling level.

2.2.2 Problematics

For modeling and verifying embedded systems, we have already defined two UML profiles,
TURTLE1 [5] and DIPLODOCUS2[6]. The former targets time-constrained systems. The
latter is more focused on software / hardware partitioning, and thus explicitly takes into
account hardware constraints. Both have been formally defined, and as a consequence,
TURTLE or DIPLODOCUS models can be formally verified at the push of a button
using the TTool environment [2]. Unfortunately, neither TURTLE nor DIPLODOCUS
have been conceived for the formal verification of security properties, that is, those security
properties cannot be directly entered in a model (for example, using a “confidentiality”
keyword), but have to be explicitly modeled using specific attacker and observers made
“by hand”. However, whether we select TURTLE or DIPLODOCUS, our first task is to
define a way to model system elements involved in the EVITA architecture and protocols
with security requirements in mind [17], and to propose a formal verification framework
based on those models. TURTLE has first been selected for formal verification purpose,
and DIPLODOCUS has been selected for first performance and verification [17].

2.2.3 Verification methodology

Our verification process is based on a model-driven approach (see Figure 1). Inputs are
considered to build up a model from which automatic code generation can be implemented.
In the scope of formal verification, code generation targets the automatic generation of
a formal specification from which formal proofs of security properties can be performed.
Security properties are defined according to requirements previously identified in [17].

This overall formal verification methodology takes three different forms: TURTLE,
ProVerif, and AVATAR3.

1. In the TURTLE approach, the subsystem of interest is modeled as a set of TUR-
TLE class and activity diagrams, using the TTool toolkit (see Figure 2). EVITA
Requirements were already modeled in TTool as a set of SysML Requirement Dia-
grams. Those requirements are meant to be integrated into the system and modeled

1Timed UMLand RT-LOTOS environment
2DesIgn sPace exLoration based on fOrmal Description teChniques, Uml and Systemc
3Automated Verification of reAl Time softwARe
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Figure 1 Model-driven approach

as generic attacker and observer models. More precisely, generic attackers can be
modeled as specific class of the class diagrams. This class can intercept all mes-
sages on communications links, can alter those messages, and can inject resulting
messages back to the communication links (Dolev-Yao approach). Other security
properties (e.g., freshness) can also be modeled using TURTLE observers that can
observe differences of time between two given actions in the model (e.g., the send-
ing of a message and the receiving of that message). In the TURTLE approach,
formal proofs are conducted on the system model using the translation capabilities
of TTool (e.g., translation to LOTOS [16] and UPPAAL [7]).

Drawbacks of TURTLE concern the fact that the Dolev-Yao model considers all
possible value modification in messages: but in TURTLE, data are modeled as
numbers in a given range, and therefore, the exploration we can make on message
alteration is limited. Also, TURTLE considers only a limited number of instances
in systems (e.g., only a given number of ECUs), and so, proof results are limited
to the number of instances we were able to model in the system. Finally, above
mentioned drawbacks lead us to consider two other options (ProVerif, AVATAR)
that are further described.

2. ProVerif is a toolkit based on spi-calculus processes that are further translated
into Horn clauses for proof purpose. Only confidentiality properties can directly be
expressed using a query language (and more precisely, the secret query), but other
properties (e.g. authenticity) can be expressed using queries on relations between
events. The strength of this approach relies in its capability to model data within
an infinite value range, that is, all possible message alterations can be considered in
the Dolev-Yao model. Additionally, proofs can be conducted for an infinite number
of process instances. Last, but not least, Horn clauses resolution is automated, i.e.,
proofs are conducted automatically.

The obvious drawback of that approach is that security proofs are not performed
from a high-level model, and so, transformations must be made by hand (see Figure
3). Also, the spi-calculus model can not be reused for other methodological EVITA
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Figure 2 The TURTLE verification approach

steps, e.g., for performance evaluation, and for executable code generation. Those
drawbacks lead us to consider a third solution: developing a new UML profile able
to capture embedded systems in a way that formal security proofs can be achieved
directly from the model – with little or no modification – and from which perfor-
mance evaluation and executable code generation can be executed. Thus, in the
scope of EVITA, we defined a new profile, named AVATAR, based on SysML –
itself a UML profile.

3. AVATAR is a SysML profile, fully supported by TTool. It targets the modeling
of embedded systems with time and security constraints. In AVATAR, a system is
modeled as a set of communicating SysML blocks. The behavior of each block is
described using SysML state machines, in which time constraints can be expressed.
Security constraints can be expressed directly on the block diagram, in an attached
note, using e.g. keywords such as “confidentiality” and “authenticity”: no specific
modeling (e.g., model of an attacker) is thus necessary in AVATAR.

Moreover, from an AVATAR model (i.e., from a block diagram and a set of state
machine diagrams), a formal specification can be derived in UPPAAL and in spi-
calculus. From TTool, a press-button approach is implemented so as to automat-
ically derive those specifications and inject them in the corresponding underlying
toolkits: UPPAAL, and ProVerif, respectively (see Figure 4). Thus, very different
security properties such as freshness properties and confidentiality properties can
be proved from the same model. Furthermore, executable code can be automati-
cally generated from AVATAR models. Finally, AVATAR addresses all drawbacks
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Figure 3 The ProVerif verification approach

mentioned in the two first approaches, that is drawbacks of the TURTLE approach,
and drawbacks of the ProVerif approach.

Table 1 explains those three approaches, and discusses the drawbacks and advantages
of each of them.

2.3 The Global Composition Approach

The approach for the verification of the EVITA architecture and protocols with respect
to satisfying global composition security requirements is based on the Fraunhofer SIT
Security Modeling Framework SeMF already introduced in [13]. This framework allows
to define the formal model of a system, to formally specify abstract security requirements
to be met by the system in terms of this model, and to refine these security requirements
by way of so-called Security Building Blocks (SeBBs). A SeBB represents an implication
stating that certain internal security properties holding in a system imply that certain
external security properties hold as well. There are two different types of SeBBs: Formal
Security Building Blocks, called F-SeBBs, and Mechanism Security Building Blocks called
M-SeBBs. F-SeBBs originate from the definitions of the security properties themselves.
They reflect theorems that can be proven within SeMF independently of any specific
system, based only on the assumptions that are introduced by the internal properties.
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Figure 4 The AVATAR verification approach

M-SeBBs on the other hand represent security primitives. These can be simple security
mechanisms (e.g. the generation of a digital signature) or more complicated security pro-
tocols. Proofs of M-SeBBs require assumptions that originate from expert knowledge that
is external to SeMF.

A simple F-SeBB for example states that for actions a, b, c of a system, precede(a, c)
and precede(c, b) holding in the system implies that precede(a, b) holds as well (see [13]
for the formal definition of the property precede). Another, more complicated F-SeBB
states that trust(P, precede(a, x) and auth(x, b, P ) holding in a system S implies that
auth(a, b, P ) holds in S as well. In [13] we have provided a set of F-SeBBs that are used
in Section 4 for our verification.

M-SeBBs on the other hand reflect the external properties a secu-
rity mechanism provides assuming that a set of internal properties is sat-
isfied. These SeBBs constitute inference rules that capture expert knowl-
edge within the area of cryptanalysis. The HMAC SeBB for example states
that the external property precede(sign(P,msg, SS, sig), verify(Q,msg, sig, SS))
holds if the internal properties conf (A(SS), SS,V(SS),L, {P,Q}) and
not-precede(sign(Q,msg, SS, sig), verify(Q ,msg , sig , SS )) are satisfied. This simply
states that an HMAC verification using some shared secret is always preceded by the
respective HMAC sign operation, provided that the shared secret is indeed only known
by the signer and the verifier, and provided that the verifier did not perform the signing
itself. M-SeBBs can also capture the nature of security protocols: While the assumptions
that are used for the protocol verification serve as internal properties, the external
properties are those that are provided by the protocol.
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In [13] we have used a set of F- and M-SeBBs to refine abstract security require-
ments towards low level assumptions. This refinement process can be part of a Security
Engineering Process. In the verification described in this Section we use SeBBs in the
reverse way: We identify all assumptions that are made in the course of designing the
EVITA architecture (e.g. the assumption that all secret keys used by the Hardware Se-
curity Modules HSMs included in the cars’ ECUs are confidential). We further model
the protocols described in [18] as M-SeBBs and use the results of the magnifying view
approach described in Section 3 verifying these protocols (i.e. use the assumptions as in-
ternal properties and the properties provided by the protocol as external properties of the
M-SeBB, respectively). For each of the global security requirements we then search for
a way to repeatedly apply appropriate SeBBs leading from a subset of the assumptions
on architecture and protocol properties to the global security requirement. The subset of
assumptions serves as internal properties for the first round of SeBB application which
produces a set of external properties. These are taken as internal properties for the next
application of SeBBs, etc., until the last step in which the desired global security require-
ment is (one of) the external propertie(s) of the applied SeBB. The process includes the
following steps:

1. Identify a security requirement R that shall be proven.

2. Identify the assumptions on architecture and protocols to be a starting set of internal
properties.

3. Search for a SeBB that uses some of these assumptions as internal properties.

4. If R is not one of the external properties of the identified SeBB: add the external
properties to the set of internal properties then go back to step 3.

5. If R is contained in the external properties of the SeBB: finished.

6. If no more SeBBs can be applied, there is a problem (some assumption missing,
probably caused by a missing application of security mechanisms).

The establishment of a path from assumptions to the global composition security
requirement constitutes the proof that the system that satisfies these assumptions indeed
provides the respective security property. Note that there may be more than one way to
achieve such a proof.
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Table 1 Formal verification approaches

Category TURTLE ProVerif AVATAR

Model of the
system

UML class and activ-
ity diagrams

pi-calculus and horn
clauses

SysML Block and
State Machine Dia-
grams

Model of the
attacker

Simplified Dolev-Yao
model (but freshness
can be proved!)

Dolev-Yao Dolev-Yao

Way to model
the attacker

Specific Attacker class
in the class diagram.
Also, the behavior of
this class must be pro-
vided

No need to model the
attackerQueries

No need to model the
attacker

Way to model
security prop-
erties

Specific Observer class
declared in the class
diagram. Also, the
behavior of this class
must be provided

Queries Basic pragmas listed
in a note of the Block
Diagram

Underlying
proof tech-
nique

Model-checking. More
precisely, a specific ac-
tion of the Attacker or
of the Observer class is
searched for

Horn-clauses reso-
lution: searching
whether a given event
is reachable, and
whether a data can
be accessed by an
attacker

Horn-clauses reso-
lution: searching
whether a given event
is reachable, and
whether a data can
be accessed by an
attacker.

Toolkits used
for modeling
purpose

TTool Text editor TTool

Toolkits used
for the proof
of security
properties

CADP, UPPAAL ProVerif ProVerif
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3 Magnified Verification Results

This sections presents the verification results we obtained using the (1) TURTLE, (2)
ProVerif and (3) AVATAR approaches. The verification of one given property is called
a Target of Verification (ToV). At first, we define the notion of ToV. Then, a synthesis
about verification results is provided. At last, ToVs are described in a more detailed way,
including assumptions and models.

3.1 Target of Verification (ToV)

3.1.1 Definition

A ToV is defined as a 7-uple tov = (P, Pr,A,M, T,O,R), with:

• P, a protocol defined in [18].

• Pr, a security property.
P ∈ {Confidentiality, Authenticity, Integrity, Freshness, Availability}.To be com-
pliant with previous EVITA technical reports, we consider the informal definitions
already presented in [17], Section 2, as our basic reference.

• A, a set of assumptions which applies to this particular ToV. All assumptions Λ
that applies to a ToV are thus given as Λ = A

⋃
G.

• M , a model relying either on the TURTLE, the ProVerif or the AVATAR approach.
M contains only a model of the protocol under evaluation, and definitely not an
attacker model, or an observer model of security properties under evaluation. In
TURTLE, M is a class diagram and a set of activity diagrams. In AVATAR, M
is a SysML / AVATAR Block Diagram and a set of States Machine Diagrams.
In ProVerif, M is a spi-calculus specification. For short, we can say that M ∈
{TURTLE,AV ATAR,ProV erif}.

• T , a model of attacker. That model generally represents a Dolev-Yao attacker.

• O, an observation technique, for observing whether Pr is satisfied, or not. For
example, in TURTLE, an observer is a specific class of the TURTLE class model,
the activity diagram of that class, a set of synchronized actions added to observed
class – both at class diagram and at activity diagrams level – and a set of CTL
formulae to search whether specific actions of observers can be reached, or not. In
AVATAR, the observation model is implicit once security properties to be studied are
declared in the Block Diagram, i.e., queries are automatically generated in ProVerif
format from the Block Diagram. In ProVerif, the observation technique is based on
a set of ProVerif queries.

• R, the verification result. R ∈ {Satisfied ,Failed}.

10



3.1.2 General assumptions G

G represents assumptions that apply to all ToVs. G contains the following assumptions:

• The model M of the ToV is assumed to represent all necessary elements of P for
proving Pr. Yet, M remains a model of implementation.

• We assume that toolkits that are used for modeling, generating code, and proving
properties are free of bugs that could affect the verification result.

• All cryptographic functions, and the material associated to these functions, are
assumed to be totally secured. In particular:

– When a random number is generated, its value is not supposed to be repeated.

– Whenever a MAC is generated for a message m1, it is impossible to find another
message m2 6= m1 such that MAC(m1) = MAC(m2).

– Whenever a signature is generated for a message m1, it is impossible to find
another message m2 6= m1 such that Sign(m1) = Sign(m2).

– Certificates are signed with secret material and thus can not be forged.

– The components of the system are synchronized in time, and that synchroniza-
tion is assumed to be secured.

– For symmetric cryptography, if m2 = encrypt(m1, k1), it is impossible, to
obtain m1 from m2 without k1.

– The value of a private key can not be guessed by knowing its public key pair.

– The values of private keys (symmetric or asymmetric) can not be guessed.

– Secret material can not be guessed.

As a conclusion of those assumptions, our verification approach relies on the verification
of security properties on an implementation model, and so, it does not address formal
proofs for computational security, e.g., relying on certicrypt or cryptoverif.

3.2 Results overview

ToVs are listed in Table 2. Assumptions of ToVs have been ignored here, they are provided
in the more refined description of these ToVs. A ”Satisfied” followed with a ”*” means
that the property is satisfied, but the verification phase returns traces of attacks that
have been analyzed by hand to say whether they correspond to real attacks, or to model
limitations. Section 3.9 elaborates on this.

We now provide more refined explanations of the three verification approaches (i.e.,
TURTLE, ProVerif and AVATAR) first described in section 2. An emphasis is put on
the verification context, in order to clarify what the verification results really mean. The
description of each approach is organized as follows:

1. A description of the modeling approach.

2. A description of security properties representation
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Table 2 Synthesis of ToVs

Protocol Property General approach Verification result
Key Master DoS TURTLE Failed
Key Master (modified version) Freshness TURTLE Satisfied
Key Master (modified version) Integrity TURTLE Satisfied
Key Master (modified version) Authenticity TURTLE Satisfied
Key Master (modified version) Confidentiality ProVerif Satisfied
Key Master (modified version) Authenticity ProVerif Satisfied*
Key Master (modified version) Confidentiality AVATAR Satisfied
Key Master (modified version) Authenticity AVATAR Satisfied*
Flashing Confidentiality ProVerif Satisfied
Flashing Authenticity ProVerif Satisfied*
CAM-LDW Confidentiality ProVerif Satisfied
CAM-LDW Authenticity ProVerif Satisfied*

3. An overview of the attacker representation

4. An explanation about the verification process

5. An overview of the main limitations

3.3 TURTLE Verification Approach Overview

3.3.1 System Modeling

Following the EVITA specification, a protocol is determined by the exchanges between a
set of Communicating Entities (CE’s). Thus, each CE is clearly delimited by a common
physical, logical or virtual border inside of which internal operations are performed, and
from which messages can be sent and received. The representation of CE’s in TURTLE
therefore considers internal operations as well as external message receiving and sending.
Each CE in the protocol is represented by a TURTLE class which is defined by its name,
a list of attributes, a list of communication gates and an Activity Diagram. TURTLE
classes are defined within a TURTLE Class Diagram (TCD), which is itself a subpart of
a TURTLE design (TD).

The TURTLE Design profile extends two diagrams of the UML2 specification: Class
Diagrams which describe the static architecture of the system under design, and activ-
ity diagrams which describe the internal behavior of active classes. More precisely, a
TURTLE class diagram is made up of stereotyped classes that we call Tclasses. The
internal behavior of each Tclass must be described using an Activity Diagram. TURTLE
classes relations are based on composition operators borrowed from LOTOS. TURTLE
also borrows from LOTOS the notion of gates that in TURTLE is a mean for inter or intra
classes communication. TURTLE composition operators are meant to attribute associa-
tions between two Tclasses, so as to provide those associations with a formal semantics.
Composition operators are:
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• Parallel. Used when the two related classes run in pure interleaving.

• Synchronization. Means that the two connected classes communicate through-
out gates. Gates are attributes of Tclasses. When a synchronization between two
Tclasses occurs, data may be exchanged between those two classes. In fact, the
synchronization semantics is the one of LOTOS [16].

• Invocation. One gate plays the role of the caller gate, whereas the other one plays
the role of the callee gate. When a synchronization occurs between the two caller
and callee gates, values can be exchanged only from the caller to the callee. Then,
the activity of the caller is blocked until the activity of the callee makes a new call
to its callee gate. During that second synchronization, values can be exchanged only
from the callee to the caller. More generally, this operator may be used to model
method calls (i.e., function calls).

• Sequence. C1 Sequence C2 : each time a new instance of C1 completes, a new
instance of C2 is executed.

• Preemption. C1 preempts C2 : as soon as an instance of C2 can execute an action
on a gate, an instance of C1 is stopped forever.

TURTLE Activity Diagrams extend UML2 Activity Diagrams with logical and temporal
operators. Modified / added logical operators are:

• Action on a gate. That gate may be synchronized with another one, or not. If
it is not synchronized, the action can be performed immediately. Otherwise, if it is
synchronized with another gate4: when an activity reaches such a gate, the activity
is blocked until the synchronization can be performed.

• Fork with synchronization. A synchronization between two gates of two different
sub-activities can be defined using the Fork operator with an extra annotation
describing a synchronization scheme (i.e., a synchronization relation between two
gates).

• Join. The join operator of UML Activity Diagrams has a semantics based on a
TURTLE synchronization between all joining sub-activities.

• Choice. The TURTLE choice operator supports non-deterministic guards, i.e.,
guards of sub-activities can be left empty. When an activity reaches a TURTLE
choice, all sub-activities starting from that choice and for which the guard evaluates
to true (note: an empty guard means “true”) are started in parallel: the first sub-
activity performing an action on a gate preempts all others.

TURTLE Temporal operators are:

• Deterministic delay.

• Non-deterministic delay (i.e., latency).

4TURTLE supports only 2-gate synchronization schemes
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• Time interval. It is the combination of a deterministic delay with a non-deterministic
one.

• Time-limited action on a gate g. From that operator, two sub-activities may be
linked: one executed when the action on g can be performed before a given delay,
and one executed when the action on g could not be performed before the given
delay.

However, because TURTLE lacks a time capture operator, i.e., a way to store in a variable
the current value of the clock, we were not able to use those operators for freshness proof
purpose. Instead, another approach, based on the explicit modeling of a clock, was used.
Last but not least, a TURTLE Design (i.e., a TCD and all related Activity Diagrams)
can be translated into a LOTOS specification, and into a set of communicating automata
(UPPAAL). TTool implements a press-button approach for that purpose.

In TURTLE classes, the list of attributes is used to define variables. We have used these
attributes in order to store the initial knowledge of the Communication Entities, and also
to store other elements necessary to execute internal computations (control parameters).
The TURTLE framework provides the following default attribute types:

• Natural

• Boolean

• Array of Naturals

• Array of Booleans

Additionally, the designer is allowed to define data structures that are a combination
of Natural and Boolean elements.

Using TURTLE Class Diagrams for modeling cryptographic protocols
Each CE is modeled with one TClass. All related protocol elements like communication

channels, time counters, crypto functionalities and services, are included in the same
model class diagram, using tclasses and behavior of tclasses.

In the next paragraphs we briefly present other TURTLE features that are used for
modeling various protocol elements.

PDU structure
Protocol Data Unit (PDU) is defined with a specific data structure. Our PDU defini-

tion distinguishes between plain text data, ciphered data, Message Authentication Codes
(MAC), Signatures and Certificates. Table 3 presents the data fields of the PDU structure.

Table 3 PDU data structure.

Entry name Data
type

Use

id Natural Message id.
origin Natural Reference to the sending CE.
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destination Natural Reference to the destination CE.
key0 Natural Value of the first symmet-

ric/asymmetric key that is used
for data encryption.

firstIndex0 Natural Reference to the first PDU token which
is encrypted with key0.

lastIndex0 Natural Reference to the last PDU token which
is encrypted with key0.

key1 Natural Value of the second symmet-
ric/asymmetric key that is used
for data encryption.

firstIndex1 Natural Reference to the first PDU token which
is encrypted with key1.

lastIndex1 Natural Reference to the last PDU token which
is encrypted with key1.

. . .

. . .
keyK Natural Value of the K-th symmet-

ric/asymmetric key that is used
for data encryption.

firstIndexK Natural Reference to the first PDU token which
is encrypted with keyK.

lastIndexK Natural Reference to the last PDU token which
is encrypted with keyK.

keyMAC Natural Value of the symmetric key that is used
to MAC the message.

firstIndexMAC Natural Reference to first PDU token that is
protected by the MAC.

lastIndexMAC Natural Reference to the last PDU token that
is protected by the MAC.

keySign Natural Value of the asymmetric key that is
used to sign the message.

firstIndexSign Natural Reference to first PDU token that is
protected by the Signature.

lastIndexSign Natural Reference to the last PDU token that
is protected by the Signature.

certK ca Natural Reference to the Certification Author-
ity key that is used to sign the certifi-
cate.

certPK Natural Value of the Public Key to which the
certificate is issued.

data0 Natural First token of the PDU.
data1 Natural Second token of the PDU.
. . .
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. . .
dataN Natural N-th token of the PDU.

Model parameters
The parameters of the model are stored in a data structure called Parameters. Such

a structure simplifies the use and modification of model values. Examples of fields are:

• Flags of the crypto interface: return values as well as status and errors.

• Execution time of each operation

• Values of message types: requests, acknowledgments and nonces

• Various protocol and communication information: maximum number of protocol
executions, maximum re-transmission attempts

An example of Parameters fields is presented in Table 4.

Channels
Communication channels between Communication Elements (CE) can be represented

in the model as one TURTLE class. Depending on proofs that are targeted, the channel
representation may be very abstract, thus reflecting a simplified behavior. In such a
simplified view, almost all details in message transfers are abstracted: this concerns for
example fragmentation of frames. Also, only one communication at a time can occur
on the simplified channel model. However, the simplified channel can simulate random
message loss and delay. All those simplifications / abstractions lead to a verification
focused in the model of the protocols, and not directly in their implementations. Hence,
unless it is explicitly mentioned, the channel representation is based upon a simplified
behavior.

The communication between CEs is performed as follows:

1. The channel waits for an incoming message on its input interfaces (i.e., on its gates).

2. When a message is received, the channel identifies the message origin and destination
from the PDU structure.

3. A random choice makes it possible to decide between forwarding the message to the
right destination, or discarding it (message loss).

The Activity Diagram of a typical channel is provided in Figure ??.

Crypto Library
The Communicating Entities (CEs) have to perform several cryptographic operations

in order to forge and analyze messages. The specification of these cipher cryptographic
has been provided in [19]. In the TURTLE approach, we abstract such operations using
their interfaces thus simplifying the modeling and verification tasks. Beside the fact that
all CE’s perform analogous cipher operations, having a single Crypto Library in the model
simplifies protocol representation and consequently verification. Such a crypto library is
represented as a TURTLE class that models the following operations:
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Table 4 Example of Parameters fields

Entry name Data
type

Use

encryptOK = 1 Natural Indicates a successful encryption.
encryptKO = 0 Natural Indicates an unsuccessful encryption.
macOK = 1 Natural Indicates a successful MAC generation or

verification.
macKO = 0 Natural Indicates an unsuccessful MAC generation or

verification.
signOK = 1 Natural Indicates a successful signature generation or

verification.
signKO = 0 Natural Indicates an unsuccessful signature genera-

tion or verification.
Decrypt = 0 Natural A decryption operation should be performed.
Encrypt = 1 Natural An encryption operation should be per-

formed.
createMAC = 2 Natural The creation of a MAC code is requested.
verifyMAC = 3 Natural The verification of a MAC code is executed.
createSign = 4 Natural The creation of a signature is demanded.
verifySign = 5 Natural The verification of a signature is requested.
dlayDecrypt = 5 Natural The time cost for decryption.
dlayEncrypt = 5 Natural The time cost for encryption.
dlayMAC = 5 Natural The time for MAC creation and verification.
dlayCAN Natural The average time for communication through

CAN.
ACK = 1 Natural The acknowledgement code.
N x = 11 Natural A generated random number that is used as

a nonce.
con req = 50 Natural The code for a connection request.

• Symmetric and asymmetric deciphering

• Symmetric and asymmetric ciphering

• Retrieve a key value

• Generate and verify MAC’s

• Generate and verify signatures

• Generate and verify certificates.

Each CE that requires to use these functions is linked to the crypto library throughout
a dedicated gate called cipherN . An invocation to the crypto library includes the reference
to this invocation gate, a PDU message, the requested operation, a reference to the
involved key (key handle) and a reference to the first and last PDU tokens (or fields) on
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which the called operation is expected to be applied (e.g., deciphering tokens 1 to 5 of a
given PDU). Whenever the crypto library is called, the arguments are analyzed before the
corresponding operation is performed. The crypto library directly operates on the PDU
structure thus performing symbolic crypto operations. A symbolic operation means that
plain PDU values are never modified (PDU.data i). Instead of that, the corresponding
PDU entries are updated (e.g., setting a flag to the crypted value) thus reflecting the new
structure of the message. For example, the encryption of the first three PDU tokens with
the key SK x is represented with the following assignations:

PDU.key0 = SK x
PDU.firstIndex0 = 0
PDU.lastIndex0 = 2

Similar operations are carried out when MAC’s and signatures are generated. Certifi-
cates can be added to the PDU by setting a reference to the secret key of the Certification
Authority (PDU.certK ca) and the reference to the public key that is bound with the
certificate (PDU.certPK). This public key should correspond with the CE’s identity to
who the certificate is issued. The verification of MAC’s and signatures requires a key
handle as well as the the first and last indexes that are respectively protected with the
MAC or signature. Thus, if a CE – or an attacker – doesn’t know a key, it is not allowed
to verify MAC’s nor signatures associated with such key. Analogously, a certificate can
not be appropriately opened nor verified if the CE doesn’t know the reference of the Certi-
fication Authority or its respective public key. Once the cipher operations are performed,
the crypto library generates a status code that is returned with the resulting PDU. An
overview of the Activity Diagram of the crypto library is presented in Figure 5.

The notation used for cryptographic elements in TURTLE Design is the one defined
in the crypto library. This notation is presented in Table 5.

Table 5 Notation used for protocol modeling in TURTLE

Notation Description
SK x Asymmetric secret key of the CE x.
PK x Asymmetric public key of the CE x.
PsSK x Asymmetric pseudo secret key of the CE x.
PsPK x Asymmetric pseudo public key of the CE x.
SesK Symmetric session key that is shared between

a group of CE’s.
PSK x Symmetric pre shared secret key of the CE

x.
N x Random number that is used as a nonce by

the CE x.
CA Reference to a Certification Authority.
ts time stamp.

UTC discrete time
The general hypothesis of synchronized clocks is realized through a very simple ap-

proach. First, unless it is explicitly mentioned, the operations that are executed in the

19



Figure 5 Activity diagram of the crypto library TURTLE class
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model have a deterministic duration, even if non deterministic delays can also be modeled.
Operation delays are stored in the Parameters Tclass of the model (see Model parameters).
Secondly, the UTC time is represented as a TURTLE class – called UTC – which includes
a list of invocation gates. Every CE, or any other class that takes time to perform oper-
ation, is linked to UTC through a dedicated gate that is called utcX. UTC includes two
local attributes (actualT ime and timeUpdate) whose initial value is 0. Right after a time
consuming operation is finished, the respective CE or class calls UTC thus informing the
respective operation time delay. Afterwards, UTC catches the timeUpdate and updates
actualT ime:

actualT ime = actualT ime+ timeUpdate

Finally the new actualT ime is returned through the same invocation gate thus provid-
ing the current time. The, UTC returns to its initial state thus waiting for an incoming
time update. Since the invocation as well as other UTC operations are carried out with-
out the passage of time, the UTC model preserves synchronization. Thus, a CE or class
can retrieve the actual time by sending a timeUpdate with value 0.
Obviously, this simplified UTC model assumes a sequential protocol execution. Indeed,
it implies that the UTC interface is used by a single CE at a time whilst the others are
waiting for. As a consequence of this behavior, no operations nor time requests are per-
formed in the mean time. An overview of the Activity Diagram of a UTC class is shown
in Figure 6.

The UTC AD can be modified to overcome the limitations of the sequential protocol
execution. This alternative is explained in the next paragraphs.

1. Several time consuming operations OP x can be initiated by different CE’s (denoted
by x).

2. Whenever an operation is initiated by x the actual time is retrieved from UTC and
stored in the variable OP x.t0.

3. Right after an operation is finished, a request for time update is sent to the
UTC. The request includes OP y.t0 and the delay of the corresponding operation
Parameters .dlayOP .

4. The actualT ime variable is updated according to the next options:

(a) actualT ime == OP y.t0: In this case, no other CE has updated the UTC
since the operation OP y was initiated. Therefore the time can be updated by
actualT ime = actualT ime+ dlayOP .

(b) OP y.t0 + dlayOP > actualT ime > OP y.t0: Indicates that other CE(s)
has(have) updated the UTC. In such case, the actualT ime is just updated by
the difference (OP y.t0+dlayOP )−actualT ime. It implies that: actualT ime =
(OP y.t0 + dlayOP ).

(c) actualT ime >= (OP y.t0 + dlayOP ): Indicates that other CE(s) has(have)
updated the UTC. Since the actualT ime is greater than or equal to the update
request, the variable actualT ime remains unchanged.
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Figure 6 Activity diagram of a UTC class
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As a conclusion, UTC can handle sequential or no sequential executions, and also
deterministic or non deterministic delays.

3.3.2 Properties

This subsection addresses how security properties are represented in TURTLE.
The representation of properties requires that a model of the protocol is completed.

In addition, we assume that the security requirements targeted by the protocol have been
correctly identified. TCD elements can then be complemented with new instances to
adequately represent the security property. Additionally, the verification of each security
property relies on an special TURTLE class that is called Security Observer. As a
conclusion, the modeling of security properties – and the observation of those properties
– relies on additional classes that are added to the model of the system.

Each security property is thus associated with a Security Observer (SO). The SO
is allowed to interact with all the CE’s and TURTLE classes in the TCD. A SO can
directly retrieve information from CE classes, in order to known in which protocol stage is
currently each CE. However, the SO information retrieval is carried out without modifying
the original protocol temporal and logical behavior. More precisely, every CE has a
dedicated gate from which SO can retrieve information (unidirectional exchange, from
the investigated CE to SO).

How information are retrieved and used by a SO is expressed within the Activity
Diagram of that SO. A given internal gate is used to signal that the security property is
satisfied, or violated. Searching for the (non) reachability of that action makes it possible
to study security properties of the model.

3.3.3 Attacker

The attacker is a mean to explore possible misuse of the protocol features thus playing
a major role in the verification process. Ideally, a generic attacker should be able to
challenge the TCD with a wide variety of inputs thus ensuring the coverage of attacks
space. To achieve its goal, the attacker should generate such challenges and correctly
assess successful attacks.

In our approach each attacker targets a specific security property (e.g., confidential-
ity, or authenticity). Since security properties are represented as TURTLE classes, the
attacker can be defined in terms of the negation of the Security Observer logic. More
specifically, the negation of a security property determines a generic goal for the respec-
tive attacker. Moreover, the attacker can challenge the TCD with inputs that satisfy the
negated security property. Such space of inputs should contain the attacks that are ad-
dressed in the risk and threat analysis of EVITA D2.3 [17], thus ensuring attack coverage.

First, generic attackers are represented in the TCD model as TURTLE classes. Sec-
ondly each attacker is associated with a Security Observer class. This SO class is taken
as an initial reference for the definition of the Attacker; on the one hand, the elements
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in the Security Observer can be used for the Attacker definition, on the other hand the
Security Observer provide insights for the Attacker behavior.

The Attacker behavior is defined through its Activity Diagram. Unlike its related
Security Observer, an Attacker can only retrieve information from classes representing
channels, and can definitely not interact directly with CEs or crypto libraries. More pre-
cisely, the Attacker behavior is based upon the Dolev-Yao Threat model. In this approach
the attacker can intercept, alter and inject messages into the communication media and
its power is only limited by the restrictions imposed by cryptographic functions. Also,
attacks that alter the physical infrastructure are not considered. We also assume that
operations performed by the attacker on messages – e.g., substitution of values – can be
done in 0-time.

Finally, in order to ensure that the Attacker behavior is compliant with the model
hypotheses of the ToV, each attack operation have to be first validated by a specific
TURTLE class called Hypotheses. The Hypotheses class determines whether the attack
operation is compliant with the model hypotheses, or not. For example, the attacker may
try to modify a PDU token by executing PDU.data0 = Attacker.decrease(PDU.data0, 1).
unfortunately, data0 may possibly take the value of a random nonce or secret key thus
violating a general hypothesis (See section General Assumptions). Thus, the Hypotheses
class enforces valid attacks, and so it avoids the presence of false attacks.

As a summary, the Attacker model takes into account:

1. The elements in the associated Security Observer.

2. The space of options determined by the negated security property.

3. The exchanges in the protocol.

4. The restrictions imposed by model hypotheses (valid operations).

5. The assessment of successful attacks.

In order to explore all possible interactions with CEs, a generic attacker approach is
used:

1. Message interception. The Attacker intercepts a message in a channel.

2. Message analysis. The message content is analyzed to determine the possible oper-
ations that can be performed.

3. Attack assessment. As a part of the previous analysis, the assessment of successful
attacks is made, and if it is positive, the result is provided by executing a specific
action.

4. Attack technique. An attack technique is started in a non-deterministic way.

5. Attack validation. The attacker operations are validated by the Hypotheses class.
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6. Forge a new message. After validation, the attack technique is applied and a new
message is forged.

7. Store knowledge. Received and modified PDU’s are used to increase the Attacker
knowledge.

8. Send forged message. The forged message is sent back to the channel.

And so on.

3.3.4 Formal Verification

This section describes how security properties can be represented and verified in TUR-
TLE designs. As explained before, every property is represented using a TURTLE class
named Security Observer. Additionally, every Security Observer is associated to an
Attacker class that targets attacks that may violate the property under study. We recall
that a TURTLE design represents a single session of the modeled protocol. Beside this
fact and because of sequential behavior of CE’s, the channel is assumed to transmit only
one message at a time. Consequently, whenever a Security Observer observes a sent mes-
sage, the subsequent reception truly corresponds with the most recent delivered message.
Security Observers and channels could obviously be improved to reflect more complex
behaviors.

The System Model, the Security Observer, the Attacker and the Hypotheses are all
represented in the same TURTLE Design. Using TTool, this integrated model can be
automatically translated to a formal specification in LOTOS [16] or in UPPAAL [7]. To
generate those formal specifications, TTool implements a press button approach, and so,
no previous knowledge in underlying formal languages is required.

LOTOS [16] is an ISO standardized Formal Description Technique for distributed process-
ing system specification and design. A LOTOS specification, itself a process, is structured
into sub-processes. A LOTOS process is a black box which communicates with its envi-
ronment through gates using a multiple rendezvous offer. Values can be exchanged when
synchronization occurs. That exchange can be mono- or bi-directional.
Parallelism and synchronization between processes are expressed by composition opera-
tors. Those operators include process sequencing, synchronization on all communication
gates, synchronization on some gates, non deterministic choice, preemption, and total
interleaving (parallel composition with no synchronization). Composition operators are
identified by their symbols (see Table 6).

CADP [1] is a toolbox aims at offering formal verification features for LOTOS spec-
ifications. More particularly, CADP can generate a reachability graph from a LOTOS
specification. A reachability graph provides all possibles traces of the system in the form
of a LTS.

Definition 1. Labeled Transition System.
A Labeled Transition System (LTS) is a 4-tuple (Q,Σ, q0, L), where Q is a finite set
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Table 6 LOTOS operators

Operators Description Example

[] Choice P [a, b, c, d] = P1[a, b][]P2[c, d]
||| Parallel P [a, b, c, d] = P1[a, b]|||P2[c, d]
|[b, c, d]| Parallel composition with

synchronization on several
gates (b,c,d)

P [a, b, c, d, e] =
P1[a, b, c, d]|[b, c, d]|P2[b, c, d, e]

hide b in —[b]— Parallel composition with
synchronization on gate b,
where gate b is hidden

P [a, c] = hidebinP1[a, b]|[b]|P2[b, c]

>> Sequential composition P [a, b, c, d] = P1[a, b] >> P2[c, d]
[>] Disrupt P [a, b, c, d] = P1[a, b][> P2[c, d]
; Process prefixing by action

a
P [a] = a;P1[a]

stop Process which cannot com-
municate with any other
process

P [a] = stop

exit Process which can termi-
nate and then transform it-
self into stop

P [a] = exit

of states, Σ is a finite set of actions called alphabet, q0 ∈ Q is the initial state and
L ⊂ Q× Σ×Q is a ternary relation that determines the structure of the LTS.

An LTS is fully described by the set of sequences of actions that can be performed
from its initial state q0.

Definition 2. Trace of an LTS.
The trace of an LTS is a sequence of actions α0, . . . , αn−1, αi ∈ Σ, that is associated to a
sequence of states q0, . . . , qn, qi ∈ Q, such that (qi, αi, qi+1) ∈ L for i = 0, . . . , n− 1.

As explained before, proving a security property relies on the reachability of a given
observer action.

Definition 3. Reachable state.
Let LTS = (Q,Σ, q0, L) a Labeled Transition System. A state q ∈ Q is reachable if there
exists at least one trace α0, . . . , αn−1 which associated sequence of states is q0, . . . , qn such
that qn = q.

The set of all possible traces in the LTS determines its language which is denoted by
L(LTS). Whenever a TURTLE Design (TD) is translated to a LOTOS specification,
an LTS representing all reachable states of the model may be computed – if the system
is of reasonable size. Otherwise, other formal verification techniques can be used, e.g,
on-the-fly model-checking. However, to simplify this document, we only consider systems
for which the LTS can be generated. Such an LTS is denoted by LTSTD.
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Traces that lead to a state in LTSTD contains actions of either the system model, the
Security Observer or the Attacker. Also, those actions correspond to either:

1. Output Data: Data output on a communication channel, either by a Communicating
Entity (CE) or by an Attacker.

2. Input Data: Data input from a communication channel, and to either a Communi-
cation Entity or to an attacker.

3. Cryptographic function: Each call to a cryptographic function of the crypto library
corresponds to two actions (one for the function request, one for the return from
the function).

4. Non-synchronized actions : actions on gates which are not synchronized between
classes, that is, internal actions of classes, including actions generated by Security Observer.
Those last actions are the ones for which reachability shall be studied.

The syntax of TURTLE actions is established in the following definition.

Definition 4. TAction.
An action α ∈ Σ is a TURTLE action (Taction) iff it is compliant with the following
grammar

Taction::= TClass.Tgate [(!Tattribute |?Tattribute)∗]
Tclass::= c name
Tgate::= g name

Tattribute::= at name | Tdata.at name
Tdata::= d name

where ”!” means a data output and ”?” a data input. The semantics of names is as
follows:

c name: The name of a TURTLE class.
g name: The name of a gate defined in a class c name.
d name: The name of an attribute whose type is a TURTLE data structure.
at name: The name of an attribute defined in a class c name

or a name of the field of the data structure of the attribute d name.

An instance showing TURTLE actions and names is presented in figure 7.
Note that if Γ = (Q,Σ, q0, L) is an LTS representing all reachable traces of a TURTLE

Design, then Σ is entirely composed of TURTLE actions of this TURTLE Design. TUR-
TLE Designs can execute specific TURTLE actions thus showing correct (or incorrect)
termination of model execution.

Definition 5. Traces for the formal verification of security properties.
Let’s note TD-Sec a TURTLE Design built for security proof purpose, i.e., built as ex-
plained in previous sections. A trace proving that no security properties are violated in
TD-Sec always terminates with the TURTLE action α =Tclass.EndOK (See definition 4)

Finally, the following notation is used to represent possible message alterations during
a transfer in an insecure channel.
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Figure 7 TURTLE actions and names examples

Notation 1. Sending and receiving actions.
TURTLE actions denoting the output of PDU take the form α =Tclass.send!PDU whilst
corresponding input actions on PDU take the form α = Tclass.receive?PDU’.

In the next paragraphs, we show how security properties are represented and verified
in the TURTLE approach.

Verification of Integrity
The Security Observer for Integrity knows every transmitted message. Indeed, when-

ever a message is sent, a random choice in the channel allows either message loss or CE
reception. In the first case, the Security Observer activates the gate IntegrityMsgLost.
The verification of integrity is performed right after a CE inputs a message. First, the
Security Observer verifies that the sent and received messages are the same. Secondly,
if a difference is found, hence the property is not satisfied, so the gate IntegrityKO is
executed. Otherwise, if no difference was observed, the property is satisfied and thus
IntegrityOK is executed.

The integrity Attacker intercepts every message in the communication channel, and
accordingly update its local knowledge. After interception of a PDU, the PDU contents
is analyzed; plain text tokens, ciphered tokens, MAC’s, Signatures and Certificates are
thus classified (token types). Actions performed by the Attacker are among the basic
following ones:

RndModification(i). The data token i is increased or decreased by a random value x.

Interchange(i,j). The data tokens i, j, i 6= j, are interchanged. Tokens i, j should
belong to the same type.
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Substitution(i). The data token i is substituted for a randomly selected one from Wat.
Substitution is performed over tokens of the same type.

Dropping(). The attacker drops the entire PDU .

Nothing(). The attacker does nothing with the PDU .

The Attacker randomly chooses one basic action – and its arguments if applicable.
Before applying such an action, a copy of PDU is stored in Wat. The stored PDU can
be later used for substitution operations. Afterwards, the selected action, along with the
PDU, are delivered to the Hypotheses class. Among other validations, the Hypotheses
class verifies that resulting tokens do not take neither GRN’s nor secret key values. If the
action does not violate any hypotheses, it is validated. Otherwise the Attacker is forced
to take a different action. Eventually, the Attacker applies an action to the PDU thus
forging a new message PDU ′. Then, a random choice models whether the PDU ′ is stored
in Wat, or is discarded. Finally the forged PDU ′ is delivered into the communication
channel.

Formal verification can be performed once Security Observer, Attacker andHypotheses
have been added to the model as classes interacting with the protocol model. As a result
of such verification, TTool / CADP / UPPAAL formally determines the set of possible
actions and reachable states thus forming the associated LTSTD. Finally, the LTSTD
is analyzed in order to determine whether the property is satisfied, or not, and also to
determine possible attack(s). Trace evaluation is made according to the following rules:

1. Whenever the Attacker alters a PDU (PDUModified) the Integrity Observer
should eventually perform IntegrityKO for the same PDU .

2. If theAttacker did not modify the PDU (PDUNotModified), then the Integrity Observer
should eventually perform IntegrityOK for the same PDU .

3. Whenever a message is lost, the Integrity Observer should activate IntegrityMsgLost
for the lost PDU .

The verification of integrity by the Security Observer is formalized in the following
definition.

Definition 6. Integrity verification.
Let Tr := α0, . . . , αn a trace in LTSTD, with αi a TURTLE action. We say that Tr
verifies integrity for a PDU iff there exist actions αk, αl, αm in Tr, with 0 ≤ k < l <
m ≤ n, k, l,m ∈ N such that

1. αk = SecurityObserver.receive?PDU

2. αl = SecurityObserver.receive?PDU ′

3. αm = SecurityObserver.IntegrityOK!PDU ′ or
αm = SecurityObserver.IntegrityKO!PDU ′.
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Table 7 Trace evaluation for verification of Integrity in TURTLE Designs

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhActions of Attacker

Actions of Security Observer

IntegrityOK IntegrityKO

PDUNotModified Trace OK Model Flaw
PDUModified Model Flaw Trace OK

4. ∀j such that k < j < l or l < j < m, αj =Tclass.Tgate... and Tclass 6= SecurityObserver
.

Finally, the evaluation of integrity for LTSTD traces is summarized in Table 7.
Thus, we adopt the following definition for an integrity attack trace.

Definition 7. Integrity attack.
Let Tr := α0, . . . , αn a trace in LTSTD.
We say that Tr is an integrity attack for a PDU iff there exist actions in Tr namely
αi, αj, αk, αl, αm, with 0 ≤ i < j < k < l < m ≤ n, i, j, k, l,m ∈ N, such that:

1. αi = SecurityObserver.receive?PDU

2. αj = Attacker.PDUModified!PDU ′

3. αk = SecurityObserver.receive?PDU ′

4. αl = SecurityObserver.IntegrityKO!PDU ′

5. αm = CEX .EndOK

6. Tr and αi, αk and αl satisfy Definition 6.

7. ∀r such that l < r < m, αr /∈ {αi, αj, αk, αl, αm}.

Remark 1. Definitions 6 and 7 rely on the simplified communications channel. Of course,
those definitions have to be modified for more complex scenarios.

Verification of Authenticity
Similarly to the integrity observer, the authenticity Security Observer knows every

delivered message. Moreover, the identity of the sending CE is captured. Thus, the
Security Observer is able to correctly asses message author (receive?PDU?author).
According to the channel policy, the message is either lost or sent to a CE class. In
the first case the MsgLostObs gate is activated. Otherwise the message is received by
a CE class and thus the Security Observer activates receive?PDU ′. Right after, the
claimed author is determined according to the following rules:

1. If PDU ′ includes a MAC, then claimed author is the owner of the MAC key.

2. If PDU ′ includes a signature, then claimed author is the owner of the signature’s
key.
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3. If PDU ′ includes a certificate, then claimed author is the owner of the private key
associated to the public key that is bounded with the certificate.

4. If PDU ′ does not include neither MACs, signatures, nor certificates, then claimed author
is set to PDU ′.origin.

Remark 2. Our approach assumes that each key and each certificate are bounded to a
unique CE. The authenticity Security Observer may verify such correspondences using
the CryptoLibrary.

Once claimed author has been determined, the Security Observer verifies authen-
ticity by comparing author and claimed author; if they are equal, then authenticity is
satisfied and the gate AuthenticityOK is activated. Otherwise, AuthenticityKO is exe-
cuted.

Remark 3. In order to correctly verify real author and claimed author, the Security Observer
should firstly verify that PDU ′ truly corresponds with PDU . Therefore, to ensure such
correspondence and to simplify modeling and verification, we assume that authenticity
is verified right after verification of integrity.

The authenticity Attacker is defined in terms of possible violations of message au-
thenticity. Indeed, some of his basic operations are an immediate extension of integrity
Attacker operations. However, the authenticity Attacker behaves on a higher level of
PDU semantics mainly targeting authentication tokens. The Attacker relies on the fol-
lowing operations:

AlterMsgOrigin(). PDU.origin is substituted by a different origin randomly taken
from Wat.

AlterMsgDestination(). PDU.destination is substituted by a different destination
randomly taken from Wat.

SubstituteMAC(). If PDU contains a MAC, it is replaced by a different one randomly
taken from Wat.

SubstituteSign(). If PDU contains a signature, it is replaced by a different one ran-
domly taken from Wat.

SubstituteCert(). If PDU contains a certificate, it is replaced by a different one ran-
domly taken from Wat.

Nothing(). The Attacker does nothing with the PDU .

Whenever a message is intercepted, its content is classified (signature, etc.) and stored
in Wat. Afterwards, a basic action is randomly selected. The action and the PDU are
sent to the Hypotheses class for evaluation purpose. Among other possible validations,
the Hypotheses class determines if modified PDU tokens do not take neither nonces
nor secret key values. In such a case, the Attacker is forced to select a different action.
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Right after validation, the Attacker applies the selected action to the PDU thus forging a
new message PDU ′. A random choice allows either storing modified PDU ′ values in Wat

or skipping storing. Last but not least, PDU ′ is delivered into the communication channel.

The so built LTSTD is formally verified using the following rules for trace evaluation:

1. Whenever the Attacker alters the authenticity of a PDU (PDUNotAuthentic) the
Authenticity Observer must eventually execute action AutenticityKO for the same
PDU .

2. If theAttacker did not modify the PDU (PDUAuthentic), then theAuthenticity Observer
must eventually execute AuthenticityOK for the same PDU .

3. For each lost message, the Authenticity Observer must execute a MsgLostObs
action.

The next definition formalizes the operations that are performed by Security Observers
in order to verify message authenticity.

Definition 8. Authenticity verification.
Let Tr := α0, . . . , αn a trace in LTSTD.
We say that Tr verifies authenticity for a PDU iff there exist actions αk, αl, αm in
Tr, 0 ≤ k < l < m ≤ n, k, l,m ∈ N such that

1. αk = SecurityObserver.receive?PDU?author

2. αl = SecurityObserver.receive?PDU ′

3. Either αm = SecurityObserver.AuthenticityOK!PDU ′!claimed author
with claimed author = author, or
αm = SecurityObserver.AuthenticityKO!PDU !claimed author′

with claimed author′ 6= author.

4. ∀j such that k < j < l or < l < j < m, αj =Tclass.Tgate... and Tclass 6=
SecurityObserver.

The validation of authenticity in the overall LTSTD model is intuitively explained in
Table 8.

Table 8 Trace evaluation for verification of Authenticity in TURTLE Designs

hhhhhhhhhhhhhhhhhhhhhhhhhhhActions Attacker

Actions Security Observer
AutthenticityOK AuthenticityKO

PDUAuthentic Trace OK Model Flaw
PDUNotAuthentic Model Flaw Trace OK

The previous evaluation is formalized in the next definition thus complementing formal
evaluation of authenticity in LTSTD.

32



Definition 9. Authenticity attack.
Let Tr := α0, . . . , αn a trace in LTSTD.
We say that Tr is an authenticity attack for a PDU iff there exist actions in Tr
namely αi, αj, αk, αl, αm, 0 ≤ i < j < k < l < m ≤ n, i, j, k, l,m ∈ N, such that:

1. αi = SecurityObserver.receive?PDU?author

2. αj = Attacker.PDUNotAuthentic!PDU ′

3. αk = SecurityObserver.receive?PDU ′

4. αl = SecurityObserver.AuthenticityKO!PDU ′!claimed author
with claimed author 6= author.

5. αm = CEX .EndOK

6. αi, αk and αl satisfy definition 8.

7. ∀r such that l < r < m, αr /∈ {αi, αj, αk, αl, αm}.

Remark 4. Definitions 8 and 9 rely on the simplified communications channel. Of course,
those definitions could be adapted to more complex channels.

Verification of Freshness
As in previous properties, verification of freshness relies on a Security Observer that

is allowed to know every transmitted message. Whenever a PDU is sent into the commu-
nications channel, the Security Observer knows PDU and the time at which the PDU
was sent (receive?PDU?sendT ime). According to the channel policy the PDU may be
lost (MsgLostObs). Otherwise, the Security Observer is sure that the next input mes-
sage truly corresponds with the most recently sent. Thus, the Security Observer receives
PDU ′ as well as the reception time recT ime (receive?PDU ′?recT ime). The evaluation
of freshness is based upon two criteria. The first one ensures that PDU ′ is not a copy
of a previously exchanged message. Hence, the Security Observer records every received
PDU and compare its contents in order to avoid message replay. The second criterion en-
sures that the difference between recT ime and sendT ime is less than a given threshold. If
PDU ′ satisfies those freshness criteria, then the action FreshnessOK!PDU ′ is executed,
otherwise the action Freshness!PDU !PDU ′ is executed.

Remark 5. The freshness Security Observer assumes that PDU ′ truly corresponds with
PDU . Since freshness observer is focused on temporal properties, we assume that only
tokens of messages concerned with freshness are modified. Consequently, other possible
attacks cannot be traced by a freshness Security Observer.

The freshness Attacker is defined in terms of basic operations that can modify PDU
time context. These operations are:

IncreaseTS(). If the PDU includes a time stamp, it is randomly increased by x.

DecreaseTS(). If the PDU includes a time stamp, it is randomly decreased by x.
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Delay(). The PDU is delayed an amount of time d. To perform such an operation the
attacker requests a time update (utc!d) to the UTC class.

Replay(). The PDU is discarded and replaced by a PDU ′ from Wat. Also, this function
accordingly modifies PDU ′ destination, taking the one provided in PDU .

Nothing(). The time context of the PDU remains unchanged.

Whenever a PDU is intercepted by the Attacker, it is stored in Wat. PDU tokens are
classified, and stored. Then, a random choice determines the basic operations to apply.
Afterwards, the PDU and the selected basic operation are informed to the Hypotheses
class. Among other operations, the Hypotheses class verifies that modified tokens do not
take nonces nor secret key values. In case of respected hypotheses, the Attacker applies
the basic operation. Otherwise, the Attacker is forced to select another operation. In
the first case, a PDU ′ with a modified time context is obtained, and Attacker executes
PDUNotFresh. Otherwise, the Attacker executes PDUFresh. Then, a random choice
decides whether the modified PDU ′ tokens are stored in Wat, or not. Last, the message
is sent to its destination.

The traces of LTSTD are evaluated to determine freshness satisfaction, and possible
attacks. This evaluation is based upon the following rules:

1. Whenever the Attacker creates PDU ′ as being equal to PDU with an altered
time context (PDUNotFresh), the Freshness Observer must eventually execute
FreshnessKO for the associated PDU ′.

2. Whenever theAttacker creates PDU ′ as being equal to PDU , then the Freshness Observer
must eventually execute FreshnessOK for the associated PDU ′.

3. Whenever a message is lost, the Freshness Observer should activate MsgLostObs.

Verification of freshness in traces is performed according to the following definition.

Definition 10. Freshness Verification.
Let Tr := α0, . . . , αn a trace in LTSTD.
We say that Tr verifies freshness for a PDU iff there exist actions αk, αl, αm in Tr,
0 ≤ k < l < m ≤ n, k, l,m ∈ N such that:

1. αk = SecurityObserver.receive?PDU?sendT ime

2. αl = SecurityObserver.receive?PDU ′?recT ime

3. Either αm = SecurityObserver.FreshnessOK!PDU ′ or
αm = SecurityObserver.FreshnessKO!PDU !PDU ′ is activated.

4. ∀j such that k < j < l or l < j < m, αj =Tclass.Tgate... and Tclass 6= SecurityObserver
.
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Table 9 Trace evaluation for verification of Freshness in TURTLE Designs

hhhhhhhhhhhhhhhhhhhhhhhhhhhActions Attacker

Actions Security Observer
FreshnessOK FreshnessKO

PDUFresh Trace OK Model Flaw
PDUNotFresh Model Flaw Trace OK

The verification of LTSTD traces with respect to Attacker operations is summarized
in Table 9.

We finalize this section by providing a definition that characterizes a trace with fresh-
ness attack traces.

Definition 11. Freshness attack.
Let Tr := α0, . . . , αn a trace in LTSTD.
We say that Tr is a freshness attack for a PDU iff there exist actions in Tr namely
αi, αj, αk, αl αm, i < j < k < l < m, i, j, k, l,m ∈ N, such that:

1. αi = SecurityObserver.receive?PDU?sendT ime

2. αj = Attacker.PDUNotFresh!PDU ′

3. αk = SecurityObserver.receive?PDU ′?recT ime

4. αl = SecurityObserver.FreshnessKO!PDU !PDU ′

5. αm = CEX .endOK

6. Tr and αi, αk and αl satisfy definition 10

7. ∀r such that l < r < m, αr /∈ {αi, αj, αk, αl, αm}.

Remark 6. Definitions 10 and 11 rely on the simplified communications channel. More
complex channels require to modify accordingly these definitions.

3.3.5 Limitations and Conclusions

TURTLE Designs are composed of Communicating entities, crypto libraries, Attacker,
Security Observer and channels. The combination of them makes it quite simple to
model protocols, and their related security properties. The latter can be evaluated using
model-checking techniques. TTool efficiently supports the modeling phase, as well as the
formal verification at a push of a button, relying on CADP.

3.4 ProVerif Verification Approach Overview

3.4.1 System Modeling

ProVerif is a toolkit that relies on Horn clauses resolution for the automated analysis of
security properties over cryptographic protocols. ProVerif takes as input a set of Horn
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Clauses, or a specification in pi-calculus and a set of queries, and outputs, for each query,
whether it is satisfied (true) or not satisfied (false). Additionally, ProVerif tries to iden-
tify a trace explaining how it came to the conclusion that a query is not satisfied. In this
subsection we explain how EVITA protocols can be modeled and how security properties
can be proved on those models, with ProVerif.

Pi-calculus is a formal language that belongs to the family of formal languages based
on process algebras. In ProVerif, a specification takes the form of a system represented as
a pi-calculus [4] process and properties represented as queries. The definition of processes
is presented in Table 10.

Table 10 Definition of the process calculus

Notation Semantics
M,N ::= Terms
x, y, z Variables
a, b, c, k Names
f(M1, . . .Mn) Constructor application

P,Q ::= Processes
M̄〈N〉.P Output N in M then P
M(x).P Input M in x then P
0 Null process
P |Q Parallel composition
!P Replication of P
(νa)P a is restricted to P
let x = g(M1 . . .M2) in P else Q Destructor application
if M = N then P else Q Conditional
evt(M).P Event evt(M) then P

The syntax of processes is given in Table 11 when this syntax differs from the definition.
A complete specification of the ProVerif process grammar can be found in [10].

Table 11 Equivalences between pi and ProVerif process notation

Notation
pi process ProVerif process
c̄〈M〉.P out(c,M);P
c(M).P in(c,M);P
(νa)P private free a. (inside of P)
begin(M).P event begin(M);P
end(M).P event end(M);P
begin ex(M).P not denoted
end ex(M).P not denoted
not denoted phase n;P
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For modeling security protocols, the ProVerif developers suggest to rely on processes
for modeling Communicating Entities (CE). The toolkit already includes a Dolev-Yao-
based model of attacker. The modeling of CEs, the attacker process as well as verification
details are further described in next sections.

To ease cryptographic protocol description, we decided to split a ProVerif model into
several sections named Basic Blocks, Hypotheses, Queries, Variables, Processes and Main
Process. In the next paragraphs, we describe the purpose of those different sections. Other
model components are described in subsequent sections.

Basic Blocks
The basic blocks represent the crypto primitives and other functions used for modeling

purpose. Additionally, Basic Blocks may include the so called predicates, clauses and
equations. Basic Blocks are meant to define the most basic structures and functions
used by processes to modify variables, and create or reduce data structures. The Basic
Blocks sections is usually provided at the beginning of the pi-calculus specification. Terms
involved in blocks, i.e., in function and data structure definitions, do not require a previous
declaration. Since each definition of block is independent from another definition, the same
terms can be used in several definitions. Blocks that are used to generate new structures
are called constructors. Analogously, Blocks that are used to reduce structures are called
destructors. Several reserved words are used to declare constructors and destructors; fun,
reduc, equation, etc.. Moreover, unless explicitly specified with the keyword private,
a block can be used in every process in the model. A block labeled with the keyword
private cannot be used by attackers ((νa)Q). Finally, Table 12 defines a set of blocks
useful for our cryptographic proofs.

Table 12 Basic Blocks in ProVerif Modeling

Notation Type Semantics

encrypt(x, k) Constructor Term x encrypted with key k

decrypt(encrypt(x, k), k) = x. Destructor Cipher text decrypted with key k

MAC(m, k) Constructor MAC code of term m with key k

verifyMAC(m,MAC(m, k), k) =
validMAC

Equation Verification of the MAC of m
with key k

Pk(k) Constructor The public key associated to the
private key k

host(k) Constructor The host associated to the pri-
vate key k

encryptSK(m, k) Constructor Encryption of the term m with
private key k

decryptPK(encryptSK(m, k), Pk(k)) = m Destructor Decryption with the public key
Pk(k)

encryptPK(m,Pk(k)) Constructor Encrypt term m with the public
key Pk(k)

decryptSK(encryptPK(m,Pk(k)), k) = m Destructor Decryption with the private key
k

Hash(m) Constructor The hash of term m

Continued on next page
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Table 12 Basic Blocks in ProVerif Modeling

Notation Type Semantics

encryptSK(Hash(m), k) Constructor The signature of term m with key
k

verifySign(m, encryptSK(Hash(m), k),
Pk(k)) = validSign

Equation Verification of a signature with
the public key Pk(k)

Cert(id, sign) Constructor A certificate for the identity id
with signature sign

getID(Cert(id, sign)) = id Destructor Get the identity part id of the
certificate

getSign(Cert(id, sign)) = sign Destructor Get the signature sign of the cer-
tificate

verifySign(id, sign, Pk(k ca)) = validSign Equation Verify signature of a certificate

minus(N, one) Constructor Decrease one to term N

shares(k, kmID) Constructor The key k is shared to the Key
Master kmID

Psk(shares(k, kmID)) = k Destructor Retrieves the shared key k

theKMof(shares(k, kmID)) = kmID Destructor Retrieves the Key Master ID
kmID

group((x1, x2, x3)) Constructor A group of terms denoted by
x1, x2 and x3

get i(group(x1, x2, x3)) = xi Destructor Retrieves the term i of a group

Continued on next page

Hypotheses
This section is intended to declare the secrecy assumptions that should be verified in

the model. A term is not accessible by an attacker iff it is declared as private (See Basic
Blocks) or if it is defined inside of a process. And so, non-private globally declared terms
are assumed to be known by every process in the model. Thus, the Hypotheses section
is a mean to formally express secret material that shall never be known by attackers.
For example, private keys should be restricted for the attacker from the very beginning.
Consequently, they should be either declared with the label private or inside of a process.
Table 13 exemplifies a few secrecy assumptions.

Variables
Free variables, names and other terms can be declared as follows.

[private] free name.

As it was mentioned, free variables labeled with private are initially restricted for
the attacker, but they are known by all other processes of the model. Variables can be
also defined inside processes by using the reserved word new. The syntax is as follows:

new name;
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Table 13 Example of secrecy assumptions in ProVerif

Hypothesis Semantics
not attacker : sk ca. The secret key sk ca is initially restricted for the

attacker.
not attacker : pk ecu. The public key pk ecu is initially restricted for the

attacker.
not attacker : firmware. The term firmware is initially restricted for the

attacker.
not SesK. The term SesK is initially restricted for the at-

tacker.

The scope of so defined variables is local to the process, and to subsequent processes.
Local variables are useful to represent secret material to be interchanged between pro-
cesses, or to be used internally by a process. Hence, secret keys and random numbers are
usually defined using new. At last, data structures can be used to define terms:

data name/n.

This provides a mean for the definition of terms that are composed by a certain number
n of elements. data is useful to define tags: Tags are a mean to differentiate between
instances of the same function. Such differentiation enforces termination of the ProVerif
resolution algorithm by avoiding unification between such instances which prevents loops
in resolution process. Some instances of variables definitions are presented in Table 14.

Processes
In our approach, we associate to each Communicating Entity (CE) in the protocol

one single process (and corresponding sub-processes). The definition of those processes
relies on previously defined Basic Blocks and Variables. Since each process is associated
with a single CE in the protocol, the process model is aligned to the CE specification.
Consequently, the initial knowledge of each CE should be taken into account in the process
definition. The process definition begins with the let CE_name = declaration. Also, each
process has a specific identifier. To send and receive information, processes are allowed
to use channels declared as free variables. Finally, CEs follow the underlying generic
approach:

1. Message forging

2. Message sending

3. Message reception

4. Message validation (e.g., checking MAC, certificates)

5. And so on...

In the first stage, (forging a message), the information to be sent is arranged in a
tuple. The first element of this tuple is always the identity of the process. If the message
should be MACed, signed or should include a certificate, then the respective Basic Blocks
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Table 14 Examples of ProVerif variables declaration

Term declaration Semantics
free c. A non restricted channel c
private free c1. A restricted channel c1
private free pk ecu. The public key pk ecu is declared as restricted for

the attacker
private free firmware. The term firmware is declared as restricted for

the attacker
private free SesK. The term SesK is declared as restricted for the

attacker
data validMAC/0. A term to inform successful MAC verification
data validSign/0. A term to inform successful signature verification
data validCert/0. A term to indicate successful certificate verifica-

tion
data Ack/0. A term to represent acknowledgment
data one/0. A term to represent the number 1
new sk ccu; The key sk ccu is declared inside of a process
new N1 dt; The nonce N1 ccu is declared inside of a process
data ccu id/0. The identification associated to ccu
data ecu id/0. The identification associated to ecu
data tg1/0. The tag 1
data tg2/0. The tag 2

are used to generate additional elements of the message. The example below shows the
message Con_req, N1_ecu that is forged by the CE ecu_id. Such message is additionally
protected with a MAC generated using the key SesK.

new N1_ecu;

let M1= (ecu_id, Con_req, N1_ecu, MAC((Con_req,N1_ecu),SesK)) in

The just forged message can be output in a channel named c as follows (message
sending):

out(c, M1);

Or, in a more concise way:

out(c, (ecu_id, Con_req, N1_ecu, MAC((Con_req,N1_ecu),SesK)));

Channels in ProVerif have a broadcast semantics, and so all processes can listen to
all messages. The Attacker can also listen to those messages, apart when those messages
are sent on private channels. Additionally, since channels are broadcast channels, no
message destination is required. However, whenever a CE process receives a message
from a channel, it can review whether the pattern of the received message corresponds
to the expected pattern. In case of pattern match, the process accepts the message i.e.
it goes on to the next pi-calculus operator. For instance, the next code shows how the
message M1 in the previous example is received by a process.
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in(c, m1);

let (hostX, =Con_req, N1, MAC1)=m1 in

In this example, m1 should match the pattern (hostX, =Con_req, N1, MAC1) in order
to be accepted, otherwise the process can not continue its execution (blocking point). The
validation phase of a received message depends upon the mechanisms that the CE process
is allowed to use. In any case such primitives should be previously defined as a part of the
Basic Blocks section. Apart from the attacker, ProVerif is not able to identify whether a
process is allowed to use a primitive, or not. Consequently, the fact that primitives are
used in compliance with the protocol specification is up to the designer. In the previous
example, the process that inputs m1 must know the key SesK in order to verify the MAC.
Assuming that the key SesK is known by the receiving process, then the MAC verification
of m1 can be performed as follows:

let Res1 = verifyMAC((Con_req, N1), MAC1, SesK) in

if Res1 = validMAC then (

... process continuation )

else (

... process in case of wrong MAC )

The validation of signatures can be analogously performed. For instance, the signature
of a message m is composed by the hash of the message encrypted with the respective
private key: encryptSK(Hash(m),k). Therefore, the validation of such signature requires
the respective public key Pk(k).

let Res = verifySign(m,encryptSK(Hash(m),k),Pk(k)) in

if Res = validSign then (

... process continuation )

else (

... process in case of wrong signature )

The validation of certificates takes two steps; in the first one the public key and the
signature of the certificate are obtained. In the second one, the signature is verified with
the public key of the Certification Authority. The code below exemplifies the procedure.

let PK = getID(Certificate) in

let signCert = getSign(Certificate) in

let Res = verifySign( PK,signCert, pk_ca) in
if Res = validSign then (

... process continuation )

else (

... process in case of wrong certificate )

After message validation, the receiving process may obviously either forge a new
message (phase 1) or wait for a new incoming message (phase 3). When forging a message
that corresponds to an answer of the previously received message / data, the newly forged
message may also rely on nonce modification, time stamps as well as authentication codes.
For example:
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out (c, (ccu_id, Ack, minus(N1,one), MAC((Ack, minus(N1,one)),SesK)));

Main Process
The Main Process is intended to start CEs processes with specific parameters. More-

over, the Main Process can precise the number of sessions for each process.
The Main Process is itself a process and thus is described with operators provided in

Tables 10 and 11. The declaration of that process begins with the reserved word process.
Afterwards, the declaration of variables is made. Since such declarations are inside of a
process, the attacker is unable to know their values. Thus, secret material can be securely
defined. If required, a specific identification of CE processes can also be generated during
that variable instantiation.

new ccu_id; (* identification of ccu *)
new csc_id; (* identification of csc *)
new sk_ecu1; (* declaration of secret key of ecu1 *)
new sk_ecu2; (* declaration of secret key of ecu2 *)

Afterwards, the relations between declared variables can be established. Indeed, re-
spective Basic Blocks are required in order to specify such relations.

let ecu1_id = host(sk_ecu1) in (* host associated to sk ecu1 *)
let ecu2_id = host(sk_ecu2) in (* host associated to sk ecu2 *)
let pk_ecu1 = Pk(sk_ecu1) in (* public key associated to sk ecu1 *)
let pk_ecu2 = Pk(sk_ecu2) in (* public key associated to sk ecu2 *)

Additionally, public keys are sent on an insecure channel so that the attacker can
access to them (they are not meant to be kept secret):

out (c, pk_ecu1); (* broadcast public key pk ecu1 *)
out (c, pk_ecu2); (* broadcast public key pk ecu2 *)

Finally, CEs processes are started. According to the protocol specification, CE pro-
cesses may be executed concurrently: the operator | is used for that purpose. To generate
an infinite number of sessions of a process, the operator ! is used. Process replication is
indeed of paramount importance for the verification of security properties. For example
the Main Process ends with the execution of such processes, that are started an infinite
number of times, and in parallel.

((!processECU1)|(!processECU2))

3.4.2 Properties

Properties are represented with ProVerif queries. The semantics of queries is directly
related to facts and events in processes. A complete specification of the query grammar is
provided in [10]. Our specific description of queries is mainly focused in the 〈realquery〉
syntax. In this context, the verification of some hypotheses hyp based upon a set of facts
gfact can be directly expressed as:

42



〈realquery〉 := 〈gfact〉 ==> 〈hyp〉.

Next paragraphs demonstrate how confidentiality and authenticity properties can be
modeled.

Confidentiality
In previous sections we described how confidential material is declared (See Hypothe-

ses). With ProVerif, A secrecy assumption on a variable can be automatically verified:
Our verification of confidentiality is based on that secrecy assumption. Indeed, CE pro-
cesses execution determine exchanges that may compromise secrecy of variables. Thus, to
determine if confidentiality is preserved for a term key, the following query can be used:

query attacker:key.

Such query leads to a verification process that determines whether the attacker is able
to obtain/derive key, or not.

Authenticity
The verification of authenticity relies in the concept of injective agreement as pro-

posed in [8]. Roughly speaking, an injective agreement establishes an injective relation
between two sets of events. Thus, to prove an authenticity property, events must first be
appropriately declared in CE processes based upon the syntax in Table 11. Events can
be defined with respect to a term M .

event Name(M);

Whenever a process flow reached the previous code, the event is executed and a refer-
ence to the execution of eventName(M), is recorded. Consequently, a infinite replication
of CE processes may lead to an infinite set of executed eventName(M). For the verifi-
cation of the authenticity of a message sent from processA to processB, two sets must
be considered. The first set contains executed events whose informal semantics is “I am
processA and I have sent a message M to processB” whilst the second one contains exe-
cuted events with informal semantics “I am processB and I have received and validated a
message M ”. To create the first set, event sendAToB(M) is included in processA, right
before the sending of M:

event sendAToB(M); out (c, M);

Analogously, event getAToB(M) is included in processB, right after the reception and
validation of M:

int (c, M); event getAToB(M);

An injective relation from the set of received messages and the set of sent messages proves
that all messages M received by processB were necessarily sent by processA. To verify such
an injective relation the following query can be used:

query evinj:getAToB(x) ==> evinj:sendAToB(x).
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3.4.3 Attacker

The attacker paradigm is based upon the Dolev-Yao approach which has been previously
described and referred. The attacker is represented in ProVerif as an arbitrarily pi-process
that can listen to all messages sent on non-private channels. The so acquired knowledge
constitutes the basics for attacker reasoning. Thus, from the attacker viewpoint only two
processes exist: the attacker process itself, denoted by Q, and the process that represents
the overall protocol model, which is denoted by P . Indeed, since P is defined in terms of
CE processes, we can say that each CE process is a subprocess of P . The attacker Q is
defined as follows [8]:

Definition 12. S-Adversary
Let S a finite set of names used by a process P . A process Q is an S − adversary of P
if and only if

1. The process Q does not include free variables (variables that are not assigned).

2. The set of free names in Q, denoted by fn(Q), satisfies fn(Q) ⊂ S.

3. Q does not contain events.

Definition 12 establishes the fact that the attacker may know free names from P
(variables defined with data) and thus his initial knowledge is finite. Moreover, the
attacker is unable to declare events and use knowledge about executed events. Note, that
executed events are not part of the process P but are associated to respective sub process
execution sessions.

The reasoning capability of the attacker takes into account that sub processes which
compose P may be infinitely replicated with the operator !.

The next rules define the operations that an S-adversary Q is allowed to perform [8].
We recall that Q is defined in terms of the set of free names S of P .

1. The S-adversary knows an element a if and only if a ∈ Wat. Wat is the initial
knowledge of the S-adversary.

2. The S-adversary can generate and unbounded number of new names b, unless b is
restricted in P or b is a free name in S. Every new name b is included in Wat.

3. For each non private constructor f of arity n, if the S-adversary knows M1, . . .Mn

then f(M1, . . .Mn) is included in Wat.

4. For each non private destructor g(M1, . . .Mn) → M of arity n, if the S-adversary
knows M1, . . . ,Mn, then M is included in Wat.

5. If g(M
′
1, . . . ,M

′
n) → M

′
and there exist a substitution σ in the finite set of substi-

tutions of g such that M
′
i = σMi, i = 1, . . . , n, and g(M

′
1, . . . ,M

′
n)→ M

′
, then M

′

is included in Wat.

6. For every c̄〈M〉, if the S-adversary knows c then M is included in Wat.

7. If c, M ∈ Wat then the S-adversary can output c̄〈M〉.

In other words, the attacker knowledge is based on message interception, and use of
constructors and destructors from data contained in the acquired knowledge.
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3.4.4 Formal Verification

To verify a query, ProVerif implements a resolution algorithm that first translates the
complete pi-process specification to Horn Clauses [9]. That translation identifies elements
of the attacker Q and elements of the protocol P . To verify a query, the resolution
algorithm determines, based upon a set of inference rules, if the attacker reasoning is able
to derive a trace that contradicts the query, thus proving that the query is false. Otherwise,
if the attacker is unable to find such a trace, then the property is satisfied. Additionally,
if facts on which the query is based upon are not reachable, the algorithm informs that
the query can not be proved. In this subsection we provide a general description of the
resolution algorithm. A detailed description can be consulted in [9].

The resolution algorithm that performs the formal verification of queries is split into
several stages, namely Horn clauses transformation, Simplification, Subsumation, Facts
Selection, Resolution, Saturation, Backwards Depth-First Search and Termination. In
the next paragraphs we present a brief description of those phases.

Horn clauses transformation. The whole pi-process specification is translated into an
equivalent Horn clauses specification. Indeed, every pattern in the process syntax
in Table 10, is associated to a respective set of Horn clauses. Thus the process P is
accordingly translated. Since the attacker Q is a pi-process, its associated reasoning
rules are also represented as a set of Horn clauses. The initial set of Horn clauses
R0 is built by the application of the attacker capabilities to the Horn clauses of
P . Consequently, R0 is composed by clauses of the form Hn ⇒ attacker(M1) ∧
. . .∧attacker(Mk) which means that the hypothesis Hn implies that attacker knows
the terms M1, . . . ,Mk. Indeed, the hypothesis Hn was directly obtained from the
translation of process P .

Simplification. In order to have an efficient algorithm, several simplification functions
are applied to the initial set R0. These functions aim to identify and then eliminate
clauses that are unnecessary for process verification without compromising com-
pleteness [9]. Thus, the simplification eliminates tautologies; if in a clause H ⇒ C
the conclusion C is part of the hypothesis H ′ of another clause, then H ⇒ C is re-
moved. Additionally, if the hypotheses H of a clause H ⇒ C includes attacker(M)
and M is not used elsewhere in the clause, then the attacker(M) is useless and
is therefore removed. Finally, the secrecy assumptions are facts F that prune the
search space by removing F from clauses H ⇒ C where F is part of C. As a
conclusion, the simplification algorithm generates a new set of clauses R1.

Subsumation. A clause H1 ⇒ C1 subsumes H2 ⇒ C2 when there exists a substitution
σ such that σC1 = C2 and the facts of σH1 are contained in H2. Thus, the sub-
sumation relation determines clauses that are “contained” by more generic ones.
Thus, if H1 ⇒ C1 subsumes H2 ⇒ C2 and both of them are contained in R1, then
H2 ⇒ C2 can be eliminated. After Subsumation phase, all the subsumed clauses
are eliminated thus generating a reduced set of clauses R2.

Facts selection. In order to speed up even more the resolution algorithm, a selection
function is applied to the set R2. According to the authors, such technique does
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not compromise completeness of verification [9]. The selection function takes a
clause H ⇒ C and returns a set of facts F that are part of H. The set of facts
F will be used in the Resolution phase to identify substitution clauses that can
be reduced/simplified. Several rules are provided to classify non selectable facts in
hypotheses. For instance, since facts of the form attacker(x) with x variable, will be
unified with all facts of the form attacker(y), they are classified as non selectable.
Moreover, clauses of the form “if event(M) has been executed then ...” are never
verified by ProVerif, consequently, facts of the form event_ex(M) are not selectable.
As a result of the selection process sel(), a set of selectable facts F is associated to
each clause H ⇒ C i.e., F = sel(H ⇒ C).

Resolution. Let two clauses, namely R1 = (H1 ⇒ C1) and R2 = (H2 ⇒ C2). The
Resolution phase looks for a possible unification between a fact F , with F ∈ H2,
and C1. If there exists F , then a new inferred clause R3 can be defined as the
application of R1 and R2 one after the other. If we denote this unification with σ,
R3 can be written R3 = R1 ◦ R2(F ) and R1 ◦ R2(F ) = σ(H1 ∪ (H2\{F})) ⇒ σC2.
The new clause R3 is equivalent to the two initial clauses R1 and R2. However, since
the fact F has been removed from H2, the number of terms as well as the number
of clauses is decreased. Note that the Resolution process operates over the set R2.
Moreover, for every clause R = (H ⇒ C) in R2, the facts F from H are selected
according to the function sel(H ⇒ C) described in the previous phase.

Saturation. The Saturation phase is an iteration of previous phases that takes R2 as the
initial set. Indeed, For each clause in R ∈ R2 such that sel(R) = ∅ the algorithm
looks for clauses R

′ ∈ R2 that can be unified through the Resolution procedure.
In such case the clauses R and R

′
are replaced by the derived clause R ◦ R′

(F ).
In order to reduce procedure complexity, the clause R ◦ R′

(F ) is simplified. After
a first iteration, a new set of clauses R3 is obtained. Afterwards, the subsumed
clauses of R3 are eliminated. The saturation procedure is exhaustively repeated
over subsequent setsRi until a fixed point is found. Indeed, a fixed point is obtained
if after iteration on clause R the same clause is obtained. The result of this phase
is the set of clauses whose hypotheses do not have selectable facts, i.e., sel(R) = ∅.
This set is denoted by Saturation(R0). The structure to generate Saturation(R0) is
stored.

Backwards Depth-First Search. The search is based upon a criterion for derivable
facts: a fact F is said to be derivable from a set of clauses R if and only if there
is a clause H ⇒ C obtained from Saturation(R) satisfying that F is part of the
conclusions C. The algorithm additionally requires that every instance of F can be
derived fromR and that the last implication of such derivation is included in Satura-
tion(R). Thus the set Saturation(R) determines patterns for space exploration. To
determine if a query R is derivable from the set R0 with respect to Saturation(R0)
a backwards depth-first search is performed. Such search takes a selected fact F
from Saturation(R0) and tries to backwardly derive the hypothesis of the clause.
The search ends when the query R is subsumed by a clause of Saturation(R0) or
when the set of selectable facts sel(R) is empty. More particularly, a confidentiality
queries directly is verified directly if the clause can be derived from R0 [3].
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Termination. In order to force algorithm termination, some protocol instances should
be tagged. Tagging is a technique that includes a tag to every crypto primitive
in the model. Thus, differentiation between instances of the same function [11] is
ensured. Through this procedure, the algorithm prevents loops generated in deduc-
tion of clauses when the resolution phase is implemented. For instance, the substi-
tution minus() can be unified with the clause attacker(encrypt(N, k)) as follows:
attacker(encrypt(minus(N, one), k). Consequently the clause attacker(encrypt(N, k))
⇒ attacker(encrypt(minus(N, one), k) is deduced. However the fact attacker(encrypt(N, k))
can be eventually derived from attacker(encrypt(minus(N, one), k). Consequently
a loop is generated. The inclusion of tags in primitives avoids such possibility. In
the previous example, the tagging technique leads to attacker(encrypt((tag1, N), k))
and to attacker(encrypt((tag2,minus(N, one)), k). Since tag1 and tag2 are not part
of the possible substitutions, the clauses are not unified thus avoiding the loop.

3.4.5 Limitations and Conclusions

Security properties such as confidentiality and authenticity can be proved using the
ProVerif environment. The verification of queries in ProVerif is based upon a formally
proved algorithm. Despite its advantages, the authors recognize some limitations [9]. In-
deed, the translation of pi-process models into Horn clauses introduces approximations.
As a consequence of those approximations, it is stated that the tool fails to prove protocols
that initially need to keep a value as secret and later reveal it [9]. Ans so, the tool is not
complete since false attacks may be produced. Also, to our knowledge, a suitable way to
model the time is not provided by the framework. Consequently, freshness properties can
not be directly represented nor verified.

3.5 AVATAR Verification Approach Overview

The main idea of AVATAR [15] is to integrate in one environment the possibility to
describe the system (e.g., the EVITA system), and to be able to perform formal verification
of security properties, and automatically generate C Code (e.g., for WP 4000). AVATAR
can also be seen as a new version of TURTLE, that addresses drawbacks of the latter,
and makes it more adequate for both the formal proof of security properties, and also
more adequate for code generation purpose. AVATAR has been defined, and partially
implemented in TTool, in the scope of the EVITA project.

3.5.1 System Modeling

General modeling approach
AVATAR is based on SysML Block Diagrams (BD) and State Machine Diagrams

(SMD). Basically, AVATAR Block Diagrams are made upon blocks and unidirectional
communications between blocks. Communications are asynchronous or synchronous, and
they are based on signals carrying values. Blocks can contain other blocks (hierarchical
structure), and support other object-oriented paradigms as well (e.g. access rights on
attributes and methods). Attributes can be of either Integer or Boolean type, and data
structures can be built upon specific data structure blocks stereotyped << datatype >>.
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The behavior of each block is defined with a State Machine Diagram. An AVATAR
State Machine Diagram supports all operators, apart from the history one. AVATAR
also supports hierarchical states, but do not support the deep or swallow reactivation
of states. Last but not least, AVATAR SMD distinguishes between functional delays
after(dmin, dmax) and computational delays computeFor(dmin, dmax). The semantics of
AVATAR has been first defined in UPPAAL, but the semantics of a subset of the profile
has also been defined in the pi-calculus language supported by ProVerif. This semantics
is further explained in Section 3.5.4.

AVATAR-Sec: a subset of AVATAR
AVATAR-Sec is the subset of AVATAR that is relevant for achieving security proofs.

Elements in AVATAR, but not in AVATAR-Sec, are simply ignored when translating an
AVATAR modeling to ProVerif.

• Communications. AVATAR communications are based upon unidirectional one-
to-one synchronous or asynchronous communications. In AVATAR-Sec, only asyn-
chronous communications are supported. Since all communications are assumed
to be private in AVATAR, AVATAR-Sec assumes that each block has defined two
signals: chout and chin, which can be respectively used for receiving and sending
purpose. No channels need to be declared for using those signals, which are con-
sidered to be sent on / received from a public broadcast channel common to all
blocks.

• Attributes. The type of attributes is not used in AVATAR-Sec. The modification
of variables in an AVATAR-Sec SMD is thus ignored. However, data structures can
be declared and used, for information purpose, e.g., defining a key or a message
simplifies the modeling task.

• Methods. Each block of AVATAR-Sec contains a pre-defined list of cryptographic
functions (e.g., decrypt(), encrypt(), MAC(), etc.). Other methods can be declared
by blocks, but they are translated as ProVerif events.

• Logical operators of SMD. Apart from variable assignation, all operators are
supported i.e., start states, stop states, states, hierarchical states, choices, sending
of signals, receiving of signals and method calls.

• Temporal operators of SMD. They are not supported by AVATAR-Sec.

Modeling knowledge
Knowledge sharing, at the beginning of a protocol run, is a very important point for

achieving security proofs. However, object-oriented models do not support such sharing,
making it mandatory to modify AVATAR for that purpose. For such modeling elements
which do not fit at all with the object-oriented paradigm, the best options is probably to
complement Block Diagrams with notes containing specific pragmas.
Finally, the following pragma can be used in AVATAR-Sec Block Diagrams:

] InitialCommonKnowledge BlockID.attribute (blockID.attribute)*
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Figure 8 Example of an AVATAR Block Diagram

And, for example, to model that the key k1 of Block block1 is the same as the key k2
of Block block2 at the beginning of the system execution:

] InitialCommonKnowledge block1.k1 block2.k2

Figure 8 contains an AVATAR Block Diagram. The latter has two blocks (Alice and
Bob), and declares two data structures (Key and Message). Alice and Bob declares a set
of cryptographic methods (all of them are not visible on the diagram). Also, the note
declares that sk is a pre-shared data (a key) between Alice and Bob:

] InitialCommonKnowledge Alice.sk Bob.sk

The behavior of Alice and Bob is provided into two respective State Machine Di-
agrams (see Figures 9-a and 9-b, respectively). Alice first puts its secretData into a
message m.data = secretData, then encrypt this message m1 = sencrypt(m, sk) with
the symmetric encryption function, and finally sends the resulting message on the broad-
cast channel chout(m1). Bob waits for a message on the broadcast channel chin(m2).
Then, Bob tries to decrypt the received message m = sdecrypt(m2, sk) and then extracts
from the message the secretData sent by Alice receivedData = m.data.

3.5.2 Properties

Confidentiality and authenticity can be directly expressed at Block Diagram level.

Confidentiality
Confidentiality in AVATAR-Sec can be modeled as a simple pragma provided in the

note of a Block Diagram. The confidentiality must be specified as the confidentiality of
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a – Alice b – Bob

Figure 9 State Machine Diagrams of Alice and Bob in AVATAR

an attribute of a block:

] Confidentiality block.attribute

Coming back to the example provided in Figure 8, the following statement provided
in the note models that the secretData attribute of Alice shall remain confidential i.e.
never accessible to an attacker:

] Confidentiality Alice.secretData

Authenticity
Authenticity in AVATAR-Sec can be also modeled as a pragma given in the note of a

Block Diagram. This authenticity is meant to prove that a message received by a block
block2 was really sent by a block block1. To model so, the authenticity pragma must
specify two states, one of the sender block, i.e. one state s1 of block1, and one state s2 of
block2. Also, for the authenticity to be proved with ProVerif, s1 shall be put right before
the sending of the message m1 for which authenticity is to be proved. Analogously, s2
shall be put right after message m2 – equal to m1 – has been received (and validated,
see section 3.4.2). Finally, the authenticity pragma is as follows:

] Authenticity block1.s1.m1 block2.s2.m2

For example, in Figure 8, the authenticity statement models the fact that all messages
m1 sent by Alice after state sendingMessage shall be authentic for Bob receiving it into
a message named m2 before its state messageDecrypted.

] Authenticity Alice.sendingMessage.m1 Bob.messageDecrypted.m2
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3.5.3 Attacker

In AVATAR-Sec, the attacker model is implicit i.e. there is no need to model it either
at Block Diagram level, or at State Machine Diagram level. More precisely, the attacker
model AVATAR-Sec relies on is the one of ProVerif, see section 3.4.3.

3.5.4 Formal Verification

TTool now fully supports AVATAR-Sec, and therefore implements a press-button ap-
proach for verifying confidentiality and authenticity security properties from AVATAR-Sec
models. Briefly, the AVATAR-Sec translation process is as follows:

Definition 13. AVATAR-Sec translation process
Let T the translation process that takes as input a Block Diagram BD, and a set of
pragmas P , and Pr the resulting ProVerif specification:
Pr = T (BD,P ).

• A BD contains a set of attributes, a set of functions, a set of signals and a reference
to a State Machine Diagram (SMD).

• An SMD is a set of interconnected logical operators: start state, stop states, tran-
sitions – with attribute settings and function calls -, choices, states, sending in a
channel, receiving in a channel.

• The type of a pragma is either InitialCommonKnowledge, Confidentiality, or
Authenticity.

T applies the following set of rules:

1. For each block b ∈ BD, a ”first” process fp is generated. Then, for each state s of
the State Machine Diagram smd of b, another process ps is generated.

2. fp instantiates all attributes that are not referred in InitialCommonKnowledge or
Confidentiality pragmas are created: new attr;. Then, fp makes a call to the ps
process corresponding to the start state of smd.

3. Each ps is created as follows. An event is first called for tracing the reachability
of states Event entering state nameofs();. Then, each branch of logical operators
linked from s is considered until another state is reached on that branch:

• Sending on a channel c of a message m is translated as a out(c,m);.

• Receiving on a channel c of a message m is translated as a in(c,m);.

• The affectation of a variable is translated using a let operator, e.g.:
let m1.data = (m2.data,m3.data);.

• The call of a cryptographic function is translated with a ProVerif cryptographic
function and a let operator:
let themac = MAC(msg1.data, keyOfGroup.data);.
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• The call of a non-cryptographic function is translated with a simple call to an
event of the same name of the function, and with the same parameters, e.g.,
Event function(par0, par1);.

• The various branches starting from state s are selected using the if...else
ProVerif statement.

4. The main process mp of the ProVerif specification instantiates all attributes listed
in InitialCommonKnowledge pragmas. Then, it instantiates in parallel, and for
an infinite number of sessions, all fp processes, e.g., (!fp1)|(!fp2)|...|(!fpn).

5. Confidentiality pragmas referencing a block b and an attribute attr of b are trans-
lated as a declaration of attr as follows: private free attr. and with a query of the
following form:
query attacker : attr.

6. Authenticity pragmas of the form b1.state1.attr1b2.state2.attr2 are translated us-
ing statements of the following form: query evinj : b2 state2(attr2) ⇒ evinj :
b1 state1(attr1)..
Additionally, in the process ps where s = s1, a call to Event b1 state1(attr1) is
added at the beginning of the process. Similarly, a call to Event b2 state2(attr2) is
added at the beginning of the process ps where s = s2.

TTool executes T at the push of a button. At first, several options are proposed for
the code generation, in particular how choices are taken into account. Then, TTool makes
a call to ProVerif, and outputs the following results (see for example Figure 10, the result
provided by TTool when applying the verification on the Alice-Bob example):

• For each Confidential pragma, an information is provided to indicate whether the
data provided in the pragma was proved to be secret, or not.

• For each Authentiticy pragma, an information is provided to indicate whether the
authenticity holds, or not.

• For each state s of each smd, and information is provided to indicate whether the
s is reachable, or not.

• Each query that could not be proved is also listed. An option makes it possible to
obtain the trace leading to the query violation: the trace is the raw trace output by
ProVerif.

3.5.5 Limitations and Conclusions

AVATAR-Sec makes it possible to prove security properties from a model made with a
well-known modeling approach i.e, structuring the system with a SysML Block Diagram,
and describing the behavior of each block with a State Machine Diagram. No or little
knowledge of ProVerif is necessary to perform first proofs. Adaptations of this AVATAR-
Sec shall nonetheless be studied for supporting more AVATAR operators, and for proving
more security properties (e.g., integrity, freshness).
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Figure 10 Example of verification results as displayed by TTool
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3.6 Keying Protocol with Key Master

3.6.1 Protocol Description

The Keying Protocol with Key Master ECU aims to securely distribute a randomly gen-
erated key among the members of a so called group of Electronic Control Units (ECUs).
The key to be distributed is referred as Session Key (SesK). In our description, the ECU
that creates the SesK is referred as generator. When the protocol is triggered, the gen-
erator creates the SesK and sets its flag to ’verify’ (use flag=verify, see [19], Key Data
Structures). Thus, other ECUs in the group are enforced to use the SesK only for MAC
verification. Afterwards, the SesK is sent to the Key Master for group distribution. Since
the Key Master owns the Pre-shared Symmetric Key (PSK) of every ECU in the group,
the generator encrypts the SesK with its PSK. Such message includes a time stamp and
is finally protected with a MAC (Message 1). After reception, the Key Master verifies
Message 1 and in case of a valid request, the SesK is imported into its HSM. From this
point, the Key Master is responsible for SesK distribution. Consequently, the SesK is
protected with the PSK of the respective target ECU. Such message is time stamped and
MAC protected (Message 2). After reception of Message 2, the target ECU verifies its
validity and afterwards imports the new SesK into its HSM. Finally, a message includ-
ing an acknowledgement flag (ACK) is sent by the target ECU to the Key Master thus
informing SesK acceptance (Message 3). Message 3 also includes a time stamp and is
MAC protected. The Key Master receives the acknowledgement and a security check is
performed. The Key Master should repeat the just described procedure for every ECU in
the group (different from the generator). After SesK distribution, the Key Master informs
the results to the generator (partial or total accomplishment). The message includes the
respective ACK code, the time stamp and is MAC protected (Message 4). Finally, after
reception of Message 4, the generator verifies message validity and afterwards the protocol
ends.

Once distributed, the SesK key allows for authentic unidirectional communications
between the generator and the rest of the group. Indeed, the generator can efficiently
broadcast messages that are MAC protected with the SesK thus ensuring its authenticity.
Additional information of this protocol can be found in EVITA technical report D3.3 [18].
A figure of the just described sequence is presented in 11.

3.6.2 Targeted Security Properties

According to the specification provided in EVITA D2.3 [17], we specifically target the
following Security Requirements:

1. Authenticity 101 (EVITA D2.3 [17], page 31)

2. Integrity 104 (EVITA D2.3 [17], page 34)

3. Freshness 102 (EVITA D2.3 [17], page 37)

4. Confidentiality 101 (EVITA D2.3 [17], page 42)

The rest of the section is dedicated to the proof of whether these security requirements
are satisfied – or not - in the Keying Protocol.
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Figure 11 Sequence Diagram of the Keying Protocol

3.6.3 Model for Verification of DoS (TURTLE)

We strongly participated to the definition of protocols. The proof of this is the section on
protocol evaluation in [18]. If the document is dedicated to protocols as defined in [18], the
definition of protocols was an iterative process, with brainstorming on various versions of
protocols, during which models and verification techniques were used to identify first flaws,
and correct them accordingly. An example of this concerns the Key Master Protocol, and
more particularly denial of Service attacks. Indeed, if an attacker intercepts messages
from Key Master to destination ECUs, then, the protocol was stuck, and the Security
Watch Dog could not be informed of the problem. Thus, the protocol was enhanced with
the use of timers, the use of a retransmission counter, and information sent to the security
Watchdog whenever a problem was encountered when distributing the session key. For
example, a first version of the protocol, sensitive to DoS attacks between KM and ECUs,
is exemplified in the trace provided in Figure 12. The second version corresponds to a
corrected version of the first trace, see Figure 13.

TURTLE Analysis Diagrams (i.e., TURTLE Sequence Diagrams) were often used to
identify similar flaws.

3.6.4 Model for Verification of Integrity (TURTLE)

The elements that compose the model are briefly described in the following list (See Figure
14). Complementary explanations on the use of TURTLE for proving security properties
can be found in section 3.3.

55



Figure 12 Keying Protocol scenario without timers

Figure 13 Improved version of Keying Protocol scenario
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PDU: The data structure for messages in the protocol.

Parameters: The data structure that includes the parameters of the model.

ECU1: The class that represents the SesK generator ECU.

ECUKM: The class that represents the Key Master ECU in the group.

ECUN: The class that represents a target ECU for SesK distribution.

CAN: The communication channel.

CryptoLibrary: This class includes the crypto primitives in the model.

UTC: A class representing a model for the time.

IntegrityObserver: The class that performs verification of integrity in the model.

The hypotheses for this model were already presented in a previous section (See 3.1.2).
We do not consider additional hypotheses. The definition of the Integrity Observer is
based upon the previous approach presented in section 3.3.4. Indeed, the Security Ob-
server verifies that messages remain unchanged between two observations. The first
observation is taken when a message is sent whilst the second one when the message is
received (See Figure 15). Since the relation between the Integrity Observer and princi-
pals is trusted, he is able to retrieve correct information about concerned events. The
comparison between sent and received messages is based upon the whole PDU contents.
The property is satisfied if no changes are identified between sent and received messages.
In such a case the respective gate is activated. The Integrity Observer is able to identify
if a message that was sent is not received. In the case of PDU lost, the respective gate
is activated. Such integrity fault is assumed as a characteristic of the communication
channel.

3.6.5 Results for Verification of Integrity (TURTLE)

The results are shown in Table 15.

3.6.6 Model for Verification of Authenticity (TURTLE)

The verification of authenticity takes the same TD model as in the verification of Integrity
(See 3.6.4). However, the Integrity Observer is removed and the next elements are added
to the base model (See Figure 14):

AuthenticityObserver: The class that performs verification of authenticity in the model.

The hypotheses for this model were already presented in a previous section (See 3.1.2).
We do not consider further hypotheses. The definition of this Observer is based upon
the approach presented in section 3.3.4. The Authenticity Observer retrieves information
whenever a message is sent and received. This Observer establishes definitions for claimed
and real author. Through those definitions the Observer is able to know the real source
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Figure 14 Overview of the TCD model for the Keying Protocol
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Figure 15 Activity Diagram of the Integrity Observer for the Keying Protocol
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Figure 16 Statistical results for verification of Integrity in the Keying Protocol
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Table 15 Results for verification of Integrity in the Keying Protocol

Verification Scheme TCD model and LOTOS Reachability Graph
File model KeyingProtocolKMasterIntegrity.xml
Property representation Integrity Security Observer
Gate for “Property Satisfied” IntegrityOK
Gate(s) for “Property Not Satis-
fied”

IntegrityKO

Additional gates IntegrityMsgLost
Nb. of states 1904
Nb. of transitions 2769
Nb. of transitions IntegrityOK 678
Nb. of transitions IntegrityKO 0 (See Figure 16)
Nb. of transitions IntegrityMs-
gLost

189

Observations The integrity property is satisfied, however the
possible interactions with a generic attacker
should be considered.

of a message and to determine if the claimed author truly corresponds with such real
source (See Figure 17). In such a case the property is satisfied and the respective gate
is activated. We assume that the Observer knows the owner of a Pre-shared Symmetric
Key (PSK). Thus, the claimed author corresponds to the owner of the PSK that was
used to MAC the message. Since the relation between the Authenticity Observer and
principals is trusted, the Observer is able to retrieve correct information about real and
claimed authors. A relevant characteristic of our Authenticity Observer is that it requires
message integrity.

3.6.7 Results for Verification of Authenticity (TURTLE)

The results are shown in Table 16.

3.6.8 Model for Verification of Freshness (TURTLE)

The verification of freshness takes the same TD model as in the verification of Integrity
(See 3.6.4). As in the verification of authenticity, the Integrity Observer is removed and
the next elements are added to the base model (See Figure 14):

FreshnessObserver: The class that performs verification of freshness in the model.

The hypotheses for this model were already presented in a previous section (See 3.1.2).
We do not consider additional hypotheses. The definition of this Observer is based upon
the approach already presented in section 3.3.4. The Freshness Observer works in parallel
with the UTC time model; whenever a message is sent or received, the Observer knows
the UTC times for those events. Additionally the Observer stores previously received
messages in a list. Thus he is able to compare the just received message with previous
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Figure 17 Activity Diagram of the Authenticity Observer for the Keying Protocol
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Figure 18 Statistical results for verification of Authenticity in the Keying Protocol
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Table 16 Results for verification of Authenticity in the Keying Protocol

Verification Scheme TD model and Reachability Graph generation
and analysis using the LOTOS code generator
of TTool and CADP

File model KeyingProtocolKMasterAuthenticity.xml
(TTool file)

Property representation Authenticity Security Observer
Gate for “Property Satisfied” AuthenticityOK
Gate(s) for “Property Not Satis-
fied”

AuthenticityKO

Additional gates MsgLostObs
Nb. of states 1904
Nb. of transitions 2769
Nb. of transitions Authentici-
tyOK

678

Nb. of transitions Authentici-
tyKO

0 (See Figure 18)

Nb. of transitions MsgLostObs 189
Observations The Authenticity property is satisfied, however

the interactions with a generic attacker should
still be considered.

ones. The reference for comparison is the time stamp. If the received message is in the
list then the property is not satisfied and the respective gate is activated (See Figure
19). If the message is not in the list, then an evaluation is performed; if the difference
between the reception time and the time stamp is less than a given threshold then the
property is satisfied and consequently the respective gate is activated. Received messages
are always stored in the Observer list. When the list is full, the index is reinitialized
and the list is thus overwritten (freshness window). Since the relationship between the
Freshness Observer and the principals is trusted, the Observer is able to retrieve correct
information about concerned PDU’s. Additionally, if the message is lost the respective
gate is activated. A characteristic of our Freshness Observer is that it requires message
integrity.

3.6.9 Results for Verification of Freshness (TURTLE)

The results are shown in Table 17.

3.6.10 Model for Verification of Confidentiality (ProVerif)

The ProVerif model can be separated in the next main sections. Complementary expla-
nations can be found in section 3.4.
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Figure 19 Activity Diagram of the Freshness Observer for the Keying Protocol
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Figure 20 Statistical results for verification of Freshness in the Keying Protocol
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Table 17 Results for verification of Freshness in the Keying Protocol

Verification Scheme TD model and Reachability Graph generation
and analysis using the LOTOS code generator
of TTool and CADP

File model KeyingProtocolKMasterFreshness.xml (TTool
file)

Property representation Freshness Security Observer
Gate for “Property Satisfied” FreshnessOK
Gate(s) for “Property Not Satis-
fied”

AuthenticityKO

Additional gates MsgLostObs
Nb. of states 1800
Nb. of transitions 2561
Nb. of transitions FreshnessOK 574
Nb. of transitions FreshnessKO 0 (See Figure 20)
Nb. of transitions MsgLostObs 189
Observations The freshness property is satisfied in the model,

however interactions with a generic attacker
should still be considered.

Basic Blocks: This section includes the crypto primitives and related model functions.
Additionally it can include the predicates, clauses and equations which conform the
basic structures in the model.

Hypotheses: Includes the model for secrecy assumptions. Such secrecy assumptions
establish the information that is initially restricted to the attacker.

Queries: This section contains a list of queries that are addressed to verify the targeted
properties.

Processes: Includes a list of communicating processes which determines the protocol
definition. In almost all cases each process represents a principal in the protocol.

Main: Since the processes may be defined through parameters (free variables and names),
this section is intended to provide specific values for such parameters. Moreover, this
section determine an order for processes execution and the number of sessions for
each process. Thus, the Main section implements a specific instance of the model.

1. Basic Blocks
The Basic Blocks for the model are presented bellow. These blocks are almost
generic and are used whenever a Security Protocol is modeled at this level.

(* Each agent in the protocol has a group *)

.
data group/1.
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data true/0.

.
reduc get1(group((x1,x2,x3)))=x1.

reduc get2(group((x1,x2,x3)))=x2.

reduc get3(group((x1,x2,x3)))=x3.

.
(* Each agent shares a PSK with ECU-KM *)

.
fun host/1.

private reduc getKey(host(x))=x.

.
(* To decrypt/encrypt messages with a key *)

.
fun encrypt/2.

reduc decrypt(encrypt(x, k),k)=x.

.
(* MACs in messages *)

.
fun MAC/2.

fun verifyMAC/3.

.
equation verifyMAC(m, MAC(m, k), k)=true.

reduc getMsg(MAC(m,k))=m.

.

Note that all the basic blocks can be used by the attacker excepting getKey() which
is a private block and can only be used by principals. This restriction implies that
the attacker is unable to derive a Pre-shared Symmetric Key (PSK) from a ECU
name.

2. Hypotheses
The section Hypotheses expresses the fact that all the Symmetric Preshared Keys
(PSK’s) and the SesK are initially unknown by the attacker. Indeed, the syntax
of such semantics is implicitly related with the initial attacker knowledge, thus not
psk1. implies that the attacker ignores psk1. The content of this section is shown
bellow.

(* Initial secrecy assumptions ( the keys can not be derived from clauses

) *)

.
not psk1.

not pskn.

not SesK.

.

3. Queries
The queries for verification of Confidentiality directly question whether the confi-
dential data can be derived/inferred by the attacker, or not. Such queries are
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addressed in the resolution algorithm implemented in ProVerif. Moreover, queries
verification is based upon the given hypotheses and the exchanges in the protocol.
The section Queries is presented next.

(* Queries for Verification of Secrecy/Confidentiality *)

.
query attacker:SesK;

attacker:psk1;

attacker:pskn.

.

4. Processes
In agreement with the protocol description, the section Processes includes a process
for ECU1, a process for ECUKM and a process for ECUN. Additionally, a process for
the Security Watchdog Module (SWD) is included. Note that the communication
channel c is an insecure one (Dolev-Yao approach), therefore the attacker knows
every exchange between principals. Additionally note that the SWD process send
alerts through a secure channel c1. The definition of the just mentioned processes
is presented in line. The semantics of processes captures the agents behavior in the
protocol.

(* The process for ECU1 *)

.
let processECU1 =

.
(* Msg 1: Sends the new SesK to ECUKM for distribution among the members

of the group *)

.
new ts1;

new SesK;

out(c, (ecu1,encrypt(SesK,psk1), gn, ts1, MAC((encrypt(SesK,psk1), gn,

ts1),psk1)));

.
(* Msg 4: Receives an acknowledgement informing the SesK distribution *)

.
in(c, m4);

let (hostX, ACK4, TS4, MAC4)=m4 in

.
if hostX=ecukm then

let Res4=verifyMAC((ACK4, TS4),MAC4, psk1) in

if Res4=true then

.
(* Use of the SesK in ECU1*)

.
if ACK4=Ack then

if TS4<>ts1 then

.
new ts5;

out(c, (ecu1,gn,ts5, MAC((gn,ts5),SesK)));
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out(c, (ecu1,gn,ts5, MAC((gn,ts5),SesK))).

.
(* The process for ECUKM *)

.
let processECUKM =

.
(* Msg 1: The KM receives the distribution request from an ECU *)

.
in(c, m1);

let (hostY, Encrypt1, GN1, TS1, MAC1)=m1 in

let PSKY=getKey(hostY) in

let Res1=verifyMAC((Encrypt1, GN1, TS1),MAC1, PSKY) in

if Res1 = true then

.
if GN1=gn then

let SESK=decrypt(Encrypt1,PSKY) in

.
(* Msg 2: The KM distributes the SesK among the ECUs of the group *)

.
let hostZ=get3(gn) in

if hostZ<>hostY then

let PSKZ=getKey(hostZ) in

new ts2;

out(c, (ecukm,

encrypt(SESK,PSKZ),GN1,ts2,MAC((encrypt(SESK,PSKZ),GN1,ts2), PSKZ)));

.
(* Msg 3: The KM receives an acknowledgement from ECUN *)

.
in(c, m3);

let (hostW, ACK3, TS3, MAC3)=m3 in

.
let PSKW=getKey(hostW) in

let Res3=verifyMAC((ACK3, TS3),MAC3,PSKW) in

if Res3 = true then

if ACK3 = Ack then

if TS1<>TS3 then

.
(* Msg 4: The KM sends an acknowledgement to ECU1 *)

.
new ts4;

out(c, (hostY,Ack,ts4, MAC((Ack,ts4),PSKY)));

.
(* Use of the SesK in ECUKM*)

.
in(c, mx);

let (=hostY,=GN1,TS5, MAC5)=mx in

if verifyMAC((GN1,TS5),MAC5,SESK)=true then 0

.
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else callSWD.

.
(* The process for ECUN *)

.
let processECUN =

.
(* Msg 2: The ECUN receives the message 2 *)

.
in(c, m2);

let (hostU, Encrypt2, GN2, TS2, MAC2)=m2 in

.
if hostU=ecukm then

let Res2=verifyMAC((Encrypt2, GN2, TS2),MAC2, pskn) in

if Res2=true then

if GN2=gn then

let SESK1 = decrypt(Encrypt2, pskn) in

.
(* Msg 3: The ECUN sends an acknowledgement to ECUKM *)

.
new ts3;

out(c, (ecun, Ack, ts3, MAC((Ack,ts3),psn)));

.
(* Use of the SesK ECUN*)

.
in(c, mx1);

let (hostV, =GN2, TS6, MAC6)=mx1 in

.
if verifyMAC((GN2, TS6),MAC6,SESK1)=true then 0

else callSWD.

.
let callSWD =.

.
out(c1, Alert).

.

5. Main
The last section of the model define specific relations between ecu1 and ecun. In-
deed, such ECU hosts preshare symmetric keys with the Key Master ECU, denoted
by ecukm. Moreover, they belong to the same group which is denoted by gn. Thus,
such group is composed by ecu1, ecukm and ecun. Note that the symbol ! indi-
cates infinite replication of processes whilst the symbol | indicates parallel processes
execution. The lines that correspond to the Main section are as follows:.

(* The process main *)

.
process

new psk1; let ecu1=host(psk1) in

new pskn; let ecun=host(pskn) in

.
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let gn=group((ecu1,ecukm,ecun)) in

.
((!processECU1) | (!processECUKM) | (!processECUN))

.

3.6.11 Results for Verification of Confidentiality (ProVerif)

The results are shown in Table 18.

Table 18 Results for verification of Confidentiality in the Keying Protocol

Verification Scheme ProVerif Model and attacker queries
File model pi EVITA KeyingProtocol Confidentiality

(ProVerif file)
Processes in the model processECU1, processECUKM, processECUN,

callSWD
Property representation query attacker:SesK; attacker:psk1; at-

tacker:pskn.
Secrecy assumptions not attacker:psk1. not attacker:pskn. not at-

tacker:SesK.
Nb. of phases No phases were used
Nb. of rules for completion 200
Forcing completion No tags were used
RESULT not attacker:SesK True
RESULT not attacker:pskn True
RESULT not attacker:psk1 True
Observations The protocol preserves the secrecy of confiden-

tial data.

3.6.12 Model for Verification of Authenticity (ProVerif)

The ProVerif model for verification of Authenticity can be models as a set of the following
sections of code:

Basic Blocks: This section includes the crypto primitives and related modeling func-
tions. Additionally it can include the predicates, clauses and equations which con-
form the basic structures in the model.

Hypotheses: Includes the sentences for secrecy assumptions. These secrecy assumptions
establish the information that is initially hidden for the attacker.

Queries: This section contains a list of queries that are addressed to verify the targeted
properties.

Variables and Tags: This section includes the declaration of free variables and names
that are used in the model. Additionally, it contains the declaration of tags that
are used to forcing resolution algorithm termination.
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Processes: Includes a list of communicating processes which determines the protocol
definition. In almost all cases each process captures the semantics of a principal in
the protocol.

Main: Since the Processes may be defined through parameters (free variables and names),
this section is intended to provide specific values for such parameters. Moreover, this
section determines an order for processes execution and the number of sessions for
each process. Thus, the Main section implements a specific instance of the model.

1. Basic Blocks
The Basic Blocks used in the model for verification of authenticity are presented
below. Note that the function getKey() is a private block and can not be used by
the attacker. As a consequence, the attacker can not derive a pre-shared key from
the name of a host ECU.

(* Each agent in the protocol has a group *)

.
data group/1.

data true/0.

.
reduc get1(group((x1,x2,x3)))=x1.

reduc get2(group((x1,x2,x3)))=x2.

reduc get3(group((x1,x2,x3)))=x3.

.
(* Each agent shares a PSK with ECU-KM *)

.
fun host/1.

private reduc getKey(host(x))=x.

.
(* To decrypt/encrypt messages with a key *)

.
fun encrypt/2.

reduc decrypt(encrypt(x, k),k)=x.

.
(* MACs in messages *)

.
fun MAC/2.

fun verifyMAC/3.

.
equation verifyMAC(m, MAC(m, k), k)=true.

reduc getMsg(MAC(m,k))=m.

.

2. Hypotheses
To be consistent, the hypotheses for confidential data should also be included for
verification of authenticity. As it was mentioned, these assumptions restrict that
confidential data are initially known by the attacker. Note that the section Hypothe-
ses does not consider additional assumptions. Indeed, the hypotheses are written
in a different manner but the semantics remains unchanged. The content of this
section is in line.
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(* Initial secrecy assumptions ( the keys can not be derived from clauses

) *)

.
not attacker:psk1.

not attacker:pskn.

not attacker:SesK.

.

3. Queries
The verification of authenticity uses the injective agreement approach that was
described in a previous section (See 3.4.2). In compliance with security requirements,
the Queries section includes one query for every process that needs authentication
of an external non trusted process. Such query assumes that the communication
between processes is performed through an insecure channel (c). Thus a query of
the form

evinj:endComA(x)==>evinj:beginComA(x),

models that whenever the event endComA() with parameter x happens in a process
A, at least one event beginComA() with the same parameter has been executed in
the process B. If such query is true, then the authenticity of process B is ensured,
according to the process A perspective. Note that the events should be adequately
located in the processes to be authenticated. The queries that were formulated for
the verification of authenticity are presented just below. The three parameters that
were used for begin events respectively correspond to the local host, the remote
host and the SesK value. In the case of end events, the parameters respectively
correspond to remote host, local host and SesK value.

(* Queries for Verification of Authenticity *)

.
query evinj:endECU1_ECUKM(x1,x2,x3)==>evinj:beginECU1_ECUKM(x1,x2,x3).

query evinj:endECUKM_ECU1(x1,x2,x3)==>evinj:beginECUKM_ECU1(x1,x2,x3).

query evinj:endECUKM_ECUN(x1,x2,x3)==>evinj:beginECUKM_ECUN(x1,x2,x3).

query evinj:endECUN_ECUKM(x1,x2,x3)==>evinj:beginECUN_ECUKM(x1,x2,x3).

.

4. Variables and Tags
Since in the verification of authenticity we need to force termination of the resolution
algorithm, we include the section Variables and Tags. This section contains the
definition of tags that are used for differentiation of instances of the same primitive.
As it was mentioned (See 3.4.4), tags are a mean to avoid derivation of clauses that
provoke loops. Such clauses come from unification of functions with the same kind
of arguments. Note that the tags can be known by the attacker.

(* Declaration of some free variables that the attacker may know *)

.
data ecukm/0.

74



data Alert/0.

data Ack/0.

data tg1/0.

data tg2/0.

data tg3/0.

data tg4/0.

data tg5/0.

data tg6/0.

data tg7/0.

.

5. processes
In the section Processes we include the same processes that those already presented
in the previous model for confidentiality (See 3.6.10). However, in this section we
show how the tagging technique is applied. Indeed, whenever a crypto primitive is
used, it includes an assigned tag. Consequently, the reception and verification of
messages should be accordingly modified. We additionally introduce the notation
of phase n; all the processes try to execute operations in a phase i before contin-
uing with the execution in the phase i+1. Phases are indeed a mean to provide
synchronization between processes execution. The content of this Processes section
is shown just below. Note that event beginX() and event endX() are used for
authenticity proof, along with the corresponding queries defining the injection.

(* The process for ECU1 *)

.
let processECU1 =

.
(* Msg 1: Sends the new SesK to ECUKM for distribution among the members

of the group *)

.
phase 1;

new ts1;

new SesK;

.
out(c, (ecu1,encrypt((tg1,SesK),psk1), gn, ts1,

MAC((tg2,encrypt((tg1,SesK),psk1), gn, ts1),psk1)));

.
(* Msg 4: Receives an acknowledgement informing the SesK distribution *)

phase 4;

in(c, m4);

let (hostX, ACK4, TS4, MAC4)=m4 in

let Res4=verifyMAC((tg6, ACK4, TS4),MAC4, psk1) in

if Res4=true then

.
(* Use of the SesK in ECU1*)

.
if ACK4=Ack then

if TS4=plus(ts1,one) then
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.
event beginECU1 ECUKM(ecu1, hostX, SesK)

.
event endECUKM ECU1(hostX, ecu1, SesK);

.
phase 5;

new ts5;

out(c, (ecu1,gn,ts5, MAC((tg7,gn,ts5),SesK)));

out(c, (ecu1,gn,ts5, MAC((tg7,gn,ts5),SesK))).

.
(* The process for ECUKM *)

.
let processECUKM =

.
(* Msg 1: The KM receives the distribution request from an ECU *)

phase 1;

in(c, m1);

let (hostY, Encrypt1, GN1, TS1, MAC1)=m1 in

let PSKY=getKey(hostY) in

let Res1=verifyMAC((tg2,Encrypt1, GN1, TS1),MAC1, PSKY) in

if Res1=true then

if GN1=gn then

let (=tg1,SESK)=decrypt(Encrypt1,PSKY) in

.
event beginECUKM ECU1(ecukm, hostY, SESK);

.
(* Msg 2: The KM distributes the SesK among the ECUs of the group *)

.
phase 2;

let hostZ=get3(gn) in

if hostZ<>hostY then

let PSKZ=getKey(hostZ) in

new ts2;

out(c, (ecukm,

encrypt((tg3,SESK),PSKZ),GN1,ts2,MAC((tg4,encrypt((tg3,SESK),PSKZ),GN1,ts2),

PSKZ)));

.
event beginECUKM ECUN(ecukm,PSKZ,SESK);

.
(* Msg 3: The KM receives an acknowledgement from ECUN *)

phase 3;

in(c, m3);

let (hostW, ACK3, TS3, MAC3)=m3 in

.
let PSKW=getKey(hostW) in

let Res3=verifyMAC((tg5, ACK3, TS3),MAC3,PSKW) in

if Res3=true then

if ACK3 = Ack then
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if TS3<>TS1 then

.
event endECUN ECUKM(hostW,ecukm, SESK);

.
(* Msg 4: The KM sends an acknowledgement to ECU1 *)

phase 4;

new ts4;

.
out(c, (hostY,Ack,plus(TS1,one), MAC((tg6,Ack,plus(TS1,one)),PSKY)));

.
event endECU1 ECUKM(hostY, ecukm, SESK);

.
(* Use of the SesK in ECUKM*)

phase 5;

in(c, mx);

let (=hostY,=GN1,TS5, MAC5)=mx in

if verifyMAC((tg7,GN1,TS5),MAC5,SESK)=true then 0

.
else callSWD.

.
(* The process for ECUN *)

.
let processECUN =

.
(* Msg 2: The ECUN receives the message 2 *)

phase 2;

in(c, m2);

let (hostU, Encrypt2, GN2, TS2, MAC2)=m2 in

.
if hostU=ecukm then

let Res2=verifyMAC((tg4, Encrypt2, GN2, TS2),MAC2, pskn) in

if Res2 = true then

if GN2=gn then

.
let (=tg3,SESK1) = decrypt(Encrypt2, pskn) in

.
event beginECUN ECUKM(ecun, hostU, SESK1);

.
(* Msg 3: The ECUN sends an acknowledgement to ECUKM *)

.
phase 3;

new ts3;

out(c, (ecun, Ack, ts3, MAC((tg5,Ack,ts3),pskn)));

.
event endECUKM ECUN(hostU,ecun, SESK1);

.
(* Use of the SesK ECUN*)

phase 5;
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in(c, mx1);

let (hostV, =GN2, TS6, MAC6)=mx1 in

.
if verifyMAC((tg7,GN2,TS6),MAC6,SESK1)=true then 0

else callSWD.

.
let callSWD =

.
out(c1, Alert).

.

6. Main
The section Main in the current model is a copy of the corresponding section in the
model that was used for verification of confidentiality (See 3.6.10). However, in the
current model the infinite replication of processes (!) is mandatory whenever two
processes aim to authenticate. Indeed, the sets on which injective agreements are
based upon can not be created without such replication. The lines for this section
are presented below.

(* The process main *)

.
process

new psk1; let ecu1=host(psk1) in

new pskn; let ecun=host(pskn) in

.
let gn=group((ecu1,ecukm,ecun)) in

.
((!processECU1) | (!processECUKM) | (!processECUN))

.

3.6.13 Results for Verification of Authenticity (ProVerif)

The results are shown in Table 19.

3.6.14 Results for Verification of Confidentiality (AVATAR-Sec)

The AVATAR-Sec block Diagram of the keying protocol is provided in Figure 21. The
AVATAR-Sec model for the Keying protocol is as follows:

• Only one ECU is the group is considered. That ECU is named ECUN on the model.

• The timer used by the Key Master is modeled with a non-deterministic expiration.

• Once the session key has been distributed to ECUN, ECU1 sens a confidential data
to ECUN, using that session key.

• Pre-shared keys have been .... pre-shared. More particularly, InitialCommonKnowledge
pragmas are used to say that ECU1 and KM have pre-shared a key:
]InitialCommonKnowledge ECU1.PSK1 KM.PSK1
]InitialCommonKnowledge ECUN.PSKN KM.PSKN
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Table 19 Results for verification of Authenticity in the Keying Protocol

Verification Scheme ProVerif Model and queries for injective agree-
ments

File model pi EVITA KeyingProtocol Authenticity
Processes in the model processECU1, processECUKM, processECUN,

callSWD
Injective agreement ECU1 and
ECUKM

query evinj :
endECU1 ECUKM(x1, x2, x3) ==> evinj :
beginECU1 ECUKM(x1, x2, x3).

Injective agreement ECUKM and
ECU1

query evinj :
endECUKM ECU1(x1, x2, x3) ==> evinj :
beginECUKM ECU1(x1, x2, x3).

Injective agreement ECUKM and
ECUN

query evinj :
endECUKM ECUN(x1, x2, x3) ==> evinj :
beginECUKM ECUN(x1, x2, x3).

Injective agreement ECUN and
ECUKM

query evinj :
endECUN ECUKM(x1, x2, x3) ==> evinj :
beginECUN ECUKM(x1, x2, x3).

Secrecy assumptions not attacker:psk1. not attacker:pskn. not at-
tacker:SesK.

Nb. of phases 5 phases
Nb. of rules for completion 800
Forcing completion Tags were used
RESULT agreement ECU1 and
ECUKM

False. An attack trace is found.

RESULT agreement ECUKM and
ECU1

False. An attack trace is found.

RESULT agreement ECUKM and
ECUN

False. An attack trace is found.

RESULT agreement ECUN and
ECUKM

False. An attack trace is found.

Observations The model is not able to detect replayed mes-
sages. Consequently attack traces are found.

Two confidentiality properties are studied:

• The fact that the session key remains confidential:
] Confidentiality ECU1.SesK

• The fact that the data confData sent by ECU1 to ECUN, once the session key has
been exchanged, is confidential:
] Confidentiality ECU1.confData

Finally, verification results are provided in Table 20.
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Figure 21 AVATAR Block Diagram for the Key Master protocol

Table 20 Results for verification of Confidentiality with AVATAR-Sec

Verification Scheme AVATAR-Sec Model
File model EVITA AVATAR-Sec KeyingProtocol.xml

(TTool file)
Blocks in the model ECU1, ECUKM, ECUN, TimerKM
Data structures of the model Key, Message
InitialCommonKnowledge ]InitialCommonKnowledge ECU1.PSK1

KM.PSK1, ]InitialCommonKnowledge
ECUN.PSKN KM.PSKN,
]InitialCommonKnowledge ECUN.ACK
ECU1.ACK KM.ACK, ] InitialCommonKnowl-
edge KM.timerexpire TimerKM.timerexpire

Security properties ] Confidentiality ECU1.SesK, ] Confidentiality
ECU1.confData

RESULT ] Confidentiality
ECU1.SesK

True

RESULT ] Confidentiality
ECU1.confData

True

States reachability All states are reachable, apart from the test-
MacFailed state in KM.

Observations The protocol preserves the secrecy of confiden-
tial data.
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3.6.15 Results for Verification of Authenticity (AVATAR-Sec)

We have reused the AVATAR-Sec model used for proving confidentiality properties (see
subsection 3.6.14). That model has been further enhanced with the following authenticity
pragma (see Figure 21):
]Authenticity ECU1.makingFirstMessage.SesK KM.decipherOK.msgauth
With that pragma, we intend to prove the authenticity of the first message sent by ECU1
to KM. The same approach could be used for other messages. Finally, verification results
are provided in Table 21.

Table 21 Results for verification of authenticity with AVATAR-Sec

Verification Scheme AVATAR-Sec Model
File model EVITA AVATAR-Sec KeyingProtocol.xml

(TTool file)
Blocks in the model ECU1, ECUKM, ECUN, TimerKM
Data structures of the model Key, Message
InitialCommonKnowledge ]InitialCommonKnowledge ECU1.PSK1

KM.PSK1, ]InitialCommonKnowledge
ECUN.PSKN KM.PSKN,
]InitialCommonKnowledge ECUN.ACK
ECU1.ACK KM.ACK, ] InitialCommonKnowl-
edge KM.timerexpire TimerKM.timerexpire

Security properties ]Authenticity ECU1.makingFirstMessage.SesK
KM.decipherOK.msgauth

RESULT ]Authenticity
ECU1.makingFirstMessage.SesK
KM.decipherOK.msgauth

True

States reachability All states are reachable, apart from the test-
MacFailed state in KM.

Observations The protocol preserves the authenticity of the
first message sent from ECU1 to KM.

3.7 Remote Flashing Update Protocol

3.7.1 Protocol Description

The Remote Flashing Update Protocol (Flashing Protocol) aims to securely update
firmware in the flash memory of an in-car Electronic Control Unit (ECU). The Flash-
ing Protocol involves four Communicating Entities (CE’s) : The Diagnosis Tool (DT),
The Communications Controller Unit (CCU), the target Electronic Control Unit (ECU)
and the remote OEM server (OEM server). To ease the modeling description, the protocol
is split into two phases. The first one, called Diagnosis, retrieves information related to
the current ECU firmware and establishes a secure channel between the Diagnosis Tool
and the target ECU. The second stage, called Download, securely links the target ECU
and the OEM server in order to accomplish the firmware update transfer. Our protocol
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description is based upon the extended version of this protocol in [18]. The typical trace
of the protocol is presented in Figure 22.

Diagnosis Phase
The Diagnosis phase begins with an exchange between a Diagnosis Tool and the in-car

CCU. The first message includes a connection request, a nonce N1 dt and a time stamp
(Message 1). The information contained in this message is not confidential and thus, it is
only signed with DT’s private key (SK dt). Since DT is an external entity for the in-car
CCU, DT should provide its public key PK dt within a certificate issued by an agreed
Certification Authority (CA). After validation of DT credentials, the CCU delivers a con-
nection response that includes the modified nonce N1 dt− 1 and time stamp. In order to
preserve the car privacy, CCU uses a previously assigned pair of short-term pseudo secret
and public keys (PsSK ccu, PsPK ccu). Thus, the message is signed with PsSK ccu.
In order to allow signature verification, CCU also provides the certificate that binds the
respective pseudo public key (Message 2). This certificate is issued by the CA used in
Message 1. Right after Message 2 validation, the DT will establish a secure channel with
the target ECU. Indeed, DT randomly generates a symmetric session key SesK and sets
its flag to ’sign’ (use flag=sign, see EVITA D3.2 [19], Key Data Structures). Thus, the
target ECU is allowed to MAC and verify messages. The generated SesK is encrypted
with the pseudo public key provided by CCU. Since PK dt was provided to CCU, the
message is signed with DT’s secret key. A nonce N2 dt and time stamp are included
(Message 3). After Message 3 reception, CCU tries to import the SesK to its HSM. In
case of success, the SesK is sent to ECU. Indeed, SesK is transferred using the target
ECU’s public key (PK ecu) as a transport key (Message 4). The message is then com-
pleted with a nonce (N1 ccu), a time stamp and is signed with the CCU’s secret key
(SK ccu). After SesK reception, ECU verifies Message 4 signature. Note that ECU
already knows CCU’s public key. Right after, ECU imports the encrypted SesK into its
HSM. In case of success, an acknowledgement code ACK is sent to CCU (Message 5).
This acknowledgement message includes the modified nonce N1 ccu − 1, a time stamp
and is signed with ECU’s private key (SK ecu). After message validation, CCU sends to
DT a successful establishment of authentic channel. The message includes an ACK code,
the modified nonce N2 dt − 1, a time stamp and is signed with CCU’s pseudo private
key (Message 6). Thus, DT and ECU are finally able to perform authentic bidirectional
exchanges MACed with SesK.

Download Phase
The Download phase begins right after the Diagnosis phase has been accomplished.

The Diagnosis Tool requests ECU’s public key through the previously secured channel
(Message 7). Indeed, the message includes a nonce (N3 dt), a time stamp and is MAC
protected with SesK. Note that DT – ECU communication is necessarily performed
through CCU which plays the role of gateway. After message reception and in case of
valid MAC, ECU encrypts its public key PK ecu with the so called public Stakeholder
Asymmetric Key (PK sak). Such public key is factory installed in ECU to enforce con-
fidentiality in exchanges with the OEM (see EVITA D3.2 [19], Internal Memory Data).
The encrypted key is sent together with a modified nonce (N3 dt− 1), a time stamp and
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is MAC protected (Message 8). After reception, DT verifies message validity and after-
wards composes a message requesting the firmware to the remote OEM server (Message
9). The message request includes the encrypted ECU’s public key, a nonce N4 dt, a time
stamp and is signed with DT’s secret key (SK dt). Consequently, DT should share the
certificate that binds its respective public key. Indeed, such certificate was issued by an
agreed Certification Authority (CA). Once the OEM server receives Message 9 and right
after DT credentials validation, the ECU’s public key is decrypted and later on used to
protect the firmware update. The OEM server composes a message that includes the
encrypted firmware, the modified nonce N4 dt − 1, a time stamp and a signature made
with the OEM’s secret key (SK oem). Thus, the message should include the certificate
that binds the OEM’s public key (Message 10). Such certificate was issued by the same
agreed CA as for certificate of Message 9. When DT receives the message, the OEM
server credentials are validated. In case of successful validation, DT sends the encrypted
firmware to ECU that was requested by the firmware update mode (Message 11). Apart
from the encrypted firmware and the mode request, the message also includes a nonce
N5 dt, a time stamp and is MAC protected with SesK. The ECU receives the update,
and after MAC validation, another sub-protocol for memory flashing is triggered. The
flashing process updates the firmware in the ECU’s non-volatile memory. Finally, if the
flashing was successfully achieved, then the ECU sends an acknowledgement ACK to DT
(Message 12). This message includes the modified nonce (N5 dt− 1), a time stamp and
is MAC protected with SesK.

3.7.2 Targeted Security Properties

The formal verification of Flashing Protocol targets the following security properties.
These requirements are taken from [17].

1. Authenticity 27 (see [17], page 30)

2. Authenticity 28 (see [17], page 31)

3. Authenticity 29 (see [17], page 31)

4. Authenticity 101 (see [17], page 31)

5. Authenticity 102 (see [17], page 32)

6. Authenticity 103 (see [17], page 32)

7. Confidentiality 1 (see [17], page 38)

8. Privacy 101 (see [17], page 40)

9. Confidentiality 101 (see [17], page 42)

10. Confidentiality 102 (see [17], page 42)
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Figure 22 Sequence Diagram for the Flashing Protocol
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3.7.3 Models for Verification of Confidentiality (ProVerif)

In order to ease modeling and verification, the Flashing Protocol is split according to
Diagnosis and Download phases.

Diagnosis Phase
Three CE’s are involved in the Diagnosis phase: DT, in-car CCU and target ECU.

Consequently, the inclusion of OEM server in this phase is not necessary: it is therefore
omitted. The sections composing the Diagnosis model for confidentiality are explained
below. A detailed description of the ProVerif approach has been presented in section
3.4.1, thus detailed explanations are skipped.

1. Basic Blocks
Since the Flashing Protocol relies on symmetric and asymmetric cryptography, the
following Basic Blocks are included. Note that the attacker is not restricted from
calling Basic Blocks i.e., the label private is not used.

(* Create/verify MACs *)

.
fun MAC/2.

fun verifyMAC/3.

.
equation verifyMAC(m,MAC(m,k), k)= validMAC.

.
(* Encryption/Decryption with asymmetric primitives *)

.
fun Pk/1.

.
fun encryptPK/2.

fun encryptSK/2.

.
reduc decryptSK(encryptPK(m,Pk(k)),k)=m.

reduc decryptPK(encryptSK(m,k),Pk(k))=m.

.
(* Create/verify signatures *)

.
fun Hash/1.

fun verifySign/3.

.
equation verifySign(m,encryptSK(Hash(m),k),Pk(k))=validSign.

.
(* Create/verify certificates *)

.
fun Cert/2.

fun verifyCert/3.

.
reduc getID(Cert(id,sign))=id.

reduc getSign(Cert(id,sign))=sign.
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.
(* Nonces modification *)

.
fun minus/2.

.

2. Hypotheses
The Hypotheses of the model restrict secret keys for the initial attacker knowledge.
Additionally, the session key generated by DT (SesK), as well as the target ECU’s
public key are assumed to be unknown for the attacker. Moreover, since car’s
identity should be kept confidential for external entities, ccu id is assumed to be
secret.

(* Initial secrecy assumptions; the secret keys can not be derived from

clauses *)

.
not attacker:sk_ca.

not attacker:sk_dt.

not attacker:sk_ccu.

not attacker:sk_ecu.

not attacker:PsSK_ccu.

not attacker:SesK.

not attacker:pk_ecu.

not attacker:ccu_id.

.

3. Queries
In agreement with secrecy assumptions, confidentiality Queries verify that material
initially assumed secret is never accessible to the attacker.

(* Queries for Verification of Secrecy/Confidentiality *)

.
query attacker:sk_ca.

query attacker:sk_dt.

query attacker:sk_ccu.

query attacker:sk_ecu.

query attacker:PsSK_ccu.

query attacker:SesK.

query attacker:pk_ecu.

query attacker:ccu_id.

.

4. Variables
The Variables section includes the (non secure) channel declaration c. In fact,
since the attacker listens to all non private channels, declaration of different chan-
nels only increases model complexity. Consequently, we assume that all the CE’s
interact through the same channel c. Several values – like commands and acknowl-
edgements – in Diagnosis exchanges are parameterized: consequently data struc-
tures are defined accordingly. In agreement with Hypotheses, private declarations
for ECU’s public key (pk ecu) and DT’s session key (SesK) are included. At last,
the declaration of tags is made.

86



(* The channels in the system *)

free c.

.
(* Some data values may be known by the attacker *)

data Ack/0.

data con_req/0.

data con_resp/0.

data req_PK/0.

data req_firmware/0.

data req_progMode/0.

data dt_id/0.

data ps_ccu_id/0.

data ecu_id/0.

data oem_id/0.

.
private free pk_ecu.

private free SesK.

.
(* Some values for return *)

data validMAC/0.

data validSign/0.

data validCert/0.

data one/0.

.
(* Tags for crypto functions *)

data tg1/0.

data tg2/0.

data tg3/0.

data tg4/0.

data tg5/0.

data tg6/0.

data tg7/0.

data tg8/0.

data tg9/0.

data tg10/0.

.

5. Processes
Every CE is represented in the model as a pi-process. Indeed, the Processes section
includes three processes, namely processDT, processCCU and processECU. Since
processes behavior should model only the Diagnosis phase, only exchanges from
message 1 to 6 are modeled. Also, the label (* Msg i*) is used to indicate message
exchange. Note that cryptographic primitive blocks are tagged. Indeed, tagging of
Flashing Protocol is mandatory in order to ensure termination of the verification
algorithm.

(* The process for the Diagnosis Tool *) .
let processDT =
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new ts1;

new N1_dt;

out(c, (dt_id,con_req,N1_dt,ts1,

encryptSK(Hash((tg1,con_req,N1_dt,ts1)),sk_dt),

Cert(pk_dt,encryptSK(Hash((tg2,pk_dt)),sk_ca)))); (* Msg 1 *)

.
in(c, m2); (* Msg 2 *)

let (hostX, Resp2,N2,TS2, Sign2,Cert2)=m2 in

.
if hostX=ps_ccu_id then

let PSPK_ccu = getID(Cert2) in

let signCert2 = getSign(Cert2) in

let valid2 = verifySign((tg4,PSPK_ccu),signCert2, pk_ca) in

if valid2 = validSign then

let Res1=verifySign((tg3,Resp2,N2,TS2),Sign2, PSPK_ccu) in

if Res1=validSign then

.
if N2=minus(N1_dt,one) then

if Resp2=con_resp then

.
new N2_dt;

new ts3;

out (c, (dt_id,encryptPK((tg5,SesK),

PSPK_ccu),N2_dt,ts3,encryptSK(Hash((tg6,encryptPK((tg5,SesK),

PSPK_ccu),N2_dt,ts3)),sk_dt))); (* Msg 3 *)

.
in (c, m6); (* Msg 6 *)

let (hostY,ACK6,N6,TS6, Sign6)=m6 in

if hostY=hostX then

let Res2=verifySign((tg10,ACK6,N6,TS6),Sign6,PSPK_ccu) in

if Res2=validSign then

.
if ACK6=Ack then

if N6=minus(N2_dt,one) then 0.

.
(* The process for the Communications Control Unit ECU *) .
let processCCU =

new ccu_id;

in (c, m1); (* Msg 1 *)

let (hostP,CON_REQ, N1, TS1, Sign1, Cert1)=m1 in

let signCert1= getSign(Cert1) in

let PK_DT = getID(Cert1) in

let valid1 = verifySign((tg2,PK_DT), signCert1, pk_ca) in

if valid1 = validSign then

.
let Res6 = verifySign((tg1,CON_REQ, N1, TS1), Sign1, PK_DT) in

if Res6 = validSign then

.
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if CON_REQ=con_req then

.
new ts2;

new PsSK_ccu;

let PsPK_ccu = Pk(PsSK_ccu) in

out (c, (ps_ccu_id, con_resp, minus(N1,one),

ts2,encryptSK(Hash((tg3,con_resp, minus(N1,one),

ts2)),PsSK_ccu),Cert(PsPK_ccu,encryptSK(Hash((tg4,PsPK_ccu)),sk_ca)))); (*

Msg 2 *)

.
in (c, m3); (* Msg 3 *)

let (hostQ,Encrypt3, N3, TS3, Sign3)=m3 in

if hostQ=hostP then

let Res7=verifySign((tg6,Encrypt3, N3, TS3),Sign3,PK_DT) in

if Res7= validSign then

let (=tg5,SESK1) = decryptSK(Encrypt3,PsSK_ccu) in

.
if SESK1=SesK then

.
new N1_ccu;

new ts4;

out (c, (ps_ccu_id,encryptPK((tg7,SESK1),pk_ecu),N1_-

ccu,ts4,encryptSK(Hash((tg8,encryptPK((tg7,SESK1),pk_ecu),N1_-

ccu,ts4)),sk_ccu))); (* Msg 4

*)

.
in (c, m5); (* Msg 5 *)

let (hostR, ACK5, N5, TS5, Sign5) = m5 in

let Res8 = verifySign((tg9,ACK5, N5, TS5), Sign5, pk_ecu) in

if Res8 = validSign then

.
if ACK5 = Ack then

if N5 = minus(N1_ccu,one) then

.
new ts6;

out (c, (ps_ccu_id, Ack, minus(N3,one), ts6, encryptSK(Hash((tg10,Ack,

minus(N3,one), ts6)),PsSK_ccu))). (* Msg 6 *)

.
(* The process for the target ECU *)

.
let processECU =

in (c, m4); (* Msg 4 *)

let (hostS, Encrypt4, N4, TS4, Sign4)=m4 in

.
if hostS=ps_ccu_id then

let Res9 = verifySign((tg8,Encrypt4, N4, TS4),Sign4, pk_ccu) in

if Res9= validSign then

.
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let (=tg7,SESK2) = decryptSK(Encrypt4, sk_ecu) in

if SESK2 = SesK then

new ts5;

out (c, (ecu_id, Ack, minus(N4,one), ts5, encryptSK(Hash((tg9,Ack,

minus(N4,one), ts5)),sk_ecu))). (* Msg 5 *)

.

6. Main
The Main process is used to declare secret keys. Hence, respective public keys are
associated using the basic block Pk(). Afterwards, public keys are broadcasted in
the communications channel c. Note that, in agreement with secrecy assumptions,
the public key pk ecu is not broadcasted. Indeed, our model is compliant with the
fact that in-car public keys are restricted to the in-car domain (privacy). Last but
not least, the involved processes are executed in parallel, and an infinite number of
times.

(* Main process *)

process

.
new sk_dt;

let pk_dt = Pk(sk_dt) in

out(c, pk_dt);

new sk_ccu;

let pk_ccu = Pk(sk_ccu) in

out (c, pk_ccu); (* The pk_ccu is internally distributed in the car *)

new sk_ecu;

let pk_ecu = Pk(sk_ecu) in (* The pk_ecu is internally distributed in the

car *)

new sk_ca;

let pk_ca = Pk(sk_ca) in

out (c, pk_ca);

.
((!processDT)|(!processCCU)|(!processECU))

.

Download Phase
Since Download is in fact a continuation of the Diagnosis phase, it is assumed that

message exchanges of the previous phase have been successfully executed. Consequently,
respective data are in CE’s initial knowledge. Moreover, we assume that protocol ex-
changes preserve secrecy of confidential material. It implies that the attacker was unable
to perform any attack in the previous phase. As a particular case, it is assumed that the
session key generated by DT (SesK) has been successfully transferred to the target ECU.

The Download phase is modeled in Proverif as follows (see section 3.4.1 for more details
on the modeling approach).

1. Basic Blocks
The Basic Blocks for modeling Download phase are the same as in Diagnosis phase.
Since no additional blocks were defined, this section is not further described. To
preserve model correctness, the Hypotheses section consider the same hypotheses as
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in Diagnosis phase. However, new elements are assumed as secret. Beside new keys,
the ecu_id, representing ECU identification, and firmware1, representing firmware
update, are included as secrecy assumptions. The contents of Hypotheses section
are below.

(* Initial secrecy assumptions; the secret keys can not be derived from

clauses *)

not attacker:sk_ca.

not attacker:sk_dt.

not attacker:sk_ecu.

not attacker:sk_oem.

not attacker:sk_sak.

not attacker:SesK.

not attacker:pk_ecu.

not attacker:ecu_id.

not attacker:firmware1.

.

2. Queries
The Queries section is in correspondence with previously stated secrecy assump-
tions. In fact, it is formally verified that secret material is not delivered to the
attacker as a result of protocol exchanges. In line the respective queries.

(* Queries for Verification of Secrecy/Confidentiality *)

.
query attacker:sk_ca.

query attacker:sk_dt.

query attacker:sk_ecu.

query attacker:sk_oem.

query attacker:sk_sak.

query attacker:SesK.

query attacker:pk_ecu.

query attacker:ecu_id.

query attacker:firmware1.

.

3. Variables
The Variables section includes declarations for the insecure channel c, parameterized
values, CE’s identifications and tags. The contents of this section are below.

(* The channels in the system *)

free c.

.
(* Some data values may be known by the attacker *)

data Ack/0.

data con_req/0.

data con_resp/0.

data req_PK/0.

data req_firmware/0.
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data req_progMode/0.

data dt_id/0.

data ps_ecu_id/0.

data oem_id/0.

data N5_dt/0.

data ts11/0.

data ts12/0.

.
private free pk_ecu.

.
(* Some values for return *)

data validMAC/0.

data validSign/0.

data validCert/0.

data one/0.

.
(* Tags for crypto functions *)

data tg11/0.

data tg12/0.

data tg13/0.

data tg14/0.

data tg15/0.

data tg16/0.

data tg17/0.

data tg18/0.

data tg19/0.

data tg20/0.

.

4. Processes
Download phase involves three CE’s which are associated to respective processes,
namely processDT, processECU and processOEMserver. Since this Processes sec-
tion is the continuation of Diagnosis phase, messages 7 to 12 are included. Indeed,
we put the label (* Msg i*) to indicate respective message exchange.

(* The process for the Diagnosis Tool *)

.
let processDT =

new N3_dt;

new ts7;

.
out (c, (dt_id, req_PK,N3_dt,ts7,MAC((tg11,req_PK,N3_dt,ts7),SesK))); (*

Msg 7 *)

.
in(c, m8); (* Msg 8 *)

let (hostZ,Encrypt8,N8,TS8,MAC8)=m8 in

let Res3=verifyMAC((tg13,Encrypt8,N8,TS8),MAC8,SesK) in

if Res3=validMAC then
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.
if N8=minus(N3_dt,one) then

.
new N4_dt;

new ts9;

out(c, (dt_id, Encrypt8, N4_dt, ts9,req_firmware,

encryptSK(Hash((tg14,Encrypt8, N4_dt,

ts9,req_firmware)),sk_dt),Cert(pk_dt,

encryptSK(Hash((tg15,pk_dt)),sk_ca)))); (* Msg 9 *)

.
in (c, m10); (* Msg 10 *)

let (hostU, EncryptFirm, N10, TS10, Sign10, Cert10)=m10 in

let PK_oem = getID (Cert10) in

let signCert10 = getSign(Cert10) in

.
let valid10 =verifySign((tg18,PK_oem),signCert10,pk_ca) in

if valid10 = validSign then

.
let Res4 = verifySign((tg17,EncryptFirm, N10, TS10),Sign10,PK_oem) in

if Res4=validSign then

.
if N10=minus(N4_dt,one) then

.
out (c, (dt_id,req_progMode,EncryptFirm,N3_dt,ts11,MAC((tg19,req_-

progMode,EncryptFirm,N3_dt,ts11),SesK))); (* Msg 11

*)

.
in (c, m12); (* Msg 12 *)

let (=hostZ, ACK12, N12,TS12,MAC12)=m12 in

let Res5 = verifyMAC((tg20,ACK12,N12,TS12),MAC12,SesK) in

if Res5 = validMAC then

if ACK12 = Ack then

if N12=minus(N3_dt,one) then 0.

.
(* The process for the target ECU *)

.
let processECU =

new ecu_id;

in (c, m7); (* Msg 7 *)

let (hostT, REQ_PK, N7,TS7, MAC7)=m7 in

let Res10=verifyMAC((tg11,REQ_PK, N7,TS7),MAC7,SesK) in

if Res10 = validMAC then

if REQ_PK = req_PK then

.
new ts8;

out (c, (ps_ecu_id, encryptPK((tg12,pk_ecu),pk_-

sak),minus(N7,one),ts8,MAC((tg13,encryptPK((tg12,pk_ecu),pk_-
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sak),minus(N7,one),ts8),SesK))); (* Msg 8

*)

.
in (c, m11); (* Msg 11 *)

let (=hostT,REQ_PROG,Encrypt11,N11,TS11,MAC11)=m11 in

let Res11 = verifyMAC((tg19,REQ_PROG,Encrypt11,N11,TS11),MAC11, SesK) in

if Res11 = validMAC then

if REQ_PROG=req_progMode then

let (=tg16, Firmware) = decryptSK(Encrypt11, sk_ecu) in

.
out (c, (ps_ecu_-

id,Ack,minus(N11,one),ts12,MAC((tg20,Ack,minus(N11,one),ts12),SesK))). (*

Msg 12 *)

.
(* The process for the OEM server *)

.
let processOEMserver =

in (c, m9); (* Msg 9 *)

let (hostL, Encrypt9, N9, TS9, REQ_FIRM, Sign9, Cert9)=m9 in

let PK_DT = getID(Cert9) in

let signCert9 = getSign(Cert9) in

let valid9 = verifySign((tg15,PK_DT),signCert9, pk_ca) in

if valid9 = validSign then

.
let Res12 = verifySign((tg14,Encrypt9, N9, TS9, REQ_FIRM),Sign9,PK_DT) in

if Res12 = validSign then

.
if REQ_FIRM = req_firmware then

let (=tg12,Pk_ECU) = decryptSK(Encrypt9, sk_sak) in

.
new ts10;

new firmware1;

.
out (c, (oem_id, encryptPK((tg16,firmware1),Pk_-

ECU),minus(N9,one),ts10,encryptSK(Hash((tg17,encryptPK((tg16,firmware1),Pk_-

ECU),minus(N9,one),ts10)),sk_oem),Cert(pk_oem,encryptSK(Hash((tg18,pk_-

oem)),sk_ca)))). (* Msg 10

*)

.

5. Main
The Main process contains declarations of secret keys. The association between
secret and public keys is made with the basic block Pk(). Later on, public keys are
broadcasted in c. Note that ECU’s public key is not broadcasted. Since we assume
that session key SesK is known by processDT and processECU, it is declared within
Main process. The replication of processes ensures that secrecy is preserved no
matter the number of sessions.

(* Main process *)
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.
process

new sk_dt;

let pk_dt = Pk(sk_dt) in

out(c, pk_dt);

.
new sk_ecu;

let pk_ecu = Pk(sk_ecu) in

.
new sk_oem;

let pk_oem = Pk(sk_oem) in

out(c, pk_oem);

.
new sk_ca;

let pk_ca = Pk(sk_ca) in

out (c, pk_ca);

.
new sk_sak;

let pk_sak = Pk(sk_sak) in

out (c, pk_sak);

.
new SesK;

.
((!processDT)|(!processECU)|(!processOEMserver))

.

3.7.4 Results for Verification of Confidentiality (ProVerif)

The results for the Diagnosis phase are shown in Table 22 whilst those corresponding to
the Download phase are presented in Table 23.

3.7.5 Models for Verification of Authenticity (ProVerif)

As for confidentiality, the model for authenticity verification of the the Flashing Protocol
is split into two phases: Diagnosis and Download. We assume that proving authenticity
independently for the two phases is equivalent to proving the authenticity for the two
joined phases.

Diagnosis Phase
The model for verification of authenticity in the Diagnosis phase contains the following

sections. Since their contents have been presented in section 3.4, no additional comments
are provided.

In fact, the sections Basic Blocks, Hypotheses, Variables and Main are the same as
in the Diagnosis phase model for confidentiality (See 3.7.3). Consequently, we leave out
additional comments. Thus we only present respective Queries and Processes

1. Queries
The queries for verification of authenticity recall the principle of injective agreement
already explained in 3.4.2. Indeed, two information flows are present; between DT
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Table 22 Results for verification of Confidentiality in Diagnosis phase

Verification Scheme ProVerif Model and attacker queries
File model pi EVITA FlashingDiagnosis Confidentiality 1
Processes in the model processDT, processCCU, processECU
Property representation query attacker:sk ca; attacker:sk dt; at-

tacker:sk ccu; attacker:sk ecu; attacker:PsSK -
ccu; attacker:SesK; attacker:pk ecu; at-
tacker:ccu id.

Secrecy assumptions not attacker:sk ca. not attacker:sk dt. not at-
tacker:sk ccu. not attacker:sk ecu. not at-
tacker:PsSK ccu. not attacker:SesK. not at-
tacker:pk ecu. not attacker:ccu id.

Nb. of phases No phases were used
Nb. of rules for completion 200
Forcing completion Tags were used
RESULT not attacker:sk ca True
RESULT not attacker:sk dt True
RESULT not attacker:sk ccu True
RESULT not attacker:sk ecu True
RESULT not attacker:PsSK ccu True
RESULT not attacker:SesK True
RESULT not attacker:pk ecu True
RESULT not attacker:ccu id True
Observations The phase Diagnosis preserves the secrecy of

confidential data.

and CCU and between CCU and ECU. Consequently, the authentication of involved
CE’s is made according to the following queries:

(* Queries for verification of Authenticity *)

query evinj:endComDT_CCU(x1,x2) ==> evinj:beginComDT_CCU(x1,x2).

query evinj:endComCCU_DT(x1,x2) ==> evinj:beginComCCU_DT(x1,x2).

query evinj:endComCCU_ECU(x1,x2) ==> evinj:beginComCCU_ECU(x1,x2).

query evinj:endComECU_CCU(x1,x2) ==> evinj:beginComECU_CCU(x1,x2).

.

Thus for instance, the authenticity of CCU from DT’s perspective is verified in
the first query. The arguments xi in endCom events are local host and remote host
identifications, respectively. Thus, the arguments xi in beginCom events correspond
to remote and local hosts, respectively.

2. Processes
This phase is composed of three processes, namely processDT, processCCU and
processECU. Every process includes the events referenced in respective queries. Note
that apart from events, this Processes section is the same as the respective one in
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Table 23 Results for verification of Confidentiality in Download phase

Verification Scheme ProVerif Model and attacker queries
File model pi EVITA FlashingDownload Confidentiality 1
Processes in the model processDT, processECU, processOEMserver
Property representation query attacker:sk ca; attacker:sk dt; at-

tacker:sk ecu; attacker;sk oem; attacker:sk sak;
attacker:SesK; attacker:pk ecu; attacker:ecu id;
attacker:firmware1.

Secrecy assumptions not attacker:sk ca. not attacker:sk dt. not
attacker:sk ecu. not attacker:sk oem. not
attacker:sk sak. not attacker:SesK. not at-
tacker:pk ecu. not attacker:ecu id. not at-
tacker:firmware1.

Nb. of phases No phases were used
Nb. of rules for completion 200
Forcing completion Tags were used
RESULT not attacker:sk ca True
RESULT not attacker:sk dt True
RESULT not attacker:sk ecu True
RESULT not attacker:sk oem True
RESULT not attacker:sk sak True
RESULT not attacker:SesK True
RESULT not attacker:pk ecu True
RESULT not attacker:ecu id True
RESULT not attacker:firmware1 True
Observations The Download phase preserves secrecy of confi-

dential data.

verification of confidentiality (see 3.7.3, Diagnosis phase). Indeed, we recall that
exchanges in this phase correspond to messages 1-6 in the protocol description.

(* The process for the Diagnosis Tool *)

.
let processDT =

new ts1;

new N1_dt;

out(c, (dt_id,con_req,N1_dt,ts1,

encryptSK(Hash((tg1,con_req,N1_dt,ts1)),sk_dt),

Cert(pk_dt,encryptSK(Hash((tg2,pk_dt)),sk_ca)))); (* Msg 1 *)

.
in(c, m2); (* Msg 2 *)

let (hostX, Resp2,N2,TS2, Sign2,Cert2)=m2 in

.
if hostX=ps_ccu_id then

let PSPK_ccu = getID(Cert2) in
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let signCert2 = getSign(Cert2) in

let valid2 = verifySign((tg4,PSPK_ccu),signCert2, pk_ca) in

if valid2 = validSign then

let Res1=verifySign((tg3,Resp2,N2,TS2),Sign2, PSPK_ccu) in

if Res1=validSign then

.
event beginComCCU DT(hostX,dt id);

.
if N2=minus(N1_dt,one) then

if Resp2=con_resp then

.
new N2_dt;

new ts3;

out (c, (dt_id,encryptPK((tg5,SesK),

PSPK_ccu),N2_dt,ts3,encryptSK(Hash((tg6,encryptPK((tg5,SesK),

PSPK_ccu),N2_dt,ts3)),sk_dt))); (* Msg 3 *)

.
in (c, m6); (* Msg 6 *)

let (hostY,ACK6,N6,TS6, Sign6)=m6 in

if hostY=hostX then

let Res2=verifySign((tg10,ACK6,N6,TS6),Sign6,PSPK_ccu) in

if Res2=validSign then

.
event endComDT CCU(dt id,hostY);

.
if ACK6=Ack then

if N6=minus(N2_dt,one) then 0.

.
(* The process for the Communications Control Unit ECU *)

.
let processCCU =

new ccu_id;

in (c, m1); (* Msg 1 *)

let (hostP,CON_REQ, N1, TS1, Sign1, Cert1)=m1 in

let signCert1= getSign(Cert1) in

let PK_DT = getID(Cert1) in

let valid1 = verifySign((tg2,PK_DT), signCert1, pk_ca) in

if valid1 = validSign then

.
let Res6 = verifySign((tg1,CON_REQ, N1, TS1), Sign1, PK_DT) in

if Res6 = validSign then

.
event beginComDT CCU(hostP,ps ccu id);

.
if CON_REQ=con_req then

.
new ts2;

new PsSK_ccu;
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let PsPK_ccu = Pk(PsSK_ccu) in

out (c, (ps_ccu_id, con_resp, minus(N1,one),

ts2,encryptSK(Hash((tg3,con_resp, minus(N1,one),

ts2)),PsSK_ccu),Cert(PsPK_ccu,encryptSK(Hash((tg4,PsPK_ccu)),sk_ca)))); (*

Msg 2 *)

.
in (c, m3); (* Msg 3 *)

let (hostQ,Encrypt3, N3, TS3, Sign3)=m3 in

if hostQ=hostP then

let Res7=verifySign((tg6,Encrypt3, N3, TS3),Sign3,PK_DT) in

if Res7= validSign then

let (=tg5,SESK1) = decryptSK(Encrypt3,PsSK_ccu) in

.
if SESK1=SesK then

.
new N1_ccu;

new ts4;

out (c, (ps_ccu_id,encryptPK((tg7,SESK1),pk_ecu),N1_-

ccu,ts4,encryptSK(Hash((tg8,encryptPK((tg7,SESK1),pk_ecu),N1_-

ccu,ts4)),sk_ccu))); (* Msg 4

*)

.
in (c, m5); (* Msg 5 *)

let (hostR, ACK5, N5, TS5, Sign5) = m5 in

let Res8 = verifySign((tg9,ACK5, N5, TS5), Sign5, pk_ecu) in

if Res8 = validSign then

.
event beginComECU CCU(hostR, ps ccu id);

.
if ACK5 = Ack then

if N5 = minus(N1_ccu,one) then

.
event endComCCU ECU(ps ccu id, hostR);

.
new ts6;

out (c, (ps_ccu_id, Ack, minus(N3,one), ts6, encryptSK(Hash((tg10,Ack,

minus(N3,one), ts6)),PsSK_ccu))); (* Msg 6 *)

.
event endComCCU DT(ps ccu id, hostP).

.
(* The process for the target ECU *)

.
let processECU =

in (c, m4); (* Msg 4 *)

let (hostS, Encrypt4, N4, TS4, Sign4)=m4 in

.
if hostS=ps_ccu_id then

let Res9 = verifySign((tg8,Encrypt4, N4, TS4),Sign4, pk_ccu) in
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if Res9= validSign then

.
event beginComCCU ECU(hostS, ecu id);

.
let (=tg7,SESK2) = decryptSK(Encrypt4, sk_ecu) in

if SESK2 = SesK then

new ts5;

out (c, (ecu_id, Ack, minus(N4,one), ts5, encryptSK(Hash((tg9,Ack,

minus(N4,one), ts5)),sk_ecu))); (* Msg 5 *)

.
event endComECU CCU(ecu id,hostS).

.

Download Phase
The model for verification of authenticity in the Download phase is composed of the

following sections. The contents are already explained in 3.4, thus we omit additional
comments.

As in the previous phase, the sections Basic Blocks, Hypotheses, Variables and Main
are the same as in the Download phase model for confidentiality (See 3.7.3, Download
phase). Consequently, we only describe Queries and Processes sections.

1. Queries
Two information flows between CE’s are identified in Download phase. The first
one between DT and target ECU. The second one corresponds to remote communi-
cation between DT and OEM server. The authentication of involved EC’s is made
according to the following Queries :

(* Queries for verification of Authenticity *)

query evinj:endComDT_ECU(x1,x2) ==> evinj:beginComDT_ECU(x1,x2).

query evinj:endComECU_DT(x1,x2) ==> evinj:beginComECU_DT(x1,x2).

query evinj:endComDT_OEM(x1,x2) ==> evinj:beginComDT_OEM(x1,x2).

query evinj:endComOEM_DT(x1,x2) ==> evinj:beginComOEM_DT(x1,x2).

.

For example, the last query verifies the authenticity of DT from the OEM server’s
perspective. The arguments in endCom events respectively correspond to local and
remote hosts ID’s. Hence, the arguments for beginCom events correspond to remote
and local hosts ID’s.

2. Processes
The Processes section includes three processes, namely processDT, processECU and
processOEMserver. The events referred in Queries are accordingly included within
respective processes. We recall that, Download phase covers from message 7 to 12
in the protocol specification. Such exchanges are labeled with (* Msg i *).

(* The process for the Diagnosis Tool *)

.
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let processDT =

new N3_dt;

new ts7;

.
out (c, (dt_id, req_PK,N3_dt,ts7,MAC((tg11,req_PK,N3_dt,ts7),SesK))); (*

Msg 7 *)

.
in(c, m8); (* Msg 8 *)

let (hostZ,Encrypt8,N8,TS8,MAC8)=m8 in

let Res3=verifyMAC((tg13,Encrypt8,N8,TS8),MAC8,SesK) in

if Res3=validMAC then

.
event beginComECU DT(hostZ, dt id);

.
if N8=minus(N3_dt,one) then

new N4_dt;

new ts9;

out(c, (dt_id, Encrypt8, N4_dt, ts9,req_firmware,

encryptSK(Hash((tg14,Encrypt8, N4_dt,

ts9,req_firmware)),sk_dt),Cert(pk_dt,

encryptSK(Hash((tg15,pk_dt)),sk_ca)))); (* Msg 9 *)

.
in (c, m10); (* Msg 10 *)

let (hostU, EncryptFirm, N10, TS10, Sign10, Cert10)=m10 in

let PK_oem = getID (Cert10) in

let signCert10 = getSign(Cert10) in

.
let valid10 =verifySign((tg18,PK_oem),signCert10,pk_ca) in

if valid10 = validSign then

let Res4 = verifySign((tg17,EncryptFirm, N10, TS10),Sign10,PK_oem) in

if Res4=validSign then

.
event beginComOEM DT(hostU,dt id);

.
if N10=minus(N4_dt,one) then

.
event endComDT OEM(dt id,hostU);

.
out (c, (dt_id,req_progMode,EncryptFirm,N3_dt,ts11,MAC((tg19,req_-

progMode,EncryptFirm,N3_dt,ts11),SesK))); (* Msg 11

*)

.
in (c, m12);

let (=hostZ, ACK12, N12,TS12,MAC12)=m12 in

let Res5 = verifyMAC((tg20,ACK12,N12,TS12),MAC12,SesK) in

if Res5 = validMAC then

if ACK12 = Ack then

if N12=minus(N3_dt,one) then
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.
event endComDT ECU(dt id,hostZ).

.
(* The process for the target ECU *)

.
let processECU =

in (c, m7); (* Msg 7 *)

let (hostT, REQ_PK, N7,TS7, MAC7)=m7 in

let Res10=verifyMAC((tg11,REQ_PK, N7,TS7),MAC7,SesK) in

if Res10 = validMAC then

if REQ_PK = req_PK then

.
event beginComDT ECU(hostT,ecu id);

.
new ts8;

out (c, (ecu_id, encryptPK((tg12,pk_ecu),pk_-

sak),minus(N7,one),ts8,MAC((tg13,encryptPK((tg12,pk_ecu),pk_-

sak),minus(N7,one),ts8),SesK))); (* Msg 8

*)

.
in (c, m11); (* Msg 11 *)

let (=hostT,REQ_PROG,Encrypt11,N11,TS11,MAC11)=m11 in

let Res11 = verifyMAC((tg19,REQ_PROG,Encrypt11,N11,TS11),MAC11, SesK) in

if Res11 = validMAC then

if REQ_PROG=req_progMode then

let (=tg16, Firmware) = decryptSK(Encrypt11, sk_ecu) in

.
out (c, (ecu_-

id,Ack,minus(N11,one),ts12,MAC((tg20,Ack,minus(N11,one),ts12),SesK))); (*

Msg 12 *)

event endComECU DT(ecu id, hostT).
.
(* The process for the OEM server *)

let processOEMserver =

in (c, m9); (* Msg 9 *)

let (hostL, Encrypt9, N9, TS9, REQ_FIRM, Sign9, Cert9)=m9 in

let PK_DT = getID(Cert9) in

let signCert9 = getSign(Cert9) in

.
let valid9 = verifySign((tg15,PK_DT),signCert9, pk_ca) in

if valid9 = validSign then

let Res12 = verifySign((tg14,Encrypt9, N9, TS9, REQ_FIRM),Sign9,PK_DT) in

if Res12 = validSign then

.
if REQ_FIRM = req_firmware then

let (=tg12,Pk_ECU) = decryptSK(Encrypt9, sk_sak) in

.
event beginComDT OEM(hostL, oem id);
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.
new ts10;

new firmware1;

.
out (c, (oem_id, encryptPK((tg16,firmware1),Pk_-

ECU),minus(N9,one),ts10,encryptSK(Hash((tg17,encryptPK((tg16,firmware1),Pk_-

ECU),minus(N9,one),ts10)),sk_oem),Cert(pk_oem,encryptSK(Hash((tg18,pk_-

oem)),sk_ca)))); (* Msg 10

*)

event endComOEM DT(oem id, hostL).
.

3.7.6 Results for Verification of Authenticity (ProVerif)

The results for authenticity in the Diagnosis phase are presented in Table 24 whilst those
corresponding to the Download phase are summarized in Table 25.

Table 24 Results for verification of Authenticity in the Diagnosis phase

Verification Scheme ProVerif Model and queries for injective agree-
ments

File model pi EVITA FlashingDiagnosis Authenticity 1
Processes in the model processDT, processCCU, processECU
Injective agreement DT and CCU query evinj : endComDTECU(x1, x2) ==>

evinj : beginComDTECU(x1, x2).
Injective agreement CCU and DT query evinj : endComCCUDT (x1, x2) ==>

evinj : beginComCCUDT (x1, x2)
Injective agreement CCU and
ECU

query evinj : endComCCUECU(x1, x2) ==>
evinj : beginComCCUECU(x1, x2)

Injective agreement ECU and
CCU

query evinj : endComECUCCU(x1, x2) ==>
evinj : beginComECUCCU(x1, x2)

Secrecy assumptions not attacker:sk ca. not attacker:sk dt. not at-
tacker:sk ccu. not attacker:sk ecu. not at-
tacker:PsSK ccu. not attacker:SesK. not at-
tacker:pk ecu. not attacker:ccu id.

Nb. of phases no phases were used
Nb. of rules for completion 200
Forcing completion Tags were used
RESULT agreement DT and CCU False. An attack trace is found.
RESULT agreement CCU and DT False. An attack trace is found.
RESULT agreement CCU and
ECU

False. An attack trace is found.

RESULT agreement ECU and
CCU

False. An attack trace is found.

Observations The model is not able to detect replayed mes-
sages. Consequently attack traces are found.
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Table 25 Results for verification of Authenticity in the Download phase

Verification Scheme ProVerif Model and queries for injective agree-
ments

File model pi EVITA FlashingDownload Authenticity 1
Processes in the model processDT, processECU, processOEMserver
Injective agreement DT and ECU query evinj : endComDTECU(x1, x2) ==>

evinj : beginComDTECU(x1, x2)
Injective agreement ECU and DT query evinj : endComECUDT (x1, x2) ==>

evinj : beginComECUDT (x1, x2)
Injective agreement DT and
OEMserver

query evinj : endComDTOEM(x1, x2) ==>
evinj : beginComDTOEM(x1, x2)

Injective agreement OEMserver
and DT

query evinj : endComOEMDT (x1, x2) ==>
evinj : beginComOEMDT (x1, x2)

Secrecy assumptions not attacker:sk ca. not attacker:sk dt. not
attacker:sk ecu. not attacker:sk oem. not
attacker:sk sak. not attacker:SesK. not at-
tacker:pk ecu. not attacker:ecu id. not at-
tacker:firmware1.

Nb. of phases no phases were used
Nb. of rules for completion 200
Forcing completion Tags were used
RESULT agreement DT and CCU False. An attack trace is found.
RESULT agreement ECU and DT False. An attack trace is found.
RESULT agreement DT and
OEMserver

False. An attack trace is found.

RESULT agreement OEMserver
and DT

False. An attack trace is found.

Observations The model is not able to detect replayed mes-
sages. Consequently attack traces are found.

3.8 CAM-LDW Protocol

The CAM-LDW Protocol is based upon use cases 1 and 2 specified in EVITA D2.1 (See
[14], U.C.1-Safety Reaction: Active Brake and U.C.2-Local Danger Warning from other
Cars). Indeed, this protocol aims to secure Cooperative Awareness Messages (CAMs).
The purpose of a CAM is to send a warning to other cars and drivers: CAM are used in
case of critical situations. Hence, a CAM may contain information about Local Danger
Warnings (LDW) like emergency braking, obstacles, car accidents, etc. CAMs can come
from a specialized Road Side Unit (RSU) or directly from a vehicle. In agreement with
EVITA D3.3 [18], CAMs we propose to model are initiated by vehicles. Last, the CAM-
LDW Protocol is a relevant protocol with respect to EVITA goals. Figure 23 gives an
overview of the protocol.
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Figure 23 Sequence Diagram of CAM-LDW protocol

3.8.1 Protocol Description

The protocol involves four CEs: an External Vehicle (EV), an in-car Communications
Unit (CU-ECU), an in-car Chassis and Safety Controller (CSC-ECU) and an in-car Head
Unit (HU-ECU). The last three CE’s are in the same vehicle. The protocol is triggered
when EV broadcasts a CAM among neighbor vehicles. Thus, in a very first stage, EV
performs an Active Brake (AB) maneuver because of an emergency situation. Right
after, EV position, dynamics and time of the AB are retrieved in order to compose a
CAM. To preserve privacy, and ensure authenticity and integrity, the message is signed
with a short-term key pair (PsSK ccu, PsPK ccu) of pseudo keys. Since the key pair is
ignored by neighborhood cars, the message includes the certificate that binds PsPK ccu.
Such certificate has been issued by an agreed Certification Authority (CA) for car-to-car
communication. Right after reception by the target car, the CAM is validated by its CU-
ECU. More precisely, the certificate is verified and the signature is authenticated. Right
after and according to CAM contents, an algorithm is executed to determine plausibility
of emergency brake (AB), the result of which is sent to CSC-ECU (Message 2). Since we
assume that CU-ECU, CSC-ECU as well as HU-ECU share the symmetric session key
SesK, Message 2 is time stamped and MAC protected with SesK. CSC-ECU receives
Message 2 and in case of valid MAC, an algorithm to process AB is executed. In parallel
with Message 2, a copy of plausibility check results is sent to HU-ECU (Message 3). This
message is also time stamped and MAC protected with the SesK. After MAC validation,
the HU-ECU displays the corresponding alert in the Human Machine Interface (HMI).

3.8.2 Targeted Security Properties

According to Security Requirements specification, EVITA D2.3 [17], our model targets
the following properties:

1. Authenticity 1 (see [17], page 25)

2. Authenticity 2 (see [17], page 25)

105



3. Authenticity 3 (see [17], page 25)

4. Authenticity 4 (see [17], page 25)

5. Authenticity 5 (see [17], page 25)

6. Authenticity 6 (see [17], page 26)

7. Authenticity 7 (see [17], page 26)

8. Authenticity 8 (see [17], page 26)

9. Authenticity 9 (see [17], page 26)

10. Authenticity 10 (see [17], page 27)

11. Authenticity 11 (see [17], page 27)

12. Authenticity 101 (see [17], page 31)

13. Authenticity 103 (see [17], page 32)

14. Privacy 102 (see [17], page 40)

15. Privacy 103 (see [17], page 41)

16. Privacy 105 (see [17], page 41)

3.8.3 Model for Verification of Confidentiality (ProVerif)

CAM-LDW Protocol model for verification of confidentiality is composed by the follow-
ing basic sections described in section 3.4.1: Basic Blocks, Hypotheses, Queries, Variables,
Processes and Main.

1. Basic Blocks
Since symmetric and asymmetric cryptography is used, the Basic Blocks include re-
spective primitives. Additionally, structures to manipulate CAMs as well as related
Active Brake information are included (e.g., getDataX). Moreover, functions like
pseudoCarID and pseudoDriverID are meant to associate real and pseudo identi-
ties. Since such functions are not private, they are used by the attacker reasoning
to determine privacy attacks on car and driver information.

(* To decrypt/encrypt messages with a key *)

.
fun encrypt/2.

reduc decrypt(encrypt(x,k),k)=x.

.
(* MACs in messages *)

.
fun MAC/2.
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fun verifyMAC/3.

.
equation verifyMAC(m, MAC(m, k), k)=validMAC.

.
(* Public key encryption/decryption *)

fun Pk/1.

.
fun encryptPK/2.

fun encryptSK/2.

.
reduc decryptSK(encryptPK(m,Pk(k)),k)=m.

reduc decryptPK(encryptSK(m,k),Pk(k))=m.

.
(* Create/verify signatures *)

fun Hash/1.

fun verifySign/3.

.
equation verifySign(m,encryptSK(Hash(m),k),Pk(k))=validSign.

.
(* Create/verify certificates *)

.
fun Cert/2.

.
reduc getID(Cert(id,sign))=id.

reduc getSign(Cert(id,sign))=sign.

.
(* Related Operative Awareness Message functions *)

.
fun CAM/3.

fun AB/3.

.
reduc getAB(CAM(ps_carx, ps_drvy,AB(pos, dyn, ts)))=AB(pos,dyn,ts).

reduc getPsCar(CAM(ps_carx, ps_drvy,AB(pos, dyn, ts)))=ps_carx.

reduc getPsDrv(CAM(ps_carx, ps_drvy,AB(pos, dyn, ts)))=ps_drvy.

.
reduc getPosition(AB(pos, dyn, ts))=pos.

reduc getDynamics(AB(pos, dyn, ts))=dyn.

reduc getTime(AB(pos, dyn, ts))=ts.

.
(* Association between real and pseudo identities *)

.
fun pseudoCarID/1.

fun pseudoDriverID/1.

.

2. Hypotheses
The model Hypotheses are compliant with confidential data which should be initially
restricted for the attacker; apart from involved secret keys, we additionally assume
that car and driver identifications are initially ignored by the attacker. Thus, it is
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verified that car IDs -ev_ccu- and driver IDs -ev_driver- can not be derived from
the initial knowledge of the attacker. Note that CAM contents like car position,
dynamics and time of Active Brake are not considered as confidential.

(* Initial secrecy assumptions ( the keys can not be derived from

clauses ) *)

.
not attacker:ev_ccu.

not attacker:ev_driver.

not attacker:SesK.

not attacker:PsSK_ccu.

not attacker:sk_ca.

.

3. Queries
Queries model that confidential material is not delivered to the attacker as a result
of the protocol exchanges. Indeed, we assume that if the attacker is able to derive
ev_ccu or ev_driver, an attack on car’s or driver’s privacy can be achieved.

(* Queries for Verification of Secrecy/Confidentiality *)

.
query attacker:ev_ccu.

query attacker:ev_driver.

query attacker:SesK.

query attacker:PsSK_ccu.

query attacker:sk_ca.

.

4. Variables
Since the model was not tagged, the Variables section only includes channels decla-
ration, as well as a few free variables and data structures. c represents the wireless
medium, and c1 and c2 model in-car channels. Indeed, they represent an ECU
internal bus for calling the Security Watch Dog module (SWD), and the main CAN
bus, respectively.

(* The channels in the model *)

free c.

private free c1.

free c2.

.
(* Declaration of some variables that the attacker may know *)

.
data validMAC/0.

data validSign/0.

data true/0.

data cu_id/0.

free PsPK_ccu.

.
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5. Processes
The Processes section is composed by four processes, each one associated to a
CE, namely processEV, processCU_ECU, processCSC_ECU and processHU_ECU.
Additionally, three dummy processes are defined for representing SWD calls, Ac-
tive Brake algorithm executions and display alert functions. Note that the key
pair (PsSK ccu, PsPK ccu) is internally generated in processEV. Moreover, the
processEV uses pseudo car and driver identifications – ps_ev_ccu and ps_ev_-

driver-. These pseudo names are associated to the private in-car ID’s using the
blocks pseudoCarID and pseudoDriverID, respectively.

(* The process for External Vehicle *)

.. let processEV =

new ev_ccu;

let ps_ev_ccu = pseudoCarID(ev_ccu) in

.
new ev_driver;

let ps_ev_driver = pseudoDriverID(ev_driver) in

.
new PsSK_ccu;

let PsPK_ccu = Pk(PsPK_ccu) in

.
new position;

new dynamics;

new tsAB;

.
new ts1;

out (c, (CAM(ps_ev_ccu,ps_ev_-

driver,AB(position,dynamics,tsAB)),ts1,encryptSK(Hash((CAM(ps_ev_ccu,ps_-

ev_driver,

AB(position,dynamics,tsAB)),ts1)),PsSK_ccu),Cert(PsPK_-

ccu,encryptSK(Hash(PsPK_ccu),sk_ca)))); (* Msg 1

*)

0.

.
(* The process for CU-ECU *)

let processCU_ECU =

in (c, m1); (* Msg 1 *)

let (Warning,TS1, Sign1, Cert1) = m1 in

let PS_PK = getID(Cert1) in

let signCert1 = getSign(Cert1) in

let Res1 = verifySign(PS_PK, signCert1, pk_ca) in

if Res1 = validSign then (

.
let Res2 = verifySign((Warning,TS1),Sign1,PS_PK) in

if Res2 = validSign then (

.
(* Performing Plausibility Check *)

.
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let ActiveBrake = getAB(Warning) in

.
let POS= getPosition(ActiveBrake) in

let DYN = getDynamics(ActiveBrake) in

let TS = getTime(ActiveBrake) in

.
new ts2;

out (c2, (cu_id, ActiveBrake, ts2, MAC((ActiveBrake,ts2),SesK))); (* Msg

2 *)

.
new ts3;

out (c2, (cu_id, ActiveBrake, ts3, MAC((ActiveBrake,ts3),SesK))) (* Msg 3

*)

.
)

else ( processSWD)

)

else ( processSWD ).

.
(* The process for the CSC-ECU *)

.
let processCSC_ECU =

in (c2, m2); (* Msg 2 *)

let (CU2, AB2, TS2, MAC2) = m2 in

let Res3 = verifyMAC((AB2, TS2), MAC2, SesK) in

if Res3 = validMAC then (

if CU2 = cu_id then

(* Active Brake evaluation CSC *)

let POS2 = getPosition(AB2) in

let DYN2 = getDynamics(AB2) in

let TS_2 = getTime(AB2) in

.
executeAB

)

else (processSWD).

.
(* The process for the HU-ECU *)

let processHU_ECU =

in (c2, m3); (* Msg 3 *)

let (CU3, AB3, TS3, MAC3) = m3 in

let Res4 = verifyMAC((AB3, TS3), MAC3, SesK) in

if Res4 = validMAC then (

if CU3 = cu_id then

(* Active Brake warning message *)

let POS3 = getPosition(AB3) in

let DYN3 = getDynamics(AB3) in

let TS_3 = getTime(AB3) in

.
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displayAB

)

else (processSWD).

.
(* Related process to the AB scenario *)

let processSWD =

let Alert=true in

out(c1, Alert).

.
let executeAB = 0.

.
let displayAB = 0.

.

6. Main
The Main section includes secret keys used by more than one ECU: SesK and
sk ca. The basic block Pk() is used to associate pk ca to its respective secret key.
Later on, pk ca is broadcasted in the channel c. Protocol processes are executed in
parallel and infinitely replicated thus ensuring that data secrecy and authenticity is
preserved no matter the number of protocol sessions.

process

new SesK;

.
new sk_ca;

let pk_ca = Pk(sk_ca) in

out (c, pk_ca);

.
((!processEV)|(!processCU_ECU)|(!processCSC_ECU)|(!processHU_ECU))

.

3.8.4 Results for Verification of Confidentiality (ProVerif)

The results from verification of confidentiality in CAM-LDW Protocol are summarized in
Table 26.

3.8.5 Model for Verification of Authenticity (ProVerif)

The model for verification of authenticity in CAM-LDW protocol is composed of usual
sections (see 3.4.1), that is Basic Blocks, Hypotheses, Queries, Variables, Processes and
Main.

The sections Basic Blocks, Hypotheses, Variables and Main are the same as in the pre-
vious model for verification of confidentiality (See section 3.8.3). Thus we only describe
Queries and Processes.

1. Queries
The Queries for verification of authenticity are based upon the concept of injec-
tive agreements explained in section 3.4.2. The protocol has three communica-
tion flows; between processEV and processCU_ECU, between processCU_ECU and
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Table 26 Results for verification of Confidentiality in CAM-LDW Protocol

Verification Scheme ProVerif Model and attacker queries
File model pi EVITA CAM-LDWProtocol Confidential-

ity 1
Processes in the model processEV, processCU ECU, processCSC ECU,

processHU ECU
Property representation query attacker:ev ccu. query attacker:ev driver.

query attacker:SesK. query attacker:PsSK ccu.
query attacker:sk ca.

Secrecy assumptions not attacker:ev ccu. not attacker:ev driver. not
attacker:SesK. not attacker:PsSK ccu. not at-
tacker:sk ca.

Nb. of phases No phases were used
Nb. of rules for completion 200
Forcing completion No tags were used
RESULT not attacker:ev ccu True
RESULT not attacker:ev driver True
RESULT not attacker:SesK True
RESULT not attacker:PsSK ccu True
RESULT not attacker:sk ca True
Observations The protocol preserves secrecy of confidential

data. Car and driver privacy are also ensured,
since th disclosure of their real identity is not
possible.

processCSC_ECU and between processCU_ECU and processHU_ECU. The authenti-
cation of these exchanges therefore relies on the following queries:

(* Queries for Verification of Authenticity *)

.
query evinj:endComEV_CU(x1,x2) ==> evinj:beginComEV_CU(x1,x2).

query evinj:endComCU_CSC(x1,x2) ==> evinj:beginComCU_CSC(x1,x2).

query evinj:endComCU_HU(x1,x2) ==> evinj:beginComCU_HU(x1,x2).

.

Thus for instance, the authentication of the first message in the protocol corre-
sponds with the first query. The arguments xi for the the first query are ps_ev_ccu
and ps_ev_driver, respectively. The arguments for the second and third query
respectively correspond to cu_id and ActiveBrake values.

2. Processes
The section Processes is the same as in the verification of confidentiality, apart from
authentication event which are located accordingly to queries:

(* The process for External Vehicle *)

.

112



let processEV =

new ev_ccu;

let ps_ev_ccu = pseudoCarID(ev_ccu) in

.
new ev_driver;

let ps_ev_driver = pseudoDriverID(ev_driver) in

.
new PsSK_ccu;

let PsPK_ccu = Pk(PsPK_ccu) in

.
new position;

new dynamics;

new tsAB;

.
new ts1;

.
event beginComEV CU(ps ev ccu, ps ev driver);

.
out (c, (CAM(ps_ev_ccu,ps_ev_-

driver,AB(position,dynamics,tsAB)),ts1,encryptSK(Hash((CAM(ps_ev_ccu,ps_-

ev_driver,AB(position,dynamics,tsAB)),ts1)),PsSK_ccu),Cert(PsPK_-

ccu,encryptSK(Hash(PsPK_ccu),sk_ca)))); (* Msg 1

*)

0.

.
(* The process for CU-ECU *)

let processCU_ECU =

in (c, m1); (* Msg 1 *)

let (Warning,TS1, Sign1, Cert1) = m1 in

let PS_PK = getID(Cert1) in

let signCert1 = getSign(Cert1) in

let Res1 = verifySign(PS_PK, signCert1, pk_ca) in

if Res1 = validSign then (

.
let Res2 = verifySign((Warning,TS1),Sign1,PS_PK) in

if Res2 = validSign then (

.
let CAR_ID = getPsCar(Warning) in

let DRV_ID = getPsDrv(Warning) in

.
event endComEV CU(CAR ID, DRV ID);

.
(* Performing Plausibility Check *)

let ActiveBrake = getAB(Warning) in

.
let POS= getPosition(ActiveBrake) in

let DYN = getDynamics(ActiveBrake) in

let TS = getTime(ActiveBrake) in
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.
event beginComCU CSC(cu id, ActiveBrake);
event beginComCU HU(cu id, POS);

.
new ts2;

out (c2, (cu_id, ActiveBrake, ts2, MAC((ActiveBrake,ts2),SesK))); (* Msg

2 *)

.
new ts3;

out (c2, (cu_id, ActiveBrake, ts3, MAC((ActiveBrake,ts3),SesK))) (* Msg 3

*)

.
)

else ( processSWD)

)

else ( processSWD ).

.
(* The process for the CSC-ECU *)

.
let processCSC_ECU =

in (c2, m2); (* Msg 2 *)

let (CU2, AB2, TS2, MAC2) = m2 in

let Res3 = verifyMAC((AB2, TS2), MAC2, SesK) in

if Res3 = validMAC then (

if CU2 = cu_id then

(* Active Brake evaluation CSC *)

let POS2 = getPosition(AB2) in

let DYN2 = getDynamics(AB2) in

let TS_2 = getTime(AB2) in

.
event endComCU CSC(CU2, AB2);

.
executeAB

)

else (processSWD).

.
(* The process for the HU-ECU *)

.
let processHU_ECU =

in (c2, m3); (* Msg 3 *)

let (CU3, AB3, TS3, MAC3) = m3 in

let Res4 = verifyMAC((AB3, TS3), MAC3, SesK) in

if Res4 = validMAC then (

if CU3 = cu_id then

(* Active Brake warning message *)

let POS3 = getPosition(AB3) in

let DYN3 = getDynamics(AB3) in

let TS_3 = getTime(AB3) in
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.
event endComCU HU(CU3,AB3);

.
displayAB

)

else (processSWD).

.

3.8.6 Results for Verification of Authenticity (ProVerif)

The results are presented in Table 27

Table 27 Results for verification of Authenticity in CAM-LDW protocol

Verification Scheme ProVerif Model and queries for injective agree-
ments

File model pi EVITA CAM-LDWProtocol Authenticity 1
Processes in the model processEV, processCU ECU, processCSC ECU,

processHU ECU
Injective agreement EV and CU -
ECU

query evinj : endComEV CU(x1, x2) ==>
evinj : beginComEV CU(x1, x2)

Injective agreement CU ECU and
CSC ECU

query evinj : endComCU CSC(x1, x2) ==>
evinj : beginComCU CSC(x1, x2)

Injective agreement CU ECU and
HU ECU

query evinj : endComCU HU(x1, x2) ==>
evinj : beginComCU HU(x1, x2)

Secrecy assumptions not attacker:ev ccu. not attacker:ev driver. not
attacker:SesK. not attacker:PsSK ccu. not at-
tacker:sk ca.

Nb. of phases no phases were used
Nb. of rules for completion 200
Forcing completion No tags were used
RESULT agreement EV and CU -
ECU

False. An attack trace is found.

RESULT agreement CU ECU and
CSC ECU

False. An attack trace is found.

RESULT agreement CU ECU and
HU ECU

False. An attack trace is found.

Observations The model is not able to detect replayed mes-
sages. Consequently attack traces are found.

3.9 Model Limitation in ProVerif

This section presents a limitation in ProVerif models for the verification of authenticity
properties. This limitation concerns the analysis of replay attacks.
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3.9.1 General Description

Attack traces have been identified during the verification of authenticity properties (see
for example Table 24). However these traces do not correspond to attacks on EVITA
protocols, but rather to a limitation of our modeling approach in ProVerif. Indeed, to
our knowledge, apart from phase, ProVerif does not provide structures to represent time
in processes. As a consequence of this limitation, there is no specific registers for time.
Moreover, since ProVerif does not introduce any algebraic structure in variable domains,
they can not be compared with respect to an order. Thus, time stamps validation with
respect to relative or global time scales is missing.

As it was explained in section 3.4.2, authenticity is verified based upon an injective
agreement between two CE’s processes. Roughly speaking, the injective agreement holds
if whenever the event end(M) is executed in processBρ, then at least one event begin(M)
has been executed in process processAρ. Moreover, once executed events – end_ex(M)

and begin_ex(M) – are associated in a protocol session ρ, they can not be reused in a
different one.

Finally, the limitation appears in ProVerif models that represent exchanges of the
form:

M := (d1, d2, . . . , dn, tsX),MAC(M,k) or
M := (d1, d2, . . . , dn, tsX), Sign(M,k),

where tsX is the respective time stamp. Thus, whenever a processAρ outputs such
an exchange, an event beginA_B(M) is executed. If a processBρ inputs the message,
then an event endA_B(M) is executed. Nevertheless, due to time leakage representation,
processBρ is not able to determine whether M has been accepted in a previous protocol
session or not. Knowing that, the attacker opens a new session by replication of processAρ
and processBρ, namely ρ1. Then, the attacker simply assumes that processAρ1 is not
executed and afterwards replays M – and its authentication code – to processBρ1 . Thus,
the event endA_B(M) is executed in processBρ1 with no prior execution of event beginA_-
B(M). Consequently, the following query is not satisfied for session ρ1:

query evinj:endA_B(M) ==> evinj:beginA_B(M).

Since the attacker is able to replay time stamped messages, the injective agreement
is never satisfied for those messages and consequently attack traces on authenticity are
found.

3.9.2 Attack Trace Analysis

In the following lines we present an instance of an attack trace on authenticity for the
CAM-LDW Protocol. Trace notation has been modified in order to simplify its reading.
The query that leads to this trace is the following one:

query evinj:endComEV_CU(x1,x2) ==> evinj:beginComEV_CU(x1,x2).
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Table 28 Attack Trace on authenticity for CAM-LDW Protocol

Attack Trace Sequence

1. The event beginComEV CU(pseudoCarID(ev ccu 1790), pseudoDriverID
(ev driver 1791)) (with environment @sid 232 = @sid 1770, @occ55 1034 = @occ cst())
may be executed at {55}. So the message M1s1 := (CAM(pseudoCarID(ev ccu 1790),
pseudoDriverID(ev driver 1791), AB(position 1792, dynamics 1793, tsAB 1794)),
ts1 1795, encryptSK(Hash((CAM(pseudoCarID(ev ccu 1790),
pseudoDriverID(ev driver 1791), AB(position 1792, dynamics 1793,
tsAB 1794)), ts1 1795)), PsSK ccu 1796), Cert(Pk(PsSK ccu 1796),
encryptSK(Hash(Pk(PsSK ccu 1796)), sk ca 43[]))) may be sent to the attacker
at output {56}. attacker:M1s1.

Description: processEC sends the message M1s1 in session s1.

2. By 1, the attacker may know M1s1. Using the
3th inverse of function 4-tuple the attacker may obtain
Cert(Pk(PsSK ccu 1796), encryptSK(Hash(Pk(PsSK ccu 1796)), sk ca 43[])).
attacker:Cert(Pk(PsSK ccu 1796), encryptSK(Hash(Pk(PsSK ccu 1796)),
sk ca 43[])).

Description: M1s1 is intercepted; the attacker obtains the certificate in M1s1.

3. By 1, the attacker may know M1s1. Using the 2th inverse
of function 4-tuple the attacker may obtain encryptSK(Hash((CAM
(pseudoCarID(ev ccu 1790), pseudoDriverID(ev driver 1791),
AB(position 1792, dynamics 1793, tsAB 1794)), ts1 1795)),
PsSK ccu 1796). attacker:encryptSK(Hash((CAM(pseudoCarID(ev ccu 1790),
pseudoDriverID(ev driver 1791), AB(position 1792, dynamics 1793, tsAB 1794)),
ts1 1795)), PsSK ccu 1796).

Description: The attacker obtains the signature of M1s1.

4. By 1, the attacker may know M1s1. Using the 1th inverse of function 4-tuple the attacker
may obtain ts1 1795. attacker:ts1 1795.

Description: The attacker retrieves ts1 1795

5. By 1, the attacker may know M1s1. Using the 0th inverse of func-
tion 4-tuple the attacker may obtain CAM(pseudoCarID(ev ccu 1790),
pseudoDriverID(ev driver 1791), AB(position 1792, dynamics 1793, tsAB 1794)).
attacker:CAM(pseudoCarID(ev ccu 1790), pseudoDriverID(ev driver 1791),
AB(position 1792, dynamics 1793, tsAB 1794)).

Description: The attacker begins to forge a new message with acquired knowledge.

6. By 5, the attacker may know CAM(pseudoCarID(ev ccu 1790), pseudoDriverID
(ev driver 1791), AB(position 1792, dynamics 1793, tsAB 1794)).
6.1 By 4, the attacker may know ts1 1795.
6.2 By 3, the attacker may know encryptSK(Hash((CAM(pseudoCarID(ev ccu 1790),
pseudoDriverID(ev driver 1791), AB(position 1792, dynamics 1793, tsAB 1794)),
ts1 1795)), PsSK ccu 1796).
6.3 By 2, the attacker may know Cert(Pk(PsSK ccu 1796), encryptSK(Hash(Pk

(PsSK ccu 1796)), sk ca 43[])).
Continued on next page
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Table 28 Attack Trace on authenticity for CAM-LDW Protocol

Attack Trace Sequence

6.4 Using the function 4-tuple the attacker may obtain M1′s1 =
(CAM(pseudoCarID(ev ccu 1790), pseudoDriverID(ev driver 1791),
AB(position 1792, dynamics 1793, tsAB 1794)), ts1 1795,
encryptSK(Hash((CAM(pseudoCarID(ev ccu 1790), pseudoDriverID(ev driver 1791),
AB(position 1792, dynamics 1793, tsAB 1794)), ts1 1795)), PsSK ccu 1796),
Cert(Pk(PsSK ccu 1796), encryptSK(Hash(Pk(PsSK ccu 1796)), sk ca 43[]))).
attacker:M1′s1.

Description: The attacker forges the new message M1′s1. Indeed M1′s1 is a copy of M1s1 an
can be used in other protocol sessions.

7. The message M1′s1 that the attacker may have by 6 may be received at input {28}. So
event endComEV CU(pseudoCarID(ev ccu 1790), pseudoDriverID(ev driver 1791))
may be executed at {42} in session endsid 1787. end:endsid 1787,
endComEV CU(pseudoCarID(ev ccu 1790), pseudoDriverID(ev driver 1791)).

Description: The attacker send the forged message M1′s1 to processCU_ECU

A trace has been found. I am now trying to reconstruct a trace that falsifies injectivity.

Description: ProVerif shows the attack based upon facts 1-7.

I. out(c, Pk(sk ca 43 12)) at {2}
Description: Action in the main process.

II. event(beginComEV CU(pseudoCarID(ev ccu 84 5), pseudoDriverID(ev driver 86 6)))
at {55} in copy a 4

Description: The event beginComEV_CU is executed in processEV in session a 4

III. out(c, M1s2 := (CAM(pseudoCarID(ev ccu 84 5),
pseudoDriverID(ev driver 86 6), AB(position 90 7, dynamics 91 8,
tsAB 92 9)), ts1 93 10, encryptSK(Hash((CAM(pseudoCarID(ev ccu 84 5),
pseudoDriverID(ev driver 86 6), AB(position 90 7, dynamics 91 8,
tsAB 92 9)), ts1 93 10)), PsSK ccu 88 11), Cert(Pk(PsSK ccu 88 11),
encryptSK(Hash(Pk(PsSK ccu 88 11)), sk ca 43 12)))) at {56} in copy a 4

Description: The message M1s2, is sent by processEV in session a 4

IV. in(c, M1s2) at {28} in copy a 3

Description: The message M1s2 is input by processCU_ECU in session a 3

V. event(endComEV CU(pseudoCarID(ev ccu 84 5), pseudoDriverID(ev driver 86 6)))
at {42} in copy a 3

Description: Event endComEV_CU is executed by processCU_ECU in session a 3

VI. event(beginComCU CSC(cu id(), AB(position 90 7, dynamics 91 8, tsAB 92 9)))
at {47} in copy a 3

Description: Event beginComCU_CSC is executed by processCU_ECU in session a 3

VII. event(beginComCU HU(cu id(), position 90 7)) at {48} in copy a 3

Description: The event beginComCU_HU is executed by processCU_ECU in session a 3

VIII. out(c2, (cu id(), AB(position 90 7, dynamics 91 8, tsAB 92 9), ts2 82 15,
MAC((AB(position 90 7, dynamics 91 8, tsAB 92 9), ts2 82 15), SesK 42 13))) at {49}
in copy a 3

Description: Active Brake information is sent by processCU_ECU to processCSC_ECU in
session a 3

Continued on next page
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Table 28 Attack Trace on authenticity for CAM-LDW Protocol

Attack Trace Sequence

IX. out(c2, (cu id(), AB(position 90 7, dynamics 91 8, tsAB 92 9), ts3 83 16,
MAC((AB(position 90 7, dynamics 91 8, tsAB 92 9), ts3 83 16), SesK 42 13)))
at {50} in copy a 3

Description: Active Brake information is sent by processCU_ECU to processHU_ECU in
session a 3

X. in(c, M1s2) at {28} in copy sid 1957 14

Description: The attacker opens the session sid 1957 14 and replays the message M1s2) to
processCU_ECU.

XI. event(endComEV CU(pseudoCarID(ev ccu 84 5), pseudoDriverID(ev driver 86 6)))
at {42} in copy sid 1957 14

Description: Event endComEV_CU is executed by processCU_ECU in session sid 1957 14.

XII. The event endComEV CU(pseudoCarID(ev ccu 84 5),
pseudoDriverID(ev driver 86 6)) is executed in session sid 1957 14 and in session
a 3. A trace has been found.

Description: ProVerif informs that event endComEV_CU has been executed in two different
sessions.

RESULT evinj : endComEV CU(x1 935, x2 936) ==> evinj :
beginComEV CU(x1 935, x2 936) is false. RESULT (but ev : endComEV CU(x1 1749,
x2 1750) ==> ev : beginComEV CU(x1 1749, x2 1750) is true.)

Description: Event endComEV_CU does not match with any event beginComEV_CU in session
sid 1957 14. Therefore the injective agreement is not held.

Continued on next page

3.9.3 Conclusions

Based upon presented traces, we can conclude that the attacker is able to replay messages
whenever message authenticity depends on time stamps. This is a strong limitation of
our model, and therefore, we intend to use a model of time in order to more easily verify
authenticity in EVITA protocols, i.e., verify authenticity properties without having to
verify attack traces by hand to check whether they correspond to reply attacks due to a
lack of your modeling approach, or not.

3.10 Summary of proofs

The magnified view verification approach targets the formal verification of EVITA cryp-
tographic protocols. For that purpose, three complementary techniques – TURTLE,
ProVerif, AVATAR – have been defined, and then used for three different protocols:
Keying with Key Master, Remote Flashing Update and CAM-LDW. TURTLE offers a
high level language (UML) for system modeling. Even if its Dolev-Yao based attacker
model can be used for a wide range of security properties, it was mainly used for integrity,
and also for freshness proof thanks to the timed model of TURTLE.

In the case of privacy, confidentiality and also authenticity properties, the ProVerif
approach provides a strong and formal framework relying on horn clauses resolution.
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Nevertheless, ProVerif modeling and results evaluation require strong skills in pi-calculus,
and in ProVerif queries. Additionaly, ProVerif requires to make a separate model from
the one of the system design, which might be error-prone. At last, the AVATAR profile is
conceived for taking the best of the two first approaches: a timed-model, and integration
of the model with the model of the system design.

Only one security flaw was identified with the verification process we applied, with
respect to a set of assumptions listed at the beginning of this section. Obviously, extend-
ing attacker models, properties, and verification technique capabilities might lead to the
identification of other security flaws.
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4 Compositional Verification Results

In this section we will demostrate the application of a SeBB-based formal verification
process to an exemplary deployment of the EVITA architecture to a single of EVITA’s
use cases. After introducing the necessary formal concepts, we will present the exemplary
instantiation of the EVITA architecture and protocols regarding the requirement to be
verified here. Then an analysis of the EVITA security architecture is performed and its
security relevant properties are extracted and formalized. In this process also additional
properties that were not yet foreseen (e.g. properties of secure software) will be identified.
Afterwards the secure onboard protocols will be discussed and their corresponding SeBBs
formalized. Finally the actual proof will be attempted and necessary trust relations
required for the actual success of the proof will be extracted.

Please note that this section will not perform an exhaustive analysis of a complete
architecture utilizing the EVITA results. This would require the provision of a real de-
ployment that needs to be defined for a real vehicle in order to proof the relevant security
properties. Rather, this section demonstrates an appropriate verification approach for
deployment scenarios in the future. We will deeply investigate the properties of a sensor,
a keymaster, and a subsequent application ECU, as well as their communication with
respect to their HSMs, HSM-integration, software, key distribution, firmware update and
secure boot behavior. However these results can be applied similarly to the rest of the use
case as well as the refined requirements of other use cases and security requirements. [13]
gives an overview over a set of refined and consolidated requirements of more use cases
and security requirements that demonstrate their similarities.

4.1 Necessary Formal Concepts

The work presented in this deliverable is based on the Security Modelling Framework
SeMF and the concept of SeMF’s Security Building Blocks (SeBBs). These concepts have
already been explained in [13].

This section will introduce all additional formal concepts needed besides those that
have already been explained in the above mentioned deliverables of the EVITA project.

4.1.1 Semantics

Systems’ indexing During the rest of this text, there will be several occasions in which
systems are indexed multiple times, due to expressing e.g. A’s trust in B’s trust in C’s
trusted system. To improve readability, instead of SCBA

we will write SC←B←A which
corresponds to trust(A, trust(B, trust(C, . . .))).

4.1.2 SeMF-Definitions

Limited Precede Sometimes a precede property cannot be expressed solely by a single
trigger action. It may be the case that not one but two or more actions together imply
precedence by another action.
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Definition 1 (Limited-Precede). Let B be a set of sequences of actions, then limited
precede denoted by limited-precede(a, b & c) holds if for all ω ∈ B with b, c ∈ alph(ω) it
holds that a ∈ alph(ω).

Phases When verifying the security of an Evita system, what can or cannot happen
within software boot cycles is an important aspect to be considered. In order to model
these boot cycles, we use the definition of a phase provided in [12]. A phase V ⊂ Σ∗ is a
prefix closed language consisting only of words which, as long as they are not maximal in
V , show the same continuation behavior within V as within B.

Definition 2. Let B ⊆ Σ∗ be a system. A prefix closed language V ⊂ Σ∗ is a phase in B
if the following holds:

1. V ∩ Σ 6= ∅

2. ∀ω ∈ B with ω = uv and v ∈ V \ (max(V ) ∪ {ε}) holds: ω−1(B) ∩Σ = v−1(V ) ∩Σ

Thus a phase as defined above is essentially a part of the system behaviour that is
closed with respect to concatenation. In analogy to the maximal words of a phase V
which are those v ∈ V for which exists ω, u ∈ B with ω = uv such that for all a ∈ Σ
with ωa ∈ B holds va 6∈ V , we define the minimal words of a phase as all v ∈ V with
|alph(v)| = 1.

A phase can be a very complex construct. However, in many cases phases are of interest
that can be defined by their starting and ending actions. Since an action can occur more
than once in a word, it is not sufficient to identify the starting and terminating actions for
determining where a particular phase starts and where it ends. The following definition
takes this into account.

In the following, we denote the number of occurences of a set of actions Γ ∈ Σ in a
word ω by card(Γ, ω). If Γ consists of only one action a, we simply say card(a, ω).

Definition 3. Let s1, . . . , sk, t1, . . . , tl ∈ Σ be actions. Then V ({s1, . . . , sk}, {t1(j1), . . . ,
tl(jl)}) (with j1, . . . , jl ∈ IN) defines a phase in B that starts with actions s1, . . . , sk and
terminates with actions t1, . . . , tl in the following sense:

• For all ω ∈ B for which exists sj ∈ {s1, . . . , sk} such that ωsj ∈ B follows sj ∈
V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}) (i.e. sj is minimal in V ({s1, . . . , sk}, {t1(j1), . . . ,
tl(jl)})).

• For all ω ∈ B for which exists ti(ji) ∈ {t1(j1), . . . , tl(jl)} and u, v ∈ Σ∗ with ω =
uvti, vti ∈ V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}), and card(ti, vti) = ji follows that vti
is maximal in V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}).

In the above definition, the starting action(s) need to be fixed so that starting from
these the terminating actions occuring in the phase can be counted in order to identify
those ones that actually terminate the phase. In the following definition, we conversely
fix the termination action(s) and count the number of occurences of the starting action(s)
backwards in the phase to identify the actual start(s) of the phase:
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Definition 4. Let s1, . . . , sk, t1, . . . , tl ∈ Σ be actions. Then V ({s1(i1), . . . , sk(ik)}, {t1, . . . ,
tl}) ⊆ B (with i1, . . . , il ∈ IN) defines a phase in B that starts with actions s1, . . . , sk and
terminates with actions t1, . . . , tl in the following sense:

• For all ω ∈ B for which exists sj(ij) ∈ {s1(i1), . . . , sk(ik)} such that ωsj ∈ B follows
sj ∈ V ({s1(i1), . . . , sk(ik)}, {t1, . . . , tl}) (i.e. sj is minimal in V ({s1(i1), . . . , sk(ik)},
{t1, . . . , tl})) and card(sj, v) = ij for all maximal words v ∈ V ({s1(i1), . . . , sk(ik)},
{t1, . . . , tl}).

• For all ω ∈ B for which exists ti ∈ {t1, . . . , tl} and u, v ∈ Σ∗ with ω = uvti, vti ∈
V ({s1(i1), . . . , sk(ik)}, {t1, . . . , tl}), follows that vti is maximal in V ({s1(i1), . . . ,
sk(ik)}, {t1, . . . , tl}).

In some cases we are not interested in how often each of the ending actions occurs
within the phase but we want to fix the number of occurences of any of them.

Definition 5. Let s1, . . . , sk, t1, . . . , tl ∈ Σ be actions. Then V ({s1, . . . , sk}, {t1, . . . , tl}(j))
⊆ B (with j ∈ IN) defines a phase in B that starts with actions s1, . . . , sk and terminates
with actions t1, . . . , tl in the following sense:

• For all ω ∈ B for which exists sj ∈ {s1, . . . , sk} such that ωsj ∈ B follows sj ∈
V ({s1, . . . , sk}, {t1, . . . , tl}(j)) (i.e. sj is minimal in V ({s1, . . . , sk}, {t1, . . . , tl}(j))
).

• For all ω ∈ B for which exists ti ∈ {t1, . . . , tl} and u, v ∈ Σ∗ with ω = uvti,
vti ∈ V ({s1, . . . , sk}, {t1, . . . , tl}(j)), and card({t1, . . . , tl}, vti) = j follows that vti
is maximal in V ({s1, . . . , sk}, {t1, . . . , tl}(j)).

While in many cases we are able to identify the last action(s) of a phase, in some cases
we may know only the first action(s) that occur outside the phase. The next definition
allows to specify a phase using these actions.

Definition 6. Let s1, . . . , sk, t1, . . . , tl ∈ Σ be actions, and let p1, . . . , pl be parameters with
values in and ex. Then V ({s1, . . . , sk}, {t1(j1, p1), . . . , tl(jl, pl)}) ⊆ B (with j1, . . . , jl ∈
IN) defines a phase in B that starts with actions s1, . . . , sk and terminates with actions
t1, . . . , tl in the following sense:

• For all ω ∈ B for which exists sj ∈ {s1, . . . , sk} such that ωsj ∈ B follows sj ∈
V ({s1, . . . , sk}, {t1(j1, p1), . . . , tl(jl, pl)}) (i.e. sj is minimal in V ({s1, . . . , sk}, {t1(j1,
p1), . . . , tl(jl, pl)}).

• For all ω ∈ B for which exists ti(ji, in) ∈ {t1(j1, p1), . . . , tl(jl, pl)} and u, v ∈ Σ∗

with ω = uvti, vti ∈ V ({s1, . . . , sk}, {t1(j1, p1), . . . , tl(jl, pl)}), and card(ti, vti) = ji
follows that vti is maximal in V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}).

• For all ω ∈ B for which exists ti(ji, ex) ∈ {t1(j1, p1), . . . , tl(jl, pl)} and u, v ∈ Σ∗

with ω = uvti, v ∈ V ({s1, . . . , sk}, {t1(j1, p1), . . . , tl(jl, pl)}), and card(ti, v) = ji
follows that v is maximal in V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}).

In other words, if the number of occurrences of a terminating action is accompanied
by the parameter in, the action is part of the phase. If it is accompanied by ex, it is the
first action after the phase’s termination.
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4.1.3 SeMF-Properties

We now introduce additional SeMF Properties in terms of predicates that were not already
introduced in [13].

Definition 7. Let V be a phase within B, the behaviour of a system S, then
precede-within-phase(a, b, V ) is fulfilled, iff for all v ∈ V with b ∈ alph(v) also a ∈
alph(v).

Definition 8. Let B be the behaviour of a system S, then not-happens(a) is fulfilled, iff
for all ω ∈ B it holds that a 6∈ alph(ω).

Definition 9. Let V be a phase within B, the behaviour of a system S, then
not-happens-within-phase(a, V ) is fulfilled, iff for all v ∈ V it holds that a 6∈ alph(v).

Software Properties A software property is a new concept added to the set of proper-
ties in SeMF that describes certain (relevant) behavioral properties of a certain software.
Formally this is interpreted such that, when a software based agent P (e.g. an ECU) is
booted with a certain software (formalized by boot(P, swi)), this agent will behave accord-
ing to the software property until it is shutdown. Note that for reasons of simplicity and
because of the monolithic nature of the embedded firmwares used in ECUs we abstract
from the case of an agent’s software configuration changing during runtime after a certain
software stack swi has been booted.

Definition 10 (Software Property). Some software swi has a certain property prop if for
all P ∈ P, prop holds in V ({boot(P, swi)}, {shutdown(P )}(1)), denoted by
sw-prop(swi, prop).

4.1.4 F-SeBBs

This section will introduce the necessary F-SeBBs for the subsequent proof. F-SeBBs are
relations among SeMF properties that are founded in their formal definitions.

Implication from not-happens to precede within a phase (SeBB.4.1.4.1)

External Property:

∀x ∈ Σ : precede-within-phase(x, a, V )

Internal Property:

not-happens-within-phase(a, V )

Transitivity of Precede (SeBB.4.1.4.2)

External Property:

precede(a, c)

Internal Property:

precede(a, b) ∧ precede(b, c)

124



Transitivity of Precede within a phase (SeBB.4.1.4.3)

External Property:

precede-within-phase(a, c, V )

Internal Property:

precede-within-phase(a, b, V ) ∧ precede-within-phase(b, c, V )

Unification of phase-starts for precede (SeBB.4.1.4.4)

External Property:

precede-within-phase(a, b, V (s1 ∪ s2, t))
Internal Property:

precede-within-phase(a, b, V (s1, t)) ∧ precede-within-phase(a, b, V (s2, t))

Unification of phase-starts for not-happens (SeBB.4.1.4.5)

External Property:

not-happens-within-phase(a, V (s1 ∪ s2, t))
Internal Property:

not-happens-within-phase(a, V (s1, t)) ∧ not-happens-within-phase(a, V (s2, t))

Chaining of phases for not-happens (SeBB.4.1.4.6)

External Property:

not-happens-within-phase(a, V (s1, t2(n)))

Internal Property:

not-happens-within-phase(a, V (s1, t1(m))) ∧ not-happens-within-phase(a, V (t1, t2(n)))

Implications of precede to not-happens (SeBB.4.1.4.7)

External Property:

not-happens(b)

Internal Property:

not-happens(a) ∧ precede(a, b)
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Implications of not-happens to precede-within-phase’s start
(SeBB.4.1.4.8)

External Property:

∀a, b ⊆ Σ :

precede-within-phase(a, b, V (s, t))

Internal Property:

not-happens(s)

Implication of not-happens to not-happens-within-phase’s start
(SeBB.4.1.4.9)

External Property:

∀a ⊆ Σ :

not-happens-within-phase(a, V (s, t))

Internal Property:

not-happens(s)

Implications of phased not-happens to precede (SeBB.4.1.4.10)

External Property:

precede(a, b)

Internal Property:

not-happens-within-phase(b, V (∅, a(1)))

Chaining to cyclic phases for precede (SeBB.4.1.4.11)

External Property:

precede-within-phase(a, b, V (s, s(2)))

Internal Property:

precede-within-phase(a, b, V (s, t(1)))∧
precede-within-phase(a, b, V (t, s(1)))∧

s ∩ t = ∅

Resolution of cyclic phases to overall precede (SeBB.4.1.4.12)

External Property:

precede(a, b)

Internal Property:

precede-within-phase(a, b, V (∅, s(1)))∧
precede-within-phase(a, b, V (s, s(2)))

126



Specialization of Precede’s Trigger actions within a phase
(SeBB.4.1.4.13)

External Property:

precede-within-phase(a, b1, V )

Internal Property:

precede-within-phase(a, b1 ∪ b2, V )

Specialization of Preceding actions using not-happens within a phase
(SeBB.4.1.4.14)

External Property:

precede-within-phase(a1, b, V )

Internal Property:

precede-within-phase(a1 ∪ a2, b, V ) ∧ not-happens-within-phase(a2, V )

Specialization of Limited Precede using precede (SeBB.4.1.4.15)

External Property:

precede(a, c)

Internal Property:

limited-precede(a, b&c) ∧ precede(b, c)

Specialization of Limited Precede using precede within a phase
(SeBB.4.1.4.16)

External Property:

precede-within-phase(a, c, V )

Internal Property:

limited-precede-within-phase(a, b&c, V ) ∧ precede-within-phase(b, c, V )

Specialization of nothappens to a phase (SeBB.4.1.4.17)

External Property:

∀V : not-happens-within-phase(a, V )

Internal Property:

not-happens(a)
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Specialization of precede under not-happens (SeBB.4.1.4.18)

External Property:

precede(a, c)

Internal Property:

precede(a ∪ b, c) ∧ not-happens(b)

Narrowing of limited-precedewith not-happens (SeBB.4.1.4.19)

External Property:

limited-precede(a&b1, c)

Internal Property:

limited-precede(a&b1 ∪ b2, c) ∧ not-happens(b2)

Specialization of triggers in limited-precede (SeBB.4.1.4.20)

External Property:

limited-precede(a, b1&c)

Internal Property:

limited-precede(a, b1 ∪ b2&c) ∧ not-happens(b2)

True Implication (SeBB.4.1.4.21)

External Property:

b

Internal Property:

(a→ b) ∧ b

Relations between not-happens and not-precede (SeBB.4.1.4.22)

External Property:

not-precede(a, {b|b ∈ Σ}
Internal Property:

not-happens(a)

4.2 System-Model, Agents and Topology

Agents An EVITA system consists of finitely many vehicles V ehicle1, . . . , V ehiclek (k ∈
IN). Each vehicle in turn consists of a sensor ECU, an application ECU, an ECU for the
communication control unit CCU, an ECU for the human-machine interface HMI, and a
key master ECU:

V ehiclei = {ECUSensori , ECUAppli , ECUCCUi
, ECUHMIi , ECUKeyMasteri} (i = 1, . . . , k)
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Each ECU again is composed of a CPU and an HSM, i.e. for x ∈ {Sensor, Appl, CCU,
HMI,KeyMaster}, we have ECUxi = {CCUxi , HMIxi} (i = 1, . . . , k).
Further, each vehicle has a driver, so {Driver1, . . . , Driverk} ⊆ P are agents as well.
Finally, the ECU manufacturer is an agent: Manufacturer ∈ P.

For validation purposes, we will use a small example system composed of two vehicles
V ehicle1 and V ehicle2, their drivers Driver1, Driver2, and the manufacturer, it graphical
representation is depicted in Figure 24.

The Figure 24 demonstrates the topological view we assume for the example system.
Regarding the actions of each of the agents, we will assume, that each of the CPUs can
send and receive on to and from its topological attached neighbours. The set of actions
of the HSMs consists of the actions from D3.2. And for each of these actions of the HSM,
the CPU may call the HSM to perform a certain action and wil receive the corresponding
results. These will be denoted by the prefixes cmd and ret .

Further, we will assume the ECUs to communicate using the EVITA protocols from
[18]. More details on this will be found in the subsequent sections.

During the formalization of properties from [19, 18] some flaws were found that needed
to be corrected before attempting to model or verify the system. The following list gives
a summary. More details follow in the subsequent sections:

• Secure Storage added at all ECU for KeyHandle-Lookups, Group-Lookups, . . . Un-
fortunately the Protocol specifications do not mention or foresee where to store
the key handles generated by the HSM during key Import. This was added to the
functionality of secure storage here.

• Consolidation of Key Export, Key Import and KeyDistributionProtocol was neces-
sary, as the HSM-Specification forsees two transportation keys for encryption and
integrity, whereas the Protocol only uses one transportation key. As only the con-
fidentiality of the transported key comes into play during the proofs, the second
(integrity) transportation key is omitted for the rest of the document.

• Distiction between senders and receivers of a Group to allow the KeyMaster to differ-
entiate between senders and receivers for a group during KeyDistributionProtocol.
This will become an important part in the following functional proof.

4.3 Security Properties

4.3.1 General Properties

In this section we will present general properties that are used to express (usually physical)
restrictions of the presented system that are however not imposed by the specific Evita
architecture and protocols.

Unavailability of ECUs prior to or in between boot cycles A rather obvious
property of all computer systems – and therefore of the ECUs consisting of CPU and HSM
– is that they will not perform any action prior to the first boot as well as in between
shutdown and boot. Please note for ease of understanding, we will define the following
properties very general. However, Prop.4.3.3.3 is a contradiction to the generality of
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V ehicle2

Driver2
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Figure 24 System model of verification target

unavailability of actions. the following definitions We therefore assume the manufacturer
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to set the first reference value during production allready and therefore instantiations do
not concern the preset ECR action.

Unavailability prior to first boot: (Prop.4.3.1.1)

not-happens-within-phase(Σ/CPUi
∪ Σ/HSMi

\ {boot(CPUi, . . .),
preset ECR(HSMi, . . .)},

V (∅, boot(CPUi, . . .)(1)))

Unavailability between shutdown and boot: (Prop.4.3.1.2)

not-happens-within-phase(Σ/CPUi
∪ Σ/HSMi

\ {shutdown(CPUi, . . .), boot(CPUi, . . .)},
V (shutdown(CPUi), boot(CPUi, . . .)(1)))

Key Usage For the following definitions, recall that the predicate conf(A(p), p,X)
denotes that only the agents P ∈ X (X ⊆ P) are allowed to know the parameter p, and
that A(p) denotes those actions that allow an agent monitoring the system to possibly
gain knowledge about p.

The usage of a key by an agent P ∈ P implies that (besides a not further defined
group of agents X ⊆ P allowed to know the key), P itself knows the key. Accordingly, if
an agent does not know a key, it can not use it. (This applies to systems as well as phases
within a system.):

Confidentiality restricts usage: (Prop.4.3.1.3)

∀P ∈ P : conf(A(k), k, ..,X \ {P})→ not-happens(A/P (K))

If an action a does not involve a key within its parameters, hence does not add to
agents’ knowledge about this key’s value, the concatenation of this action a to any se-
quence of actions will not extend the knowledge about k of any agent in the system. This
assumption requires the system to be formalized in an appropriate way, in particular ac-
tions adding to agents’ knowledge about parameters to be confidential must contain these
parameters. Of course this does not imply that agents necessarily learn from actions
involving this parameter. This has to be decided for each specific system separately.

For the following definition, recall that the homomorphism µ keeps exactly those
actions that can add to agents’ knowledge about the parameter to be confidential. Here
µk denotes the homomorphism keeping all actions that add to knowledge about the key
k.

Only actions involving a Key parameter add to agents’ knowledge about the Key’s value:
(Prop.4.3.1.4)

∀ω ∈ B, ∀R ∈ P,∀a ∈ Σ \ A(k) : µk(λ
−1
R (λR(ω)) ∩WR) = µk(λ

−1
R (λR(ωa)) ∩WR)
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KeyHandle Usage When a key is generated or imported by an HSM, it may be securely
stored in its non-volatile memory or directly used and stored in cache for further use
within the current session. We regard both the non-volatile storage and the cache as
secure storage, hence the following property holds:

Key Handles originate from secure storage: (Prop.4.3.1.5)

precede-within-phase(SecStorRead(CPUi, StorID,Handle), cmd ∗ (CPUi, Handle, . . .),

V (boot(CPUi, swx, . . .), shutdown(CPUi)(1)))

4.3.2 Evita Software Properties

This section presents requirements against secure software on Evita architectures. These
requirements are necessary for the verification of the system’s design. As such they can
be considered input for the Tasks T4200 – the basic driver – as well as T4400 – the
verification of the secure software.

As the Evita specification so far only considers the ECU on-chip design, a functionally
not further defined middleware and the on-board protocols, the requirements specified in
this section are results of our formal validation process.

Synchronized HSM-Access from Software The connection between the CPU and
the HSM is asynchronous and non-blocking. Further it does not include the notion of
command-return sessions or associations – neither cryptographically secured nor non-
secured. This leads to possible race-conditions during concurrent access to the HSM
which can be security relevant. For example during parallel Key Import at the KeyMaster
within the Key-Distribution Protocol, a malicious ECU might smuggle its own key into a
different group. Accordingly, every software in Evita is required to synchronize the access
to the HSM at all times, formalized as:

Synchronized Access to ECU: (Prop.4.3.2.1)

not-happens-within-phase(cmd ∗ (CPUi, . . .),

V (cmd ∗ (CPUi, . . .)(ex), ret ∗ (CPUi, . . .)(1, in)))

Non-Malicious Sensor Behaviour

Operational Mode Whenever the sensor’s software commands the HSM to pro-
duce a signature using the key that was stored for the purpose of signing sensing data,
the data being signed must have been sensed before:

Sign sensed data with sensing key: (Prop.4.3.2.2)

sw-prop(swSensor, limited-precede(sense(P, dataSensor),

SecStorRead(P, “StorIDSensor
′′, Handle)&

cmd Hash mac sign(P, dataSensor, Handle))
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This property can be specialized to the case of CPUSensor1 :

Sensor signs sensed data with sensing key: (Prop.4.3.2.3)

sw-prop(swSensor, limited-precede(sense(CPUSensor1 , dataSensor),

SecStorRead(CPUSensor1 , “StorIDSensor
′′, Handle) &

cmd Hash mac sign(CPUSensor1 , dataSensor, Handle))

Whenever the sensor’s software commands the HSM to sign a message containing of
a keyExport-Blob together with the group identifier for the group of sensors with the
pre-shared key with the keymaster, this exported key inside this blob must be the key
generated for signing of sensor data.

Distribution of HandleSessKSensor
under the label of “GidSensor

′′: (Prop.4.3.2.4)

sw-prop(swSensor,limited-precede(SecStorRead(CPUSensor1 , “StorIDSensor
′′, Handlea)

& ret Key Export(CPUSensor1 , exportBlob(Kc),

cmd Key Export(CPUSensor1 , Handlea, . . .)),

SecStorRead(CPUSensor1 , “StorIDPSK
′′, Handleb)

& cmd Hash mac sign(CPUSensor1 ,m(exportBlob(Kc), “GidSensor
′′),

Handleb)))

This is part of the necessary constraints within the key distribution protocol, that ensures
that the key being distributed under the label of the sensor-data-signing-key is actually
the sensor-data-signing key and no other.

Key Distribution It is clear, that a Sensor will attempt to exchange a shared session
key with the application cpus that come afterwards. This key (even though not further
specified) will be called SessKSensor and the corresponding key handle HandleSessKSensor

in the following. For this special key, several constraints against the behavior of the sensor
exist.

First of all, the sensor may only use such a key, that was created locally by the sensor’s
HSM.

“StorIDSensor
′′’s key created locally: (Prop.4.3.2.5)

sw-prop(swSensor, precede(ret create Random Key(P,HandleSessKSensor
, . . .),

SecStorWrite(P, “StorIDSensor
′′, HandleSessKSensor

)))

Further this session key may only be stored in the secure storage under the label
“StorIDSensor

′′. This is important as we will see in Section 4.4.1 because messages of the
transport protocol are not further typed and the key therefore acts as typisation authen-
ticator as well.

Only HandleSessKSensor
is written to “StorIDSensor

′′: (Prop.4.3.2.6)
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sw-prop(swSensor, not-happens({SecStorWrite(P, StorID,HandleSessKSensor
)

| StorID 6= “StorIDSensor
′′}))

Finally, of course the Sensor may not store any other key handle than the one of the
shared secret under the corresponding storage identifier. Not that a storage identifier may
be anything from a memory address in the Non-Volotile Memory, over a filename to a
database entry. This solely depends on the implementation.

HandleSessKSensor
is written only to “StorIDSensor

′′: (Prop.4.3.2.7)
sw-prop(swSensor, not-happens({SecStorWrite(P, “StorIDSensor

′′, Handle)

| Handle 6= HandleSessKSensor
}))

Whenever the sensor’s software commands the HSM to export a key that was stored
for the purpose of signing sensing data, the transport key used for the encrypted export
must originate from the storage designated to the key PSK that the HSMpre-shares with
the key master:

Only export SessK to keyMaster: (Prop.4.3.2.8)
sw-prop(swSensor, limited-precede(SecStorRead(P, “StorIDPSK

′′, Handleb),

SecStorRead(P, “StorIDSensor
′′, Handlea)&

cmd Key Export(P,Handlea, Handleb)))

Finally it is very important for the Sensor’s software to set the correct transportable
useflags. This way other HSMs are bound to using the SessK only for verification and
not for signing:

Creation-Command of SessK with validation only transportation: (Prop.4.3.2.9)
sw-prop(swSensor, not-happens({cmd create Random Key(CPUSensor1 , useflags)

|signtransp ∈ useflags})

Non-Malicious KeyMaster Behaviour This paragraph includes the properties re-
quired from a trustworthy software for the keymaster swKeyMaster.

KeyDistribution The keymaster’s software must value the keyhandles stored in
secure storage for the redistribution of keys.

Keymaster Gid compliance: (Prop.4.3.2.10)
sw-prop(swKeyMaster, limited-precede(

SecStorRead(P, “GidSensor-Recvr
′′, Handlea),

SecStorRead(P, “GidSensor-Sender
′′, Handleb)

& ret Key Import(P,Handlec, cmd Key Import(

P, exportBlob,Handleb))

& cmd Key Export(P,Handlec, Handlea)))
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The keymaster’s software must check the MACs of importblobs before continuing with
the key distribution in terms of importing the key.

Keymaster MAC check required: (Prop.4.3.2.11)

sw-prop(swKeyMaster, limited-precede(

SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, Handlea)

& ret Hash mac verify(CPUKeyMaster1 , cmd Hash mac verify(

CPUKeyMaster1 ,m(exportBlob, “GidSensor
′′), Handlea)),

SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, Handleb)

& cmd Key Import(CPUKeyMaster1 , exportBlob,Handleb)))

Further Agents Similar properties can be found for softwares of all the subsequent
agent in the functional path. However when it comes to the processing of the data for
example, more specifics from the functional domain must be taken into account, such
as the set of measurement values that actually make a warning necessary. This input is
processed within the security proof.

4.3.3 Evita Hardware Properties

[19] uses the assumption that the HSM is “trustworthy”. This means that the HSM
has certain properties related to its internal behaviour but also related to the connection
between the Application CPU and the protected and separated HSM. This section will
list and formalize those properties of the HSM that are relevant for the validation of the
properties and use cases provided in this document.

Secure Boot [19] provides the necessary HSM commands in order to perform a secure
boot functionality. However an actual secure boot depends as much on the HSM com-
mands as on the behaviour of the pre-bios / boot-rom code. Therefore we will refine
the secure boot functionality further. This is input for WP5000, the design of the Evita
prototype, and more specifically for any attempt to deploy the Evita architecture into a
final on-chip solution.

The Evita specification requires a secure boot process to be in place that ensures the
trustworthiness of the respective platform in the following way: Any program code for the
platform that shall be flashed is accompanied by a reference value. Successful validation
against this reference value is required before every boot of the software. There are
however various different ways in (i) what part of the software is to be verified and (ii)
how to react in cases of a missmatch, that are not further specified within D3.2.

Possible solutions to (i) include the verification of the complete firmware image, i.e.
the wholeness of executable code against the reference value in the very first step, or
the verification of a firmware loader that would validate the loaded firmware by means
of certificates and a public key carried within the firmware loader. Also each of the
components within the boot chain may validate the subsequent loaded software component
by means of certificates and public keys. Targeting (ii) leaves the question open of whether
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the boot / software load process would interrupt in case of a missmatch of validations or
whether this would only be marked e.g. within one of the ECR registers.

As this decision is to be made by an actual implementation and deployment in WP4000
/ WP5000, no concrete properties can be deduced for the moment. However for the
validation attempt in this document, we will assume that a software component will only
be loaded in case of successful validation and that the ECU will shutdown momentarily
otherwise. This decision regarding (ii) has to be made as it is an important assumption
for the correctness of the system. Regarding the question (i) of how the validation is
performed, we will abstract from this concreteness and assume that once the system is
running, its components can be traced to the reference ECR value stored within the HSM.
As a result, whenever a software is booted on an ECU whose ecr values do not match
the ones set as ECR reference ECR-ref , no further actions are performed by the ECU
except finishing this boot action and subsequently performing the shutdown:

Secure Boot: (Prop.4.3.3.1)

not-happens-within-phase(Σ/CPUi
∪ Σ/HSMi

\ {boot(CPUi, . . .), shutdown(CPUi, . . .)},
V ({boot(CPUi, swx, ECR-ref)|ecr(swx) 6= ECR-ref},

shutdown(CPUi)(1)))

Further, to investigate the validity of the reference ECR, the action of setting a ref-
erence ECR is to be secured. This will be further investigated in Section 4.4’s paragraph
on the Secure Firmware Update Protocols.

D3.2 foresees that a preset ECR command is used to set the reference value that will
be checked during the following boot cycle. The corresponding formal property is:

Boot-Reference-Setting: (Prop.4.3.3.2)

precede-within-phase(preset ECR(HSMi, ECR-refi, . . .), boot(CPUi, swx, ECR-refi),

V (preset ECR(HSMi, ECR-refy, . . .)(1), boot(CPUi, swx, ECR-refi)))

An important requirement that needs to be satisfied by the Evita system is that
the first setting of PCR reference values is performed in a secure environment. Thus
for reasons of simplicity we will assume the first preset ECR command that sets these
values to happen during production even before the first boot happens. Although this
may neglect the actual sequence of actions during production, it appropriately represents
the usage for our deployment scenario that ignores disregards the production phase.

1st Boot has Reference: (Prop.4.3.3.3)

not-happens-within-phase(boot(CPUi, . . .),

V (∅, preset ECR(HSMi, . . .)))

Applying SeBB.4.1.4.10 on Prop.4.3.3.3 implies
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1st Boot has Reference II: (Prop.4.3.3.4)

precede(preset ECR(HSMi, . . .), boot(CPUi, . . .))

Prop.4.3.3.4 can be combined with Prop.4.3.3.2 to conclude:

Every Boot has Reference: (Prop.4.3.3.5)

precede(preset ECR(HSMi, ECR-refi, . . .), boot(CPUi, swx, ECR-refi))

KeyUsage Restrictions Another approach to ensure the software integrity of an
ECU,known from the TPM specification, is to restrict the usage of a key to a predefined
set of ECR values that represent non-malicious versions of the software. In consequence
the HSM will not use this key if the actual ECR values do not match the ones assigned
to the key, i.e. if the actual running software corresponds to different ECR values, hence
must be assumed to be malicious. This property can be formalized as:

KeyUsage-Restriction: (Prop.4.3.3.6)

not-happens-within-phase({Hash mac sign(HSMi, SS(ECR-ref), . . .)

|ECR-ref 6= ecr(swx)},
V (boot(CPUi, swx), shutdown(CPUi)(1)))

However the ECR values the key is bound to are set during its creation. Similar to
other key information such as the integrity of useflags, these ECR values must not be
altered from key creation to usage:

KeyUsage-Reference-Setting: (Prop.4.3.3.7)

precede(create Random Key(HSMi, ECR-ref, SS(ECR-ref), . . .),

Hash mac sign(HSMi, SS(ECR-ref), . . .))

KeyUsage SecureBoot Hybrid It is also be possible to restrict the usage of the
HSM (except for the extendECR and compareECR functions) to a non-malicious booted
system.

KeyUsage-SecureBoot-Restriction: (Prop.4.3.3.8)

not-happens-within-phase(Σ/HSMi
\ {extendECR(HSMi, . . .), compareECR(HSMi, . . .)},

V ({boot(CPUi, swx, ECR-ref)|ecr(swx) 6= ECR-ref},
shutdown(CPUi)(1)))
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Key Handling Regarding the handling and generation of keys, D3.2 makes several
assumptions. First, it includes Random Number Generators in every HSM that can
generate unpredictable and unguessable keys. This property may be formalized as:

Unpredictable / unobservable Key Generation: (Prop.4.3.3.9)

conf -within-phase({create Random Key(HSMi, Kj, . . .)}, Kj, . . . , {HSMi},
V (∅, create Random Key(HSMi, Kj, . . .)}))

Further, the HSM is supposed to be constructed in such a way that it is impossible to
retrieve a key from it except by the use of the command Key Export. (Note that we omit
the command for creation of Diffie-Helman keys as they are not used within our example
use case. They may however pose another way to make a key visible to the counter-part.)
This property can be formalized as:

Non-disclosure of Keys (execpt for Key Export): (Prop.4.3.3.10)

∀X ⊆ P,∀A ⊆ A/HSMi
(Kj) \Key Export(HSMi, Kj, . . .) :

conf -within-phase(A(Kj), Kj, . . . ,X, V (∅,A(n, ex))

→conf -within-phase(A(Kj), Kj, . . . ,X, V (∅,A(n, in)))

Unobservability of Keys: (Prop.4.3.3.11)

∀X ⊆ P,A ⊆ A/P\X(Kj) :

conf -within-phase(A(Kj), Kj, . . . ,X, V (∅,A(n, ex)))

→conf -within-phase(A(Kj), Kj, . . . ,X, V (∅,A(n, in)))

Flag Handling As a result of preliminary investigations, the HSM was extended by a
concept of useflags. These flags that are part of a key’s public information describe for
which purposes an HSM may use a key, i.e. that a shared secret may be used for MAC
generation and verification or for verification purposes only. In the following we describe
the formalization of the properties that originate from these use flags.

An HSM will never perform a MAC generation, if the key does not include a sign use
flag:

HSMs respect sign-useflag: (Prop.4.3.3.12)

not-happens(
⋃

∀HSMi∈P/HSM

{Hash mac sign(HSMi, SS(useflags \ {sign}), . . .)}

An HSM will not alter the use flags of a key. So the use flags of a key will always stay
the same as they were during creation or import of the key:
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HSMs do not change useflags: (Prop.4.3.3.13)

precede({create Random Key(HSM,SS(useflags), . . .),

Key Import(HSM,SS(useflags), . . .},
A/HSM(SS(useflags)))

An HSM will only export those use flags that were marked as transportable. This
holds in particular for sign flags

Only transport-flagged sign-useflags are ex-/imported: (Prop.4.3.3.14)

precede(Key Export(HSMi, SS(useflags ∪ {signtransp}), . . .),
Key Import(HSMj, SS(useflags ∪ {sign}), . . . ))

as well as for verify flags

Only transport-flagged verify-useflags are ex-/imported: (Prop.4.3.3.15)

precede(Key Export(HSMi, SS(useflags ∪ {verifytransp}), . . .),
Key Import(HSMj, SS(useflags ∪ {verify}), . . . ))

HSM-CPU Connection
The HSM and the Application CPU of an Evita ECU are directly connected in such a
way that messages between those two cannot be intercepted, replayed, altered or spoofed.
Therefore an action performed by an HSM will always refer to the command most recently
received from the Application CPU within the same boot-cycle and the Application CPU
will allways receive the result of the action most recently performed by the HSM within
the same boot-cycle. These properties can be formalized as follows:

Commands originate from same ECU in bootcycle: (Prop.4.3.3.16)

∀action ∈ Σ/HSMi
:

precede-within-phase(cmd action(CPUi, . . .), action(HSMi, . . .),

V (boot(CPUi, . . .), boot(CPUi, . . .)(2)))

Returns originate from same ECU in bootcycle: (Prop.4.3.3.17)

∀action ∈ Σ/HSMi
:

precede-within-phase(action(HSMi, . . .), ret action(CPUi, . . .),

V (boot(CPUi, . . .), boot(CPUi, . . .)(2)))
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cmd create Random Key: (Prop.4.3.3.18)

precede-within-phase(cmd create Random Key(CPUi, useflags),

create Random Key(HSMi, K(useflags), . . .),

V (cmd ∗ (CPUi, . . .)(1, in),

create Random Key(HSMi, K(useflags), . . .)))

ret create Random Key: (Prop.4.3.3.19)

precede-within-phase(create Random Key(HSMi, . . . , Handle),

ret create Random Key(CPUi, Handle),

V (Σ/HSMi
(1, in),

ret create Random Key(CPUi, Handle)))

cmd Key Export: (Prop.4.3.3.20)

precede-within-phase(

cmd Key Export(CPUi, Handlej, useflagsk, Handlel),

Key Export(HSMi, Handlej, useflagsk, Handlel, enc(Kl, Kj(useflagsk))),

V (cmd ∗ (CPUi, . . .)(1, in),

Key Export(HSMi, Handlej, useflagsk, Handlel, enc(Kl, Kj(useflagsk)))))

ret Key Export: (Prop.4.3.3.21)

precede-within-phase(

Key Export(HSMi, Handlej, useflagsk, Handlel, enc(Kl, Kj(useflagsk))),

ret Key Export(CPUi, enc(Kl, Kj(useflagsk))),

V (Σ/HSMi
(1, in), ret Key Export(CPUi, enc(Kl, Kj(useflagsk)))))

cmd Key Import: (Prop.4.3.3.22)

precede-within-phase(

cmd Key Import(CPUi, enc(Kl, Kj(useflagsk)), Handlel),

Key Import(HSMi, enc(Kl, Kj(useflagsk)), Handlel, Kl, Kj(useflagsk), Handlej),

V (cmd ∗ (CPUi, . . .),

Key Import(HSMi, enc(Kl, Kj(useflagsk)), Handlel, Kl, Kj(useflagsk), Handlej)))
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ret Key Import: (Prop.4.3.3.23)

precede-within-phase(

Key Import(HSMi, enc(Kl, Kj(useflagsk)), Handlel, Kl, Kj(useflagsk), Handlej),

ret Key Import(CPUi, Handlej),

V (Σ/HSMi
(1, in),ret Key Import(CPUi, Handlej)))

cmd Hash mac sign: (Prop.4.3.3.24)

precede-within-phase(

cmd Hash mac sign(CPUi, data,Handlel),

Hash mac sign(HSMi, data,Handlel, Kl,mac(Kl, data)),

V (cmd ∗ (CPUi, . . .),

Hash mac sign(HSMi, data,Handlel, Kl,mac(Kl, data))))

ret Hash mac sign: (Prop.4.3.3.25)

precede-within-phase(

Hash mac sign(HSMi, data,Handlel, Kl,mac(Kl, data)),

ret Hash mac sign(CPUi,mac(Kl, data)),

V (Σ/HSMi
(1, in),ret Hash mac sign(CPUi,mac(Kl, data))))

cmd Hash mac verify: (Prop.4.3.3.26)

precede-within-phase(

cmd Hash mac verify(CPUi, data,mac(Kl, data), Handlel),

Hash mac verify(HSMi, data,Handlel, Kl,mac(Kl, data)),

V (cmd ∗ (CPUi, . . .),

Hash mac verify(HSMi, data,Handlel, Kl,mac(Kl, data))))

ret Hash mac verify: (Prop.4.3.3.27)

precede-within-phase(

Hash mac verify(HSMi, data,Handlel, Kl,mac(Kl, data)),

ret Hash mac verify(CPUi,mac(Kl, data)),

V (Σ/HSMi
(1, in),ret Hash mac verify(CPUi)))
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4.4 Protocols

4.4.1 Transport Protocol

The transport protocol allows for the confidential, authentic and timestamped transmis-
sion of data from one node within a vehicle to the next. In order to achieve this, it
implements encryption and an HMAC algorithm that optionally includes a time-field.
We can encapsulate the property of the HMAC as the following SeBB that was already
presented in [13].

Transport Protocol’s HMAC Precede Property (SeBB.4.4.1.1)

External Property:

precede({Hash mac sign(P,m, SS, . . .)|P ∈ X},
Hash mac verify(HSMj,m, SS, . . .))

Internal Property:

conf(A(SS), SS, . . . ,X)

When it comes to HMACs and Signature in general, however, there is an important
issue to consider that is often neglected unintentionally in formal verification. This issue
is concerned with the typing of the message that is being sent – or more practically is
about the following question: Is there a tag identifying the type of message inside the
signed payload.

Typing ouside of Secured Payload If the typing information, i.e. the protocol iden-
tifier, is not included in the signed payload, it is only the data sent to the protocol handler
that is signed. For the example of the Evita deployment in this document, this would
essentially look like:

send(P, (“sensordata′′, (data)KSensor
))

with (data)K denoting data signed using key K.
The problem with this approach is that if the key is used to sign several different

types of data, an attacker can use one signed piece of information and pretend it to be a
different one. For example, two messages by the same (multi purpose-) sensor such as:

send(P, (“wheelspeed′′, (int speed)KSensor
))

and
send(P, (“temperature′′, (int temp)KSensor

))

can be merged in such a way that the attacker may inject a message of the form:

send(P, (“wheelspeed′′, (int temp)KSensor
))

In a practical case, the attacker could be able to inject messages that report the wheels
to turn with 20 rotations per minute, whilst in reality the wheels do not turn at all but
the outside temperature is 20 degrees. Such attacks can be very harmful in cases of a
vehicle standing at the traffic lights as well as a vehicle’s ABS brake system.

In such a case, the key used for the signature must not only identify the sender of a
message but also the type of data within the message, and the typing tag alongside serves
for unsecured signalling purposes only and should not be considered reliable. The problem
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becomes even more important in cases of stream-channels over a network, as there does not
exist a length-field which leads to security vulnerabilities e.g. in the Needham-Schroeder
protocol.

Typing inside of Secured Payload The attack described in the previous paragraph is
not possible if the data is structured in such a way that a typing tag is provided alongside
the payload within the signature. This could look as follows:

send(P, (“sensordata′′, data)KSensor
)

In this application of signatures or MACs, the key only serves as reliable identi-
fier of the sender of a message, but is not needed for typing of the message’s content.
This approache has been taken in the specification of the Trusted Platform Module by
the Trusted Computing Group. Here each TPM Quote signature includes the charac-
ter array char[]”QUOT” whilst each TPM Sign signature includes the character array
char[]”SIGN”.

Implications for Evita As the Transport Protocol of Evita performes typing by using
the Message Identifier field outside of the secured payload, the typing must be implicitely
enforced through the used key. Note however that this does not restrict the usage of
variable typing within one data’s data-type, such as

data := {OBJ_TYPE tag; OBJ_DATA object;}

as long as this data-type itself is fixed.
Accordingly we must assume for our proofs that for each type of data being transmitted

a different MAC key is used, even if the group of recipients is the same, in order to prohibit
the above mentioned attack. This is input for the Tasks of WP5000 of Evita where a
prototype as well as any deployment of the Evita protocols will be developed.

4.4.2 Key Distribution Protocols

The primary purpose of the key distribution protocols is to provide a confidential shared
secret for encryption/decryption and MACs between a set of Evita HSMs, e.g.:

conf(A(SS1,2), SS1,2, . . . , {HSM1, HSM2})
Important to note in this context is that this includes (i) the confidentiality to agents from
the group of HSMs P/HSM and the confidentiality to the HSMs corresponding to ECUs
1 and 2 in the example. The identification of which ECUs exactly that is becomes very
important considering that the compromise of a single ECU shall not infect the whole
system of ECUs within a vehicle.

A more in-depth investigation of the key distribution protocols however reveal addi-
tional requirements, namely the integrity of use flags associated with the shared keys.
Not every member of a group of ECUs shall be able to use a key for generation of MACs.
Most members only are allowed to use the key for MAC validation purposes. The Evita
HSM provides the concept of use flags and use transportations flags for this as a result of
the investigations. In the following we will formalize the properties provided by of one of
the key distribution protocols in more depth.
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Keying using asymmetric encryption In this document we will focus on the analysis
of the symmetric key distribution protocol as introduced in [18]. A symmetric approach
will most likely be used in every final deployment of Evita as the price for asymmetric
cryptography in every ECU (esp. small sensors and actuators) is too high to afford. Also
the symmetric approach is the more complex scenario, hence the more challenging to
investigate.

Keying for group communication: symmetric approach This protocol uses the
KeyMaster (KM) as the central point of key distribution. An ECU1 that wants to dis-
tribute a session key SS to a group of other ECUs {ECU2, . . . , ECUk} creates a new
session key SS with the useflag {sign, verify} ∈ useflags. It encrypts the session key
with its own key PSK1 pre-shared with KM and sends it to KM. KM decrypts with
PSK1 and encrypts again, using each of the pre-shared keys PSKi it shares with the
other ECUs. These are the essential steps of the protocol. For more information we refer
the reader to [18]

The Key Distribution Symmetric Protocol thereby serves for two aspects of key han-
dling. First, it ensures the confideniality of the Shared Secret to only those ECUs who are
in the targeted group. Second, a more detailed analysis reveals the more complex details
of this process. First, the HSM will only export those use-flags that were marked as trans-
portable during creation – note that this involves 3 different export targets that we do not
further investigate for now. As the key-creating ECU is the only ECU that will be sender
in this group, it would be recommendable to create session keys that have only the verify-
useflag marked as transportable {verifytransp} ∈ useflags, {signtransp} 6∈ useflags.
Therefore as long as a key stays confidential for trustworthy Evita HSMs, those flags
will be respected and therefore no actions involving a sign-flag performed.

Key Distribution Symmetric: Authenticity of UseFlags (SeBB.4.4.2.1)

External Property:

not-happens({A/HSMj
(SS(useflags ∪ {sign}), . . .)|HSMj ∈ (P/HSM \ {HSMi})})

Internal Property:

not-happens(create Random Key(HSMi, SS(useflags ∪ {signtransp}), . . .))
∧ conf(A(SS), SS, . . . ,P/HSM)

Regarding the confidentiality, the important action within the symmetric key distri-
bution protocol is the export of a key from one HSM using a certain transport key. When
this action is performed, the owner of the transport key gains (potential) knowledge of
the shared secret that is being exported. The corresponding use flag may therefore be
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formalized as follows:

Key distribution symmetric: Confidentiality of SS on KeyExport
(SeBB.4.4.2.2)

External Property:

conf -within-phase(A(SS), SS, . . . ,X ∪ Y,
V (∅, Key Export(P, SS, PSK, . . .)(n, in)))

Internal Property:

conf -within-phase(A(SS), SS, . . . ,X,
V (∅, Key Export(P, SS, PSK, . . .)(n, ex)))

∧conf(A(PSK), PSK, . . . ,X ∪ Y)

4.4.3 Secure Firmware Update Protocols

The protocol is performed by four parties: OMV, the manufacturer of the new firmware,
a Diagnosis Tool, a CCU that seems to be the Key Master of the ECU that shall be
flashed, and the ECU. The OVM uses its key KM to encrypt or sign the new firmware.
Here KM stands for MVK which is part of every ECU’s HSM and is either a symmetric
key or a key pair in which case the OMV uses its private key part for signature generation
and the ECU uses the public counter part for verifying the signature on the firmware.

Diagnosis Tool CCU-KM ECU

sig(SK dt,(start . . . ,tstamp,rand))

MAC(PSK,(start . . . ,tstamp,rand))

MAC(PSK,(resp . . . ,tstamp,rand))

sig(SK ccu,(resp . . . ,tstamp,rand)), cert(SK CA,PKdt)

sig(SK dt,(export(PK CCU,SS),tstamp,rand))
import SS with
SKccu, use flag =
verifyexport SS with
PSK, use flag =
verify

MAC(PSK,export(PSK,SS),tstamp,rand)
import SS with
PSK, use flag =
verify

MAC(PSK,ackn,tstamp,rand)

sig(SK ccu,(ackn,tstamp,rand))

MAC(SS,encrypt(MK,firmware),tstamp,rand)

MAC(SS,ackn,tstamp,rand)

A first analysis of this protocol reviels however that the primary focus is the confiden-
tiality of the provided firmware and a simple check of authenticity by the software agent.
Without further investigation we will therefore disregard it for the rest of this work.

Feedback was given to the corresponding tasks that the important property that a
firmware update protocol in combination with secure boot have to perform is the trust-
worthy setting of pcr-reference values. Formally this may be expressed such that the
setting of the preset ECR command may only happen with software that is conform to
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the stereotype of trustworthy softwares preseted above:

Presetting of Secure Software References Only: (Prop.4.4.3.1)

not-happens({cmd preset ECR(CPUi, h(swj)) | i 6= j})

(where swj represents a trustworthy software for an agent j.)

4.5 Functional Proof

This section will perform an actual first attempt to verify the security requirement within
the sample deployment outline above. We will first outline the Assumptions made against
the Pre-Deployment phase, such as shared secrets and group storages.

Then we will investigate the first piece of the functional chain of the use case, namely
the internal behavior of the sensor. This will include an in-depth investigation of the
software as well as key distribution and secure storage w.r.t. this element of the functional
chain.

Then we will investigate the communication between the sensor and the function-
ally following application ECU. This includes investigations of secure storage and several
aspects of the key distribution protocol.

After this we will outline the necessary subsequent proof for the application ECUs
internal behaviour as well as the other components of both vehicles up the driver’s display.
Note that these parts will only directly conclude the final properties of these proof parts
rather than perform them completely. Parallels to the to be presented partial proofs will
be outlined to demonstrate the similarity of approach.

Finally the partial proofs along the functional path will be combined to the overall
safety property of the exemplary system. A discussion on the verify property opposed to
the security property that shall be derived will be presented in the following section.

4.5.1 Assumptions against Pre-Deployment

Pre-Shared Secrets with KeyMaster At beginning of the system we will assume
that there exist pre shared secrets between each ECU of a vehicle and it’s keymaster.
These pre shared keys are confidential between the ECUs’ HSMs and the key master’s
HSM:

Confidentiality of PSKs: (Prop.4.5.1.1)

conf(A(PSKi), PSKi, . . . , {HSMi, HSMKeyMaster1})

KeyHanles at ECUs’ Secure Storage We further assume the keyhandle of the pre-
shared secret to be returned from secure storage under the storage-label of the psk:

Authenticity of PSK-Handles: (Prop.4.5.1.2)

not-happens({SecStorRead(CPUi, “StorIDPSK
′′, Handle)|Handle 6= HandlePSKi

})
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Further we assume the handles of the psk only to be returned from secure storage under
the storage label of the psk and no other storage label:

Authenticity of PSK-Storage: (Prop.4.5.1.3)

not-happens({SecStorRead(CPUi, StorID,HandlePSKi
)|StorID 6= “StorIDPSK

′′})

Group Definitions at KeyMaster’s Secure Storage We assume that the GroupIDs
within the Secure Storage of the KeyMaster was correctly initiated. This means that the
KeyMaster will only hold the Handle of the Sensor’s PSK in the group of allowed senders
for this group, and that it will only hold the Handle of the Application’s PSK in the group
of allowed receivers for the group.

Only HandlePSKSensor
in “GidSensor-Sender

′′: (Prop.4.5.1.4)

not-happens({SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, Handle)

| Handle 6= HandlePSKSensor
})

Only HandlePSKAppl
in “GidSensor-Recvr

′′: (Prop.4.5.1.5)

not-happens({SecStorRead(CPUKeyMaster1 , “GidSensor-Recvr
′′, HandleList)

| HandleList 6= {HandlePSKAppl
}}))

4.5.2 Behaviour of the Sensor of the Sending Vehicle

Application of Firmware Update Protocol As we have mentioned before the most
important property of firmware updates is that only the trustworthy software is set as
reference value during firmware update Prop.4.4.3.1. For the sensor, this instaciates to

Only swSensor is preset as secure boot reference: (Prop.4.5.2.1)

not-happens({preset ECR(HSMSensor1 , ECR-ref)|ECR-ref 6= swSensor})

Application of Secure Boot For the example used in this deliverable we assumed a
secure boot to be in place that will only allow a software to boot, whose reference values
are stored in the HSM before. In other words, any attempt to boot a non-trustworthy
software will result in the HSM to deny any operation. In case of the sensor, this property
Prop.4.3.3.1 can be specialized to

Secure Boot of the Sensor: (Prop.4.5.2.2)

not-happens-within-phase(Σ/CPUSensor1
∪ Σ/HSMSensor1

\ {boot(CPUSensor1 , . . .), shutdown(CPUSensor1 , . . .)},
V ({boot(CPUSensor1 , swx, ECR-ref)|ecr(swx) 6= ECR-ref},

shutdown(CPUSensor1)(1)))
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Secure Boot of the Sensor’s Software: (Prop.4.5.2.3)

not-happens-within-phase(Σ/CPUSensor1
∪ Σ/HSMSensor1

\ {boot(CPUSensor1 , . . .), shutdown(CPUSensor1 , . . .)},
V ({boot(CPUSensor1 , swx, ECR-ref)|swx 6= swSensor},

shutdown(CPUSensor1)(1)))

Further we know, that inbetween boot cycles – between shutdown and the next boot –
the Sensor cannot perform any action Prop.4.3.1.2. For the sensor, this means

Unavailability of Sensor between shutdown and boot: (Prop.4.5.2.4)

not-happens-within-phase(Σ/CPUSensor1
∪ Σ/HSMSensor1

\
{shutdown(CPUSensor1 , . . .), boot(CPUSensor1 , . . .)},

V (shutdown(CPUSensor1), boot(CPUSensor1 , . . .)(1)))

We also know, that the only action that can happen before the first boot occures is
the setting of a reference ECR value during production Prop.4.3.1.1 for the sensor

Unavailability prior to first boot: (Prop.4.5.2.5)

not-happens-within-phase(Σ/CPUSensor1
∪ Σ/HSMSensor1

\ {boot(CPUSensor1 , . . .),
preset ECR(HSMSensor1 , . . .)},

V (∅, boot(CPUSensor1 , . . .)(1)))

So the above properties state that (i) under untrustworthy software the sensor cannot
act malicious because it does not boot Prop.4.5.2.3, that (ii) inbetween boot cycles the
sensor does not act malicious as it is turned off Prop.4.5.2.4 and that (iii) before the first
boot the sensor does not act malicious as it is turned off Prop.4.5.2.5. The only not yet
defined behaviour is the trustworthy software’s swSensor.

Accordingly, for every not-happens software property of the Sensor’s trusted software
sw-prop(swSensor, not-happens(a)) with a 6∈ {boot(CPUSensor1 , . . .), shutdown (CPUSensor1 , . . .),
preset ECR(HSMi, . . .)} we can utilize SeBB.4.1.4.5 to extend it by the phases from
Prop.4.5.2.3 and derive not-happens-within-phase(a, V ({boot(CPUSensor1 , swx, ECR-ref),
shutdown(CPUSensor1)(1))). Using SeBB.4.1.4.6 on this property together with Prop.4.5.2.4
and Prop.4.5.2.5 it is easy to conclude by induction that not-happens-within-phase(a,
V (∅, shutdown(CPUSensor1 , . . .)(n))) with n ∈ IN and therefore to conclude not-happens(a).
Following this proof we can create a new general SeBB for the application of secure boot
in the sensor:
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Application of Sensor’s secure boot for nothappens (SeBB.4.5.2.1)

External Property:

not-happens(a)

Internal Property:

sw-prop(swSensor, not-happens(a))

for all a ∈ (Σ/CPUSensor1
∪ Σ/HSMSensor1

) \ {boot(CPUSensor1 , . . .),
preset ECR(HSMSensor1 , . . .), shutdown(CPUSensor1)}

Further the properties Prop.4.5.2.3, Prop.4.5.2.4 and Prop.4.5.2.5 let us conclude ac-
cording to SeBB.4.1.4.7 the corresponding precede properties for the phases where the
sensor is turned off or attempted to boot with a malicious software:

Secure Boot of the Sensor’s Software II: (Prop.4.5.2.6)

precede-within-phase(Σ,Σ/CPUSensor1
∪ Σ/HSMSensor1

\ {boot(CPUSensor1 , . . .), shutdown(CPUSensor1 , . . .)},
V ({boot(CPUSensor1 , swx, ECR-ref)|swx 6= swSensor},

shutdown(CPUSensor1)(1)))

Unavailability of Sensor between shutdown and boot: (Prop.4.5.2.7)

precede-within-phase(Σ,Σ/CPUSensor1
∪ Σ/HSMSensor1

\
{shutdown(CPUSensor1 , . . .), boot(CPUSensor1 , . . .)},

V (shutdown(CPUSensor1), boot(CPUSensor1 , . . .)(1)))

Unavailability prior to first boot: (Prop.4.5.2.8)

precede-within-phase(Σ,Σ/CPUSensor1
∪ Σ/HSMSensor1

\ {boot(CPUSensor1 , . . .),
preset ECR(HSMSensor1 , . . .)},

V (∅, boot(CPUSensor1 , . . .)(1)))

Accordingly, for every precede software property of the Sensor’s trusted software
sw-prop(swSensor, precede(a, b)) with b 6∈ {boot(CPUSensor1 , . . .), shutdown(CPUSensor1 , . . .),
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preset ECR(HSMi, . . .)} we can construct the respective SeBB:

Application of Sensor’s secure boot for precede (SeBB.4.5.2.2)

External Property:

precede(a, b)

Internal Property:

sw-prop(swSensor, precede(a, b))

for all b ∈ (Σ/CPUSensor1
∪ Σ/HSMSensor1

) \ {boot(CPUSensor1 , . . .),
preset ECR(HSMSensor1 , . . .), shutdown(CPUSensor1)}

Note that these SeBBs do not represent properties of the architecture but rather the
combination of properties and assumptions and therefore represent a unision of several
proof steps that can be applied multiple times in the following.

Application of scheduled HSM-Access As it was mentioned above, the asynchronous,
non-blocking, session-less interface between CPU and HSM can lead to race-conditions
that enable an attacker with good timing e.g. to impersonate another ECU. This can be
chountered by scheduling a synchronized access to the ECU in software Prop.4.3.2.1.

The challenge solved by this is that a return value from the HSM can be associated
with a command given to the HSM, such that it is known, which parameters were used
during the calling of the HSM. It is easy to conclude from a software that performs only
one command at a time Prop.4.3.2.1 to that the software can therefore be assured of the
command, that a return value refers to:

Scheduled HSM-Access: (Prop.4.5.2.9)

precede(cmd X(params), ret X(. . . , cmd X(params)))

Application of Key Distribution Protcol I – Correct key distribution We know
that (triggered by policy and application management) at some point in time a key
is created that is designated to be the session key between the sensor and the appli-
cation ECU, namely SessKSensor. This happens durig an action in the sensor’s HSM
create Random Key(HSMSensor1 , SessKSensor, HandleSessKSensor

). A keyhandle is cre-
ated alongside and returned to the sensor’s CPU ret create Random Key(CPUSensor1 ,
HandleSessKSensor

, . . .). The fact that assigns this key and key handle the role of the
SessKSensor is the secure storage of its handle under the label of “StorIDSensor

′′. The
software properties that are related to this very first part of key distribution constitute
that a key saved as “StorIDSensor

′′ must have been created by the sensor itself Prop.4.3.2.5
and that this keyhandle must not be stored under any other label Prop.4.3.2.6 neither
any other keyhandle stored under this label Prop.4.3.2.7. Thanks to the secure boot of
the sensor SeBB.4.5.2.1 and SeBB.4.5.2.2, these properties extend to the whole lifetime
of the system:

“StorIDSensor
′′’s key created locally: (Prop.4.5.2.10)
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precede(ret create Random Key(CPUSensor1 , HandleSessKSensor
, . . .),

SecStorWrite(CPUSensor1 , “StorIDSensor
′′, HandleSessKSensor

)))

Only HandleSessKSensor
is written to “StorIDSensor

′′: (Prop.4.5.2.11)

not-happens({SecStorWrite(CPUSensor1 , StorID,HandleSessKSensor
)

| StorID 6= “StorIDSensor
′′}))

HandleSessKSensor
is written only to “StorIDSensor

′′: (Prop.4.5.2.12)

not-happens({SecStorWrite(CPUSensor1 , “StorIDSensor
′′, Handle)

| Handle 6= HandleSessKSensor
}))

Using the fact that the secure storage holds integrity and authenticity of stored data
Prop.4.5.2.11 and Prop.4.5.2.12 we can conclude SeBB.4.1.4.7, that no other than SessKSensor’s
key handle will be read from storage under the id of “StorIDSensor

′′:

HandleSessKSensor
is read only from “StorIDSensor

′′: (Prop.4.5.2.13)

not-happens({SecStorRead(CPUSensor1 , StorID,HandleSessKSensor
) | storeid 6= HandleSessKSensor

})

Only HandleSessKSensor
is read from “StorIDSensor

′′: (Prop.4.5.2.14)

not-happens({SecStorRead(CPUSensor1 , “StorIDSensor
′′, Handlea) | a 6= SessKSensor})

The trustworthy sensor software has a property Prop.4.3.2.4 that allows it only to
distribute the actual SessKSensor as “GidSensor

′′. Thanks to the secure boot of the sensor
SeBB.4.5.2.2 this property extends to the whole system lifetime:

Distribution of HandleSessKSensor
under the label of “GidSensor

′′: (Prop.4.5.2.15)

limited-precede(SecStorRead(CPUSensor1 , “StorIDSensor
′′, Handlea)

& ret Key Export(CPUSensor1 , exportBlob(Kc),

cmd Key Export(CPUSensor1 , Handlea, . . .)),

SecStorRead(CPUSensor1 , “StorIDPSK
′′, Handleb)

& cmd Hash mac sign(CPUSensor1 ,m(exportBlob(Kc), “GidSensor
′′),

Handleb))

As it is known from assumption Prop.4.5.1.2 that only the keyhandle HandlePSKSensor

is returned from secure storage under the label of “StorIDPSK
′′ we can specialize this
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property to this keyhandle SeBB.4.1.4.20.

Distribution of HandleSessKSensor
under the label of “GidSensor

′′ with HandlePSKSensor
:

(Prop.4.5.2.16)

limited-precede(SecStorRead(CPUSensor1 , “StorIDSensor
′′, Handlea)

& ret Key Export(CPUSensor1 , exportBlob(Kc),

cmd Key Export(CPUSensor1 , Handlea, . . .)),

SecStorRead(CPUSensor1 , “StorIDPSK
′′, HandlePSKSensor

)

& cmd Hash mac sign(CPUSensor1 ,m(exportBlob(Kc), “GidSensor
′′),

HandlePSKSensor
))

Because it is known that each key handle used must originate from the secure stor-
age Prop.4.3.1.5 it is easy to conclude that the export using HandlePSKSensor

is always
preceded by a SecStorRead. We can therefore narrow down the trigger accordingly
SeBB.4.1.4.15

Distribution of HandleSessKSensor
under the label of “GidSensor

′′ simplified:
(Prop.4.5.2.17)

limited-precede(SecStorRead(CPUSensor1 , “StorIDSensor
′′, Handlea)

& ret Key Export(CPUSensor1 , exportBlob(Kc),

cmd Key Export(CPUSensor1 , Handlea, . . .)),

cmd Hash mac sign(CPUSensor1 ,m(exportBlob(Kc), “GidSensor
′′),

HandlePSKSensor
))

Due to the properties of the HSM and the scheduled access of the HSM by software we
know that an exported KeyBlob will contain the exact key that was commanded to be
exported

Correctness of exported key: (Prop.4.5.2.18)

not-happens({ret Key Export(CPUSensor1 , exportBlob(Kc),

cmd Key Export(CPUSensor1 , Handlea, . . .))|a 6= c})

This can be used to further narrow down the software property from above, namely that
the key inside the exported blob corresponds to the keyhandle that was read from secure
storage SeBB.4.1.4.19

Distribution of SessKSensor under the label of “GidSensor
′′: (Prop.4.5.2.19)

limited-precede(SecStorRead(CPUSensor1 , “StorIDSensor
′′, Handlea)

& ret Key Export(CPUSensor1 , exportBlob(Ka),

cmd Key Export(CPUSensor1 , Handlea, . . .)),

cmd Hash mac sign(CPUSensor1 ,m(exportBlob(Ka), “GidSensor
′′),

HandlePSKSensor
))
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Since we know from Prop.4.5.2.14 that only HandleSessKSensor
is returned from secure stor-

age we can easily conclude, SeBB.4.1.4.7 the the sensor will issue the MAC-generation for
the exported key blob only, when the blob also contains the actual session key SessKSensor.

Distribution only of SessKSensor under the label of “GidSensor
′′ from CPU:

(Prop.4.5.2.20)

not-happens({cmd Hash mac sign(CPUSensor1 ,m(exportBlob(Ka), “GidSensor
′′),

HandlePSKSensor
)) | a 6= SessKSensor})

Because of the authentic connection between the CPU and the HSM of an ECU Prop.4.3.3.24
we may again further conclude that also no Hash mac sign will be executed with a key
different from SessKSensor.

Distribution only of SessKSensor under the label of “GidSensor
′′ from HSM:

(Prop.4.5.2.21)

not-happens({Hash mac sign(HSMSensor1 ,m(exportBlob(Ka), “GidSensor
′′),

PSKSensor)) | a 6= SessKSensor})

So we can proof, that only SessKSensor will be signed and send from the sensor to the
keymaster for use in the key distribution of the session key for “GidSensor

′′.

Application of Key Distribution Protcol II – Confidentiality of Distributed
Key With the start of the system, there are no session keys distributed. Therefore
Sensor1 will start by generating a session key for communication with Appl1. After this,
the creation of this key SessKSensor , according to Prop.4.3.3.9 it will be confidential to
the creator only:

Confidential creation of SessKSensor: (Prop.4.5.2.22)

conf -within-phase(A(SessKSensor), SessKSensor, . . . , {HSMSensor1},
V (∅, create Random Key(HSMSensor1 , SessKSensor, HandleSessKSensor

)(1, in)))

It is a property of the HSM, that a key cannot be observed from outside of the HSM
Prop.4.3.3.10 and that the only way for any other agent to gain knowledge of an HSM’s
key is through an explicite keyExport by the HSM Prop.4.3.3.11. Accordingly the con-
fedientiality of the newly created key extends up to the first keyExport command of the
HSM that created the key. In this case, the sensor’s HSM – being the creator of the key
Prop.4.5.2.22 – will be the only agent with knowledge about the key up to excluding its
first keyExport operation through using SeBB.4.1.4.21.

Confidentiality of SessKSensor up to Key Export I: (Prop.4.5.2.23)

conf -within-phase(A(SessKSensor), SessKSensor, . . . , {HSMSensor1},
V (∅, Key Export(HSMSensor1 , SessKSensor, . . .)(1, ex)))
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We know, that swSensor will only use key handles that are read from secure storage
when issuing a command to the HSM Prop.4.3.1.5. This hold expecially for cmd Key Export
for both keys, the key to be exported as well as the key being exported. Using the fact
that only swSensor is booted on the sensor SeBB.4.5.2.2 we can therefore conclude that
the key handles sent to the HSM allways originate from secure storage.

ExportHandle from Secure Storage: (Prop.4.5.2.24)

precede(SecStorRead(CPUSensor1 , StorID,Handlea),

cmd Key Export(CPUSensor1 , Handlea, Handleb))

For the specialized case ofHandlea = HandleSessKSensor
we know thatHandleSessKSensor

is only returned from secure storage under “StorIDSensor
′′ Prop.4.5.2.13. We may there-

fore conclude with SeBB.4.1.4.7

ExportHandle from Secure Storage II: (Prop.4.5.2.25)

precede(SecStorRead(CPUSensor1 , “StorIDSensor
′′, HandleSessKSensor

),

cmd Key Export(CPUSensor1 , HandleSessKSensor
, Handleb))

Further we know the trustworthy sensor software swSensor will export the session key
only to the keymaster Prop.4.3.2.8. Because we know that only this software is booted
on the sensor, we can refine it SeBB.4.5.2.2 to

Export SessK only to keyMaster: (Prop.4.5.2.26)

limited-precede(SecStorRead(CPUSensor1 , “StorIDPSK
′′, Handleb),

SecStorRead(CPUSensor1 , “StorIDSensor
′′, Handlea)&

cmd Key Export(CPUSensor1 , Handlea, Handleb)))

Because we know, that only HandleSessKSensor
is returned from secure storage under

“StorIDSensor
′′ Prop.4.5.2.14 we can specialize SeBB.4.1.4.15 this property to

Export SessK only to keyMaster II: (Prop.4.5.2.27)

limited-precede(SecStorRead(CPUSensor1 , “StorIDPSK
′′, Handleb),

SecStorRead(CPUSensor1 , “StorIDSensor
′′, HandleSessKSensor

)&

cmd Key Export(CPUSensor1 , HandleSessKSensor
, Handleb)))

In combination with the fact, that theHandleSessKSensor
allways originates from SecStorRead

Prop.4.5.2.25 we can conclude, that HandleSessKSensor
shall always be exported only with

the keyhandle that is stored under “StorIDPSK
′′.

Export HandleSessKSensor
only with “StorIDPSK

′′: (Prop.4.5.2.28)

precede(SecStorRead(CPUSensor1 , “StorIDPSK
′′, Handle),

cmd Key Export(CPUSensor1 , HandleSessKSensor
, Handle)))
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From Prop.4.5.1.2 we know that only HandlePSKSensor
is returned from secure storage

under “StorIDPSK
′′. We may therefore conclude SeBB.4.1.4.7 with Prop.4.5.2.28 that a

keyExport command concerning HandleSessKSensor
will use HandlePSKSensor

.

Export HandleSessKSensor
only with HandlePSKSensor

: (Prop.4.5.2.29)

not-happens({cmd Key Export(CPUSensor1 , HandleSessKSensor
, Handle)

|Handle 6= HandlePSKSensor
})

And further we can conclude SeBB.4.1.4.7 using the authentic connection between sen-
sor’s CPU and sensor’s HSM Prop.4.3.3.20 that an export only happens using PSKSensor.

SessKSensor only exported with PSKSensor: (Prop.4.5.2.30)

not-happens({Key Export(CPUSensor1 , SessKSensor, SS, . . .)

|SS 6= PSKSensor})

Because PSKSensor is confidential for the sensor and the keymaster Prop.4.5.1.1 and
SessKSensor is only known to the sensor up to the first keyExport Prop.4.5.2.23 we can
apply SeBB.4.4.2.2 to conclude that after the first keyExport SessKSensor is confidential
to the sensor and the keymaster only

Confidentiality of SessKSensor until first Key Export: (Prop.4.5.2.31)

conf -within-phase(A(SessKSensor), SessKSensor, . . . , {HSMSensor1 , HSMKeyMaster1},
V (∅, {Key Export(HSMSensor1 , SessKSensor, . . .)(1, in)}))

Integration of Sensor Properties From the assumptions against trustworthy soft-
ware we know that keyhandles originate from secure storage Prop.4.3.1.5. This is es-
pecially true for signing of dataSensor with HandleSessKSensor

. Because we have a secure
boot in place for the sensor, we can conclude SeBB.4.5.2.2 that the sensor will read its
HandleSessKSensor

from secure storage.

HandleSessKSensor
from secure storage: (Prop.4.5.2.32)

precede(SecStorRead(CPUSensor1 , StorID,HandleSessKSensor
),

cmd Hash mac sign(CPUSensor1 , dataSensor, HandleSessKSensor
, . . .))

However, we know thatHandleSessKSensor
is only stored under “StorIDSensor

′′ Prop.4.5.2.13
we can further conclude SeBB.4.1.4.14

HandleSessKSensor
from “StorIDSensor

′′: (Prop.4.5.2.33)

precede(SecStorRead(CPUi, “StorIDSensor
′′, HandleSessKSensor

),

cmd Hash mac sign(CPUi, dataSensor, HandleSessKSensor
, . . .))
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We know that a trustworthy sensor software will only sign those data with a secure
storages session key handle, that it actually measured Prop.4.3.2.3. Because of the secure
boot, we can conclude SeBB.4.5.2.2 that this is always the case for the sensor.

Sensor CPU signs only dataSensor I: (Prop.4.5.2.34)

limited-precede(sense(CPUSensor1 , dataSensor),

SecStorRead(CPUSensor1 , “StorIDSensor
′′, Handle) &

cmd Hash mac sign(CPUSensor1 , dataSensor, Handle))

Combining this property with the fact, that the keyhandle used for signingHandleSessKSensor

only originates from secure storage under the corresponding label Prop.4.5.2.33, we can
conclude SeBB.4.1.4.15 that data signed by HandleSessKSensor

has always been measured
before

Sensor CPU signs only dataSensor II: (Prop.4.5.2.35)

precede(sense(CPUSensor1 , dataSensor),

cmd Hash mac sign(CPUSensor1 , dataSensor, HandleSessKSensor
, . . .))

From property Prop.4.3.3.24 we know that the HSM will only perform those signatures
that it is commanded to by its CPU. We may therefore conclude SeBB.4.1.4.2 that only
dataSensor will ever be signed with SessKSensor.

Sensor signs only dataSensor: (Prop.4.5.2.36)

precede(sense(CPUSensor1 , dataSensor),

Hash mac sign(HSMSensor1 , dataSensor, SessKSensor, . . .))

4.5.3 KeyMaster between Sensor and Application ECU

Secure Boot The secure Boot of the KeyMaster can be similarly derived as the Sensor’s.
Starting from Prop.4.3.3.1 it can be derived:

Application of KeyMasters’s secure boot for nothappens (SeBB.4.5.3.1)

External Property:

not-happens(a)

Internal Property:

sw-prop(swKeyMaster, not-happens(a))

for all a ∈ (Σ/CPUKeyMaster1
∪ Σ/HSMKeyMaster1

) \ {boot(CPUKeyMaster1 , . . .),

preset ECR(HSMKeyMaster1 , . . .), shutdown(CPUKeyMaster1)}
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Application of KeyMasters’s secure boot for precede (SeBB.4.5.3.2)

External Property:

precede(a, b)

Internal Property:

sw-prop(swKeyMaster, precede(a, b))

for all b ∈ (Σ/CPUKeyMaster1
∪ Σ/HSMKeyMaster1

) \ {boot(CPUKeyMaster1 , . . .),

preset ECR(HSMKeyMaster1 , . . .), shutdown(CPUKeyMaster1)}

Application of Key Distribution Protcol III – Correctness of distributed Key
The confidentiality of the PSKSensor between sensor and key master Prop.4.5.1.1 lets us
conclude that whenever a message signed by this key is verified at the HSM of the key-
master, either the keymaster or the sensor must have send it, according to the transport
protocols HMAC-sebb SeBB.4.4.1.1.

Origin of SessKSensor distribution message: (Prop.4.5.3.1)

precede({Hash mac sign(HSMSensor1 ,m(exportBlob(Ka), “GidSensor
′′), PSKSensor),

Hash mac sign(HSMKeyMaster1 ,m(exportBlob(Ka), “GidSensor
′′), PSKSensor)},

Hash mac verify(HSMKeyMaster1 ,m(exportBlob(Ka), “GidSensor
′′), PSKSensor))

Because HandlePSKSensor
is not part of the target-group the the keymaster distributes

keys to Prop.4.5.1.5, it will not issue a sign command for message containing “GidSensor
′′.

Keymaster does not sign a “GidSensor
′′ message with PSKSensor: (Prop.4.5.3.2)

not-happens(Hash mac sign(HSMKeyMaster1 ,m(exportBlob(Ka), “GidSensor
′′), PSKSensor))

Further we know that from Prop.4.5.2.21 that the sensor’s HSM will only do so with
the SessKSensor being part of the exportBlob. Accordingly we may conclude SeBB.4.1.4.7
together with Prop.4.5.3.1 that a verification at the keymaster for a “GidSensor

′′-marked
message will only contain SessKSensor in the exportBlob:

Distribution only of SessKSensor under the label of “GidSensor
′′ to HSM:

(Prop.4.5.3.3)

not-happens({Hash mac verify(HSMKeyMaster1 ,m(exportBlob(Ka), “GidSensor
′′),

PSKSensor)) | a 6= SessKSensor})

And accordingly we can further conclude that only for SessKSensor the HSM resturs a
valid MAC because of scheduled HSM access Prop.4.5.2.9:

Distribution only of SessKSensor under the label of “GidSensor
′′: (Prop.4.5.3.4)
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not-happens({ret Hash mac verify(CPUKeyMaster1 , cmd Hash mac verify(

CPUKeyMaster1 ,m(exportBlob(Ka), “GidSensor
′′), HandlePSKSensor

))

| a 6= SessKSensor})

From the Software Propety for the KeyMaster Prop.4.3.2.11 together with Secure Boot
SeBB.4.5.3.2 we ca conclude that it will only import a Key from the senders of “GidSensor

′′

if the message containing the exportBlob together with the “GidSensor
′′ had a correct

MAC:

KeyMaster Behaviour on Import I: (Prop.4.5.3.5)

limited-precede(SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, Handlea)

& ret Hash mac verify(CPUKeyMaster1 , cmd Hash mac verify(

CPUKeyMaster1 ,m(exportBlob, “GidSensor
′′), Handlea)),

SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, Handleb)

& cmd Key Import(CPUKeyMaster1 , exportBlob,Handleb))

Through the knowledge about the KeyMasters Secure Storage initialization Prop.4.5.1.4
we can specialize this to HandlePSKSensor

:

KeyMaster Behaviour on Import II: (Prop.4.5.3.6)

limited-precede(SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, Handlea)

& ret Hash mac verify(CPUKeyMaster1 , cmd Hash mac verify(

CPUKeyMaster1 ,m(exportBlob, “GidSensor
′′), Handlea)),

SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, HandlePSKSensor

)

& cmd Key Import(CPUKeyMaster1 , exportBlob,HandlePSKSensor
))

Because we know that every keyhandle comes from secure storage Prop.4.3.1.5 we can
conclude SeBB.4.1.4.15 that every import with HandlePSKSensor

must have a valid MAC:

KeyMaster Behaviour on Import III: (Prop.4.5.3.7)

limited-precede(SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, Handlea)

& ret Hash mac verify(CPUKeyMaster1 , cmd Hash mac verify(

CPUKeyMaster1 ,m(exportBlob, “GidSensor
′′), Handlea)),

cmd Key Import(CPUKeyMaster1 , exportBlob,HandlePSKSensor
))

Again we can use the knowledge about the initialization of secure Group Definition Storage
at the KeyMaster Prop.4.5.1.4 to conclude that this MAC must have be validated using
HandlePSKSensor

.

KeyMaster Behaviour on Import IV: (Prop.4.5.3.8)
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limited-precede(SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, HandlePSKSensor

)

& ret Hash mac verify(CPUKeyMaster1 , cmd Hash mac verify(

CPUKeyMaster1 ,m(exportBlob, “GidSensor
′′), HandlePSKSensor

)),

cmd Key Import(CPUKeyMaster1 , exportBlob,HandlePSKSensor
))

And as this keyHandle must also originates from secure storage Prop.4.3.1.5 we may fur-
ther simplify this property SeBB.4.1.4.15 to state that every exportBlob being imported
using HandlePSKSensor

has a valid MAC verified using HandlePSKSensor
:

KeyMaster Behaviour on Import V: (Prop.4.5.3.9)

precede(ret Hash mac verify(CPUKeyMaster1 , cmd Hash mac verify(

CPUKeyMaster1 ,m(exportBlob, “GidSensor
′′), HandlePSKSensor

)),

cmd Key Import(CPUKeyMaster1 , exportBlob,HandlePSKSensor
))

We remember from Prop.4.5.3.4 that only SessKSensor’s exportBlob will ever carry a
valid MAC with PSKSensor. Therefore it is easy to conclude SeBB.4.1.4.7 that a keyIm-
port command with HandlePSKSensor

will only occure for SessKSensor’s exportBlob:

KeyMaster Behaviour on Import VI: (Prop.4.5.3.10)

not-happens({cmd Key Import(CPUKeyMaster1 , exportBlob(Ka), HandlePSKSensor
)

| a 6= SessKSensor})

and further because of scheduled HSM access Prop.4.5.2.9 to conclude SeBB.4.1.4.7 that
an actual keyImport and its return withHandlePSKSensor

will only occure for SessKSensor’s
exportBlob:

KeyMaster Behaviour on Import: (Prop.4.5.3.11)

not-happens({ret Key Import(CPUKeyMaster1 , HandleSessKSensor
,

cmd Key Import(exportBlob(Ka), HandlePSKSensor
))

| a 6= SessKSensor})

Application of Key Distribution Protocol IV – Confidentiality of Distributed
Key We know that until after the first keyExport of SessKSensor at the sensor SessKSensor

is confidential to the sensor and the key master. It is a property of the HSM, that a key
cannot be observed from outside of the HSMs Prop.4.3.3.10 and that the only way for
any other agent to gain knowledge of the HSMs’ key is through an explicite keyExport
by one of the HSM Prop.4.3.3.11. Accordingly we can use SeBB.4.1.4.21 to conclude the
confidentiality of the key up to excluding the second export of the sensor or the first
export of the key master.

Confidentiality of SessKSensor up to Key Export: (Prop.4.5.3.12)
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conf -within-phase(A(SessKSensor), SessKSensor, . . . , {HSMSensor1 , HSMKeyMaster1},
V (∅, {Key Export(HSMSensor1 , SessKSensor, . . .)(2, ex),

Key Export(HSMKeyMaster1 , SessKSensor, . . .)(1, ex)}))

For the sensor we know that an export of SessKSensor will only be perfomed using
PSKSensor Prop.4.5.2.30. Therefore the inductive application of SeBB.4.4.2.2 and the
steps above will lead us to the case, that SessKSensor is confidential to the sensor and the
keymaster up to the keymaster’s first export.

Confidentiality of SessKSensor up to Keymaster Key Export: (Prop.4.5.3.13)

conf -within-phase(A(SessKSensor), SessKSensor, {HSMSensor1 , HSMKeyMaster1},
V (∅, Key Export(HSMKeyMaster1 , SessKSensor, . . .)(1, ex)))

We know for the trustworthy KeyMaster software, that it will only use the GroupRe-
ceivers’ key handles from secure storage when it exports a key that was imported with one
of the GroupSenders’ key handles Prop.4.3.2.10. Because we know that the keymaster will
only boot the trustworthy keymaster software swKeyMaster we can conclude SeBB.4.5.3.2

Keymasters Gid compliance I: (Prop.4.5.3.14)

limited-precede(SecStorRead(CPUKeyMaster1 , “GidSensor-Recvr
′′, Handlea),

SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, Handleb)

& ret Key Import(CPUKeyMaster1 , Handlec, cmd Key Import(

CPUKeyMaster1 , exportBlob(SessKd), Handleb))

& cmd Key Export(CPUKeyMaster1 , Handlec, Handlea))

As we assume only HandlePSKSensor
to be in the group “GidSensor-Sender

′′ Prop.4.5.1.4
we can conclude SeBB.4.1.4.20:

Keymasters Gid compliance II: (Prop.4.5.3.15)

limited-precede(SecStorRead(CPUKeyMaster1 , “GidSensor-Recvr
′′, Handlea),

SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, HandlePSKSensor

)

& ret Key Import(CPUKeyMaster1 , Handlec, cmd Key Import(

CPUKeyMaster1 , exportBlob(SessKc), HandlePSKSensor
))

& cmd Key Export(CPUKeyMaster1 , Handlec, Handlea))

Using the fact that a keyImport return forHandlePSKSensor
will only happen for SessKSensor

Prop.4.5.3.11 leads us to

Keymasters Gid compliance III: (Prop.4.5.3.16)
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limited-precede(SecStorRead(CPUKeyMaster1 , “GidSensor-Recvr
′′, Handlea),

SecStorRead(CPUKeyMaster1 , “GidSensor-Sender
′′, HandlePSKSensor

)

& ret Key Import(CPUKeyMaster1 , HandleSessKSensor
, cmd Key Import(

CPUKeyMaster1 , exportBlob(SessKSensor), HandlePSKSensor
))

& cmd Key Export(CPUKeyMaster1 , HandleSessKSensor
, Handlea))

It is easy to see, that a CPU can only issue a keyExport command for a key, that was
created or imported before:

Export of Created or Imported Keys only: (Prop.4.5.3.17)

precede({ret Key Import(CPUKeyMaster1 , Handle),

ret create Random Key(CPUKeyMaster1 , Handle)},
cmd Key Export(CPUKeyMaster1 , Handle))

It is further the case that a key can only be created once. Therefore the KeyMaster cannot
have created SessKSensor:

SessKSensor not by KeyMaster: (Prop.4.5.3.18)

not-happens(ret create Random Key(CPUKeyMaster1 , SessKSensor))

From these two properties it is easy to conclude SeBB.4.1.4.18, that the keyMaster must
have imported SessKSensor:

SessKSensor imported by KeyMaster: (Prop.4.5.3.19)

precede(ret Key Import(CPUKeyMaster1 , HandleSessKSensor
),

cmd Key Export(CPUKeyMaster1 , HandleSessKSensor
))

This property Prop.4.5.3.19 and the fact that key handles originate from secure stor-
age Prop.4.3.1.5 can be used to simplify Prop.4.5.3.16 such that HandleSessKSensor

will
only be exported with those target keyhandles that originate from secure storage as valid
receivers for the group “GidSensor

′′:

Keymasters Gid compliance: (Prop.4.5.3.20)

precede(SecStorRead(CPUKeyMaster1 , “GidSensor-Recvr
′′, {Handlea, . . .}),

cmd Key Export(CPUKeyMaster1 , HandleSessKSensor
, Handlea))

From secure storage initialization we know, that only HandlePSKAppl
is in the group

of receivers for “GidSensor
′′ Prop.4.5.1.5

Export with HandlePSKAppl
only: (Prop.4.5.3.21)

not-happens({cmd Key Export(CPUKeyMaster1 , HandleSessKSensor
, Handle)

| Handle 6= HandlePSKAppl
}))
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And with the properties of the HSM-CPU connection Prop.4.3.3.20 we know that the
export will only happen with PSKAppl:

Export with PSKAppl only: (Prop.4.5.3.22)
not-happens({Key Export(CPUKeyMaster1 , SessKSensor, PSK) | PSK 6= PSKAppl}))

Using the knowledge about the key distribution protocol SeBB.4.4.2.2, the export by
the keymaster with PSKAppl only and the knowledge that SessKSensor was only confiden-
tial for HSMSensor1 and HSMKeyMaster1 up to the keyMasters keyExport Prop.4.5.3.12 we
can conclude that after the keyMaster’s keyExport SessKSensor in confidential to those
three HSMs only:

Confidentiality of SessKSensor up to Key Export IV: (Prop.4.5.3.23)
conf -within-phase(A(SessKSensor), SessKSensor, {HSMSensor1 , HSMAppl1 , HSMKeyMaster1},

V (∅, Key Export(HSMKeyMaster1 , SessKSensor, . . .)(1, in)))

For the Application ECU we know that it can be shown through secure boot and a
trustworthy software that no command for a keyExport for a keyHandle will be given,
that came from secure storage under the label of “StorIDSensor

′′ similarly to the Sensor
and the KeyMaster:

Application ECU’s Trustworthy software I: (Prop.4.5.3.24)
not-precede(SecStorRead(CPUAppl1 , “StorIDSensor

′′, Handle)),

cmd Key Export(CPUAppl1 , Handle, . . .))

Combined with knowledge that every keyHandle originates from secure storage Prop.4.3.1.5
we man conclude that the Application ECU will never command a keyExport forHandleSessKSensor

:

Application ECU’s Trustworthy software II: (Prop.4.5.3.25)
not-happens(cmd Key Export(CPUAppl1 , HandleSessKSensor

, . . .))

and further due to Prop.4.3.3.20 we can conclude SeBB.4.1.4.7 that SessKSensor will never
be exported by HSMAppl1 :

Application ECU’s Trustworthy software III: (Prop.4.5.3.26)
not-happens(Key Export(HSMAppl1 , SessKSensor, . . .))

The Unobservability of keys in HSMSensor1 , HSMKeyMaster1 , HSMAppl1 Prop.4.3.3.11,
the non-disclosure of keys by HSMSensor1 , HSMKeyMaster1 , HSMAppl1 Prop.4.3.3.10 and
the fact that the key is only exported from HSMSensor1 to HSMKeyMaster1 and from
HSMKeyMaster1 to HSMAppl1 and not exported by HSMAppl1 at all Prop.4.5.3.25 let’s us
finally conclude that the key is confidential over the whole system lifetime from those
three HSM only:

Final Confidentiality Property of Key Distribution: (Prop.4.5.3.27)
conf(A(SessKSensor), SessKSensor, {HSMSensor1 , HSMAppl1 , HSMKeyMaster1})
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Application of Key Distribution Protocol for UseFlags From the sensor’s soft-
ware property we can conclude that it will never create SessKSensor with a signtransp that
would allow receivers of the keyBlob to make signatures with it:

Creation of SessK with validation only transportation: (Prop.4.5.3.28)
not-happens({create Random Key(HSMSensor1 , SessKSensor(useflags))

|signtransp ∈ useflags})

Using the knowledge about the behaviour of HSM SeBB.4.4.2.1 we conclude from this
Prop.4.5.3.28 and the knowledge of the keys confidentiality only to HSM Prop.4.5.3.27
that only HSMSensor1 will ever perform signature operations with this key:

Export of SessK with validation based on transportation: (Prop.4.5.3.29)
not-happens({Hash mac sign(HMIi, SessKSensor(useflags))

|sign ∈ useflags,HMIi 6= HSMSensor1})

Intagration of Communication Properties Finally all these properties can be inte-
grated.

We know of the Confidentiality of SessKSensor to {HSMSensor1 , HSMAppl1 , HSMKeyMaster1}
Prop.4.5.3.27. According to the properties of the transport protocol SeBB.4.4.1.1 this
means that only these three agent can have generated a MAC whenever anyone – i.e.
HSMAppl1 – performs a verification of a signature:

Only the possible signature sources: (Prop.4.5.3.30)
precede({Hash mac sign(HSMSensor1 , data, SessKSensor),

Hash mac sign(HSMAppl1 , data, SessKSensor),

Hash mac sign(HSMKeyMaster1 , data, SessKSensor)},
Hash mac verify(HSMAppl1 , SessKSensor, data))

From Prop.4.5.3.29 we can directly derive that neighter the App-HSM:

App-HSM does not sign: (Prop.4.5.3.31)
not-happens(Hash mac sign(HSMAppl1 , data, SessKSensor))

nor the KeyMaster HSM will produce MAC with SessKSensor:

KM-HSM does not sign: (Prop.4.5.3.32)
not-happens(Hash mac sign(HSMKeyMaster1 , data, SessKSensor))

Using SeBB.4.1.4.18 we can use there three properties Prop.4.5.3.30,Prop.4.5.3.31
and Prop.4.5.3.32 to conclude that only HSMSensor1 can have signed a message with
SessKSensor whenever HSMAppl1 verifies it with SessKSensor:

Final Property of Sensor–Application-Communication: (Prop.4.5.3.33)
precede(Hash mac sign(HSMSensor1 , dataSensor, SessKSensor, . . .),

Hash mac verify(HSMAppl1 , dataSensor, SessKSensor, . . .))
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4.5.4 Behaviour of the Application ECU

The subsequent proof for this example system will in general follow the same priciples.
For the APP-ECU’s software we will need the property that only after having verified the
MAC of data with a certain key who’s keyHandle lies in secure storage, will the ECU use
this data to issue a warning:

Application ECU’s functional behaviour: (Prop.4.5.4.1)

precede(Hash mac verify(HSMAppl1 , dataSensor, SessKSensor, . . .)),

process(HSMCCU1 , dataSensor, warning)

4.5.5 Behaviour and Communication of remaining Vehicle 1

For the remainder of Vehicle 1 it can be shown similarly that keys are distributed in a
secure manner through the keymaster. If the corresponding group and PSK identifieres
are deployed correctly to the ECUs’ secure storages and the behaviour of the ECUs’
software – being input to the secure boot – is correct.

This let’s us conclude that only those warnings are signed (and subsequently send out)
that actually originate from a processing of sensor data at the application ECU:

Remainder of Vehicle 1: (Prop.4.5.5.1)

precede(processHSMCCU1 , dataSensor, warning),

ECCsign(HSMCCU1 , warning, PrivKa, sig(PrivKa, warning)))

4.5.6 Communication between Vehicle 1 and Vehicle 2

The communication between vehicle 1 and vehicle 2 is out of scope of the on-board archi-
tecture’s protocols. Rather protocols from Projects SeveCom or SimTD will have to be
used here. However the key used for verification of the ECC signature but be confidential
to the HSM at the senders side and thereby identifying the sender as being a trustworthy
vehicle that uses an Evita Architecture. This kind of signalling the trustworthyness will
be the challenge for the integration of in-car, car2car and inter-manufacturer certification.
For now, we assume an appropriate mechanism to be in place:

Communication among Vehicles 1 and 2: (Prop.4.5.6.1)

precede(ECCsign(HSMCCU1 , warning, PrivKa, sig(PrivKa, warning)),

ECCverify(HSMCCU2 , warning, sig(PrivKa, warning), PubKa))

4.5.7 Behaviour and Communication of Vehicle 2

For the internal behaviour of vehicle 2 it can similarly to vehicle one be shown that the
HMI will only show warnings that were successfully verify at the CCU before. The key
used for this shall be the Public Key of a trustworthy vehicle 1.
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Internal Behaviour of Vehicle 2: (Prop.4.5.7.1)
precede(ECCverify(HSMCCU2 , warning, sig(PrivKa, warning), PubKa),

show(CPUHMI2 , warning))

4.5.8 Integration of Partial Proofs

The derived properties covering parts of the functional path Prop.4.5.2.36, Prop.4.5.3.33,
Prop.4.5.4.1, Prop.4.5.5.1, Prop.4.5.6.1 and Prop.4.5.7.1 can be combined using the tran-
sitivity of precede SeBB.4.1.4.2 to conclude that each warning on the HMI of Vehicle2 is
based on sensor data measured by the sensor of vehicle1:

Final Property of 1st Proof Attempt: (Prop.4.5.8.1)
precede(sense(CPUSensor1 , dataSensor), show(CPUHMI2 , warning))

4.6 Analysis and Trust Reasoning

We have seen above that the functional property oy a warning to originate from actual
dataSensor can be fulfilled under the assumptions of our example deployment. However
as it was also already outlined in [13], this is not yet sufficient to fulfill the goals of
the security requirements elicitation in [17]. ather, the assurance to the driver that this
functional property is actually fulfilled is still missing.

Within our example deployment we can preliminarily reason about the chain of trust
assumptions, assertions and assurances informally. Starting from the HMI the introduc-
tion of a PSK with the KeyMaster is a trust of this agent. However, it relies on the
assertion by the manufacturer through the act of importing the PSK and its keyhandle
into the HMI. A deeper investigation on this trust assertion would rely heavily on the
way that these two agents are acquainted by the manufacturer. The same applies to all
the other PSKs within both the vehicles.

Another challenge that is heavily deployment dependant is the assertions among the
vehicles regarding the behaviours of the included ECUs as well as the assertions’ asser-
tions within the other vehicles. This is one of the major challenges to be handled in case
of a deployment in the field. The certificates used in car2car up to date do not carry
information about the underlying platforms. These PKI structures however would have
to carry information about all this. It should also be noted that though trust (assertion)
levels may be introduced in these certificates, the decision of whether or not to display
warnings to subsequent vehicles is binary. Accordingly for each level introduced in the
assertion phase among vehicles and manufacturers a decision algorithm has to be intro-
duced as well, as it seems infeasable to display to the driver a level of confidence next to
a warning message.

Remaining attacks would however include the possibility for an attacker to exchange
the actuator in a functional chain directly (i.e. the HMI for this example). These kinds of
evil-maid attacks are known from Trusted Computing and Attacks on BitLocker already.
However in a Car scenario, the driver usually always has an authentication token (the
key) that could also be used in reverse.
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5 Conclusions

In this document we demonstrated the application of two complementary verification
approaches.

In the magnified view three techniques have been used for the proof of security prop-
erties in EVITA cryptographic protocols:

• An approach based on the TURTLE profile, and relying on usual model-checking
techniques for achieving the proofs.

• An approach based on the ProVerif environment, and relying on Horn clauses reso-
lution.

• An approach based on a new profile named AVATAR, developed in the scope of
EVITA, and aiming at taking the best of the two first approaches, i.e., using a high-
level language (SysML) and relying on a powerful toolkit dedicated top the proof
of security properties (ProVerif).

Using those approaches, attacks – or limitations – of protocols were found during the
definition phase of those protocols (i.e., before protocols as defined in [18] were published).
More specifically, the modeling phase made it possible to identify flaws regarding DoS
attacks. For other security properties (e.g., confidentiality, authenticity), performed proofs
make it possible to have a stronger trust in EVITA cryptographic protocols studied in
this document. Indeed, even if flaws on authenticity properties were identified. But the
analysis of traces leading to attacks are related only to the fact that the model does not
contain the modeling of time stamping, and so, replay attacks can be performed.

During the global compositional ’s functional validate we have see many assumptions
that in part may have been unknown or underestimated in their importance. Central to
those where

• Scheduling of HSM Access to avoid race-condition introduced impersonations.

• Secure Storage’s importance to almost every action because of the storage of key
handles.

• Software Properties for their functional meaning but also regarding e.g. correct set-
ting transportflags for key creation.

The example used here only covered a part of an exemplary deployment. For a real
deployment it would have to be redone. However, for this kind of proofs a lot of overlaps
will occur such that effort can be saved (see also the consolidation step in [13]).

In summary it was shown, however, that the EVITA architecture and protocols are
capable to provide a basis for future real deployments of secure in-vehicle platforms.

166



References

[1] The CADP toolkit. http://www.inrialpes.fr/vasy/cadp.

[2] TTool, the TURTLE toolkit. http://labsoc.comelec.enst.fr/ttoolindexhtml.

[3] M. Abadi and B. Blanchet. Analyzing Security Protocols with Secrecy Types and
Logic Programs. In 29th Annual ACM SIGPLAN - SIGACT Symposium on Prin-
ciples of Programming Languages (POPL 2002), pages 33–44, Portland, Oregon,
January 2002. ACM Press.

[4] M. Abadi and A.D. Gordon. A calculus fo cryptographic protocols, the spi calculus.
In Information and Computation, volume 148, pages 1–70. Academic Press, Inc.,
January 1999.

[5] L. Apvrille et al. TURTLE: A Real-Time UML Profile Supported by a Formal
Validation Toolkit. In IEEE transactions on Software Engineering, volume 30, pages
473–487, Jul 2004.

[6] L. Apvrille et al. A UML-based environment for system design space explo-
ration. In 13th IEEE International Conference on Electronics, Circuits and Systems
(ICECS’2006), Nice, France, Dec 2006.

[7] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
Lecture Notes on Concurrency and Petri Nets. W. Reisig and G. Rozenberg (eds.),
LNCS 3098, Springer-Verlag, 2004.

[8] B. Blanchet. From secrecy to authenticity in security protocols. In M. Hermenegildo
and G. Puebla, editors, 9th International Static Analysis Symposium (SAS’02), vol-
ume 2477 of Lecture Notes on Computer Science, pages 342–359, Madrid, Spain,
September 2002. Springer Verlag.

[9] B. Blanchet. Automatic verification of correspondences for security protocols. Journal
of Computer Security, 17(4):363–434, July 2009.

[10] B. Blanchet. Proverif automatic cryptographic protocol verifier user manual. Tech-
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