
Prototyping an Embedded Automotive System from
its UML/SysML Models

Ludovic Apvrille, Alexandre Becoulet
System-on-Chip laboratory (LabSoC), Institut Telecom, Telecom ParisTech, LTCI CNRS

2229, route des Crêtes, B.P. 193, F-06904 Sophia-Antipolis Cedex
Email: {ludovic.apvrille, alexandre.becoulet}@telecom-paristech.fr

Abstract—The paper introduces a fast approach to prototype
embedded systems. Software components are first modeled and
formally verified using a SysML environment named AVATAR,
supported by a free software named TTool. Simulation and
formal verification of AVATAR components can be performed at
the push of a button. The C/POSIX code of AVATAR components
can also be generated directly from TTool. The generated code
along with the selected operating system can then be compiled,
linked together, and executed on the SoCLib virtual prototyping
platform. The latter has simulation models to build custom
hardware platforms simulators and supports several real-time
and embedded operating systems, including MutekH. Debugging
features provided by the SoCLib platform offers straightforward
debugging features, either with a command-line debugger - such
as the GNU debbuger - or directly in TTool which presents
execution results in a UML way using sequence diagrams, thus
requiring no specific skill on the target platform. An automotive
embedded application is used to present the whole AVATAR
methodology, with a particular focus on the prototyping phase.

I. INTRODUCTION

The prototyping of an embedded system is usually a cum-
bersome task, especially when multiple hardware targets must
be taken into account. This paper proposes a new prototyping
approach relying on high-level models, on code generation, as
well as on a SoC prototyping platform running an embedded
operating system. Moreover, the approach is integrated in a
SysML environment offering simulation and formal verifica-
tion capabilities. More precisely, our approach is based on:

• A SysML environment named AVATAR [1]. AVATAR
supports requirement capture, and the design of software
components. A particular emphasis is put on timing
issues, both at requirement and design levels. AVATAR is
fully supported by an open-source toolkit named TTool
[2]. Starting from an AVATAR design, TTool can perform
intensive simulations and accordingly animate SysML
models at the same time. TTool can also perform formal
proofs directly from models: no knowledge about under-
lying formal techniques (UPPAAL [3]) is thus required.

• A C-POSIX code generator. TTool can generate C-POSIX
code from SysML models, and link it against libraries
implementing AVATAR features (synchronous communi-
cations, timers, etc.).

• An open platform for the virtual prototyping of complex
Systems-on-Chip: SoCLib [4]. SoCLib is a SystemC
library of component models. It supports several models

of processors (Mips, Arm, PowerPC, Sparc, MicroBlaze,
etc.), of buses, of memories, and several operating sys-
tems, including eCos, MutekH and RTEMS. MutekH is
an embedded operating system used on multiprocessor
platforms in various research projects. It was originally
designed with native support for processors heterogeneity
in mind [5]. SoCLib supports two simulation models
(Transaction Level Modeling and Cycle Accurate Bit
Accurate), and comes with debugging features like a
GNU debugger server and a memory access checker
similar to Valgrind.

The paper is organized as follows. A prototyping method-
ology based on AVATAR is first presented in section II.
The automotive-based case study that will be used in this
paper is then described in section III. Sections IV and V
present the requirements and design models of the case study,
respectively. Models are then simulated and formally verified
in section VI. Section VII is the main contribution of this paper
since it addresses the prototyping of the example application.
The related work section VIII discusses other prototyping
contributions. At last, section IX concludes the paper.

II. METHODOLOGY

Using the above mentioned tools, our prototyping methodol-
ogy is as follows (see Figure 1); all those methodological steps
will be further explained in next sections with an automotive-
based case study:

1) Requirements. Requirements of the system are first
captured with SysML Requirements Diagrams. Require-
ments are organized in a tree-based fashion. Both safety
and security requirements can be captured.

2) Design. The general structure of the system is modeled
with SysML block Diagrams. The behaviour of each
block is described with a state machine.

3) Simulation and formal verification. A press-button
approach makes it possible to perform simulations with
model animation. Safety and security proofs can also
be performed directly from the design models without
prior knowledge about underlying formal verification
techniques. Models can then be modified depending on
verification results. Safety and security proofs rely on
UPPAAL [6] and on ProVerif [7], respectively.

4) Code generation. The TTool code generator can output
C/POSIX code from design models. The generated ap-



plication code can then be compiled along with MutekH
using the appropriate kernel configuration and cross-
compiler to target a PowerPC based SoCLib platform.

5) Prototyping with SoCLib. The SoCLib simulator can
then be started and the code - generated and compiled
during previous step - is loaded and executed like on
real hardware. Debugging can be performed at two levels
using both the GNU debugger, and simulations traces.
Simulations traces can be displayed in TTool during
code execution or later. These traces are displayed in the
form of sequence diagrams. Models can then be further
modified as needed in order to generate a new code.

Simulation and formal proofs are meant to be executed
during first iterations on the system model. On the contrary, the
prototyping of the system is expected to be performed during
the last iterations, that is, on more refined models. In all cases
(simulation, verification and prototyping), results are directly
displayed by TTool in a SysML fashion, therefore facilitating
the identification of problems directly on SysML models.

III. CASE STUDY

The AVATAR methodology is illustrated in this paper with
an automotive embedded system designed in the scope of
the European EVITA project [8]. Recent on-board Intelligent
Transport (IT) architectures comprise a very heterogeneous
landscape of communication network technologies (e.g., LIN,
CAN, MOST, and FlexRay) that interconnect in-car Electronic
Control Units (ECUs) [9] [10]. The increasing number of such
equipments triggers the development of novel applications that
are commonly spread among several ECUs to fulfill their
goals.
An automatic braking application serves as a case study
[11]. The system works basically as follows: An obstacle
is detected by another automotive system which broadcasts
that information to neighbor cars. A car receiving such an
information has to decide whether it is concerned with this
obstacle, or not. This verification includes a plausibility check
function that takes into account various parameters, such as
the direction and speed of the car, and also information
previously received from neighbor cars. Once the decision to
brake has been taken, the braking order is forwarded to ECUs
responsible for performing the emergency braking. Also, the
presence of this obstacle is forwarded to other neighbor cars
in case they have not yet received that information.

IV. REQUIREMENT CAPTURE

AVATAR relies on SysML Requirement Diagrams to capture
both safety and security related requirements.

A. AVATAR requirement diagrams

In our proposed AVATAR framework, and as explained in
one of our previous paper [12], both safety and security re-
quirements can be modeled in SysML Requirement Diagrams
(RD). In [13], capabilities of SysML diagrams are explored
to describe the different aspects of an automotive embedded
system such as context, requirement, and behavior of the

system. Different SysML profiles are deployed to support the
conceptual stages of the product development life-cycle. For
instance, this includes decomposition of system needs and
representing them as requirements in the model. The SysML
Block Definition Diagram (BDD) is used to manipulate the
structure of the system, whereas the system behavior is speci-
fied by using Interaction, State Machine and Activity diagrams.
Another characteristic of a SysML is: Requirement Con-
tainment and Derive Dependency formalisms used to define
relationships between requirements. We have more particularly
used SysML containment, dependency - deriveReqt, and reuse
in different namespaces copy relationships for defining safety
and security requirements. As explained in [14], the contain-
ment relationship can contain multiple sub-requirements in
terms of hierarchy and thus enables a complex requirement to
be decomposed into its containing child requirements whereas,
deriveReqt determines the multiple derived requirements that
support a source requirement. These requirements normally
present the next level of requirement hierarchy. A Security Re-
quirement stereotype is introduced to make a clear distinction
between functional requirements and security requirements of
the system. In this way system engineers can model both
functional and non-functional requirements of the system in a
single modeling environment. Furthermore, a Kind parameter
is defined to specify the category of the security requirement
such as, confidentiality, access control, integrity, freshness,
etc,.

B. Example: security requirements of the case study

We exemplify the use of AVATAR requirements diagrams
with security requirements, therefore demonstrating how
SysML requirement diagrams have been improved in
AVATAR. An EVITA technical report [15] presents
all requirements of this case study. In the scope
of this paper, only requirements (and properties)
related to Denial of Service attacks are presented
(see Figure 2). Basically, two main requirements are
modeled : PreventBrakeDoSWhenEmergencySituation and
PreventBroadcastBrakeDoSWhenEmergencySituation. The
security kind of those two requirements is ”Availability”.
Those two requirements are themselves composed of sub-
requirements, two of which are copied from a requirement
named EnsureCorrectDecisionOfEmergencySituation that has
been defined in another view. At last, a property named
DoSAttackOn CU And CSC Prevention is meant to verify
the requirement named BrakeTotalResponseTime.

In this example, requirements are identified in order to
further define properties expected to be proved on the system
design.

V. DESIGN

Apart from their formal semantics, AVATAR Block and
State Machine Diagrams only have a few characteristics
which differ from the SysML ones.



Fig. 1. Overall methodology

A. AVATAR design

An AVATAR block defines a list of attributes, methods and
signals. Signals can be sent over synchronous or asynchronous
channels. Channels are defined using connectors between
ports. Those connectors contain a list of signal associations.
A block defining a data structure merely contains attributes.
On the contrary, a block defined to model a sub-behavior of
the system must define an AVATAR State Machine.
AVATAR State Machine Diagrams are built upon SysML
State Machines, including hierarchical states. AVATAR State
Machines further enhance the SysML ones with temporal
operators:

• Delay: after(tmin, tmax). It models a variable delay
during which the activity of the block is suspended,
waiting for a delay between tmin and tmax to expire.

• Complexity: computeFor(tmin, tmax). It models a time
during which the activity of the block actively executes
instructions, before transiting to the next state: that com-
putation may last from tmin to tmax units of time.

The combination of complexity operators (computeFor()),
delay operators, as well as the support of hierarchical states
- and the possibility to suspend the activity of a substate -
endows AVATAR with main features for supporting real-time
system schedulability analysis.

B. Designing the active braking application with AVATAR

Figure 3 represents the internal block diagram of the active
braking use case. This internal block diagram comprises two
kinds of blocks:

• Blocks dedicated to the modeling of the environment.
They model messages received via wireless connections,
data received from sensors, and data output to actuators.
Those blocks are located at the top of the diagram. For
instance, the block CarPositionSimulator models the car
traffic around the considered automotive system. This

car traffic generates location information to the system.
Another example is the GPSSensor that regularly records
the car position.

• Blocks dedicated to the modeling of the system itself.
Blocks are grouped within a parent block whose name
is the one of the modeled ECU. For example, the PTC
block models the Power Train Controller ECU. Basically,
the system contains four ECUs:

– Communication ECU: It contains three blocks.
DSRC Management receives information from the
neighbor cars, and can itself broadcast information
to neighbor cars. NeighbourhoodTableManagement
manages a list of neighbor cars. CorrectnessCheck-
ing handles the verification of received messages.

– Chassis Safety Controller ECU (CSCU): It also
contains three internal blocks. PlausibilityCheck
evaluates whether a given emergency message has to
be taken into account. The decision depends not only
on the content of the emergency message itself (that
is, the nature of the obstacle, whether that obstacle
moves or not, etc.), but also on parameters of the
car receiving that message: what is the speed of
the car, the location of the car with regards to the
obstacle, etc. Those information are gathered by the
two other blocks: ObjectListManagement and Vehi-
cleDynamicsManagement. Finally, either the Plausi-
bilityCheck block decides to ignore the emergency
message, or to take it into account. In that latter
case, an order to brake and reduce the torque of
the engine is forwarded to other ECUs, and the
emergency is broadcasted, via DSRC Management,
to other neighbor cars.

– Bracking Controller ECU (BCU): It contains two
blocks: DangerAvoidanceStrategy decides of a given
policy to reduce efficiently and safely the vehicle



Fig. 2. Excerpt of the requirement diagram: Denial of Service related security requirements

speed. This policy depends on the degree of emer-
gency. The policy might also include the decision
to brake. In that latter case, an order to brake is
forwarded to the BrakeManagement block.

– Power Train Controller ECU (PTC): It con-
tains only one block DrivingPowerReductionStrat-
egy which enforces the engine torque modification
request.

VI. SIMULATION AND FORMAL VERIFICATION

In TTool, simulations and formal verification can be per-
formed from AVATAR models at the push of a button.

A. Simulation

Block instances must be completed with state machine
diagrams. Their behavior can therefore be simulated. At sim-
ulation step, TTool can draw a sequence diagram represent-
ing all actions and communication performed in the system.
Additionaly, TTool offers diagram animations, that is, TTool
accordingly animates the state machines diagrams with the
following information: the last transition being taken, the
next possible transitions and all previously taken paths are
specifically colored. Usual simulation commands can also be
performed from TTool to pilot the simulation trace: reaching

the next breakpoint, step-by-step simulation with transition
selection, going back one transition, etc.
Simulation traces display synchronous and asynchronous com-
munications between instances, logical actions performed by
instances (e.g., variable settings and method calls), and delays
between actions or communications. The right side of Figure
4 represents the state machine of the GPSSensor block. The
previously executed action is an empty transition, and the
sending of the synchronous signal setPosition is enabled. We
also know that this is the first time this trace is taken in
GPSSensor since the transition after the sending of the signal
has never been taken (no green check next to the transition).
On the contrary, previous transitions and actions were already
taken in the past since they’ve got that green check on their
right. On the right part of the same Figure 4 is displayed
the main simulation control window. The top left part of that
window is dedicated to actions on the simulation (execute one
transaction, go back one transaction, etc.). The top right part
is dedicated to information about simulated elements (e.g.,
value of variables of simulated blocks). At last, the lower part
of the figure displays the simulation trace in the form of a
sequence diagram. One can notice a delay of 80 units of time
followed with two variable settings, and then the sending of



Fig. 3. Block diagram of the Active braking use case

the synchronous signal carPosition, and so on.

B. Formal verification

Formal verification generally distinguishes between general
properties which can be applied to a large class of systems
(e.g., absence of deadlock situations) and properties specific
to the system under study.
TTool can formally verify properties using UPPAAL [3].
AVATAR design models are first translated to timed automata
that are further provided as input to UPPAAL. In TTool,
properties to be verified can be expressed in the following
ways:

1) The absence of deadlock can be easily verified by
checking a specific option in the formal verification
dialog window.

2) Reachability and liveness of given elements of state
machine can be evaluated with a simple right-click on
those elements. As an example, Figure 5 presents the
TTool dialog window when studying the reachability
and liveness of the state (EmergencyTakenIntoAccount)
defined in the PlausibilityCheck block.

3) A given CTL formulae can be verified directly from
TTool. Unfortunately, the CTL formula has to be pro-
vided according to the UPPAAL automata corresponding



Fig. 4. Simulation of the active braking automative system

to the AVATAR model. Differently said, an engineer who
wants to prove a given CTL formulae has to understand
the UPPAAL automata produced by TTool from the
SysML models.

4) Observers are blocks which are added to the system
design in order to check for given properties. Observers
have to be written by hand, and are supposed to be non
intrusive on the system. Observers generally contain a
specific error state that the observer reaches whenever
one of the properties it observes is not satisfied. Using
TTool, it therefore suffices to search for the non reach-
ability of those error states.

5) SysML diagrams can also be used to formally express
system properties. Indeed, we have defined TEPE, a
property language settled on SysML parametric dia-
grams. TEPE can be used to express properties in terms
of logical and temporal relations between system events
and attributes [1] [16]. Today, TTool can automatically
take into account only basic TEPE properties, and so,
complex properties have to be translated by hand into
another form, e.g. in CTL or as system observers. TEPE
is formally defined with Metric Temporal Logic (MTL)
[17] and Fluent Linear Temporal Logic (FLTL) [18], but
those two temporal logic remain hidden in TTool.

VII. PROTOTYPING

Again, from an Avatar design model, TTool generates a
C/POSIX code at the push of a button. The code can be
compiled for the local host, or for the SoCLib platform: in

that latter case, MutekH, the generated code and the AVATAR
runtime are compiled and linked against the generated
C/POSIX code.
The prototyping phase is intended to be applied on refined
models. Indeed, the prototyping phase is particularly useful
to evaluate whether a given hardware platform is well suited
to execute a given set of software components.
A refined model is a model in which some abstractions of
a more abstract model have been resolved. For example,
AVATAR designs make it possible to abstract algorithms
with their estimated durations: a computeFor(minDuration,
maxDuration) can be added to state machines transitions.
Another example of abstraction is to let branches of choices
undetermined, that is, at a high level of abstraction, all
branches of choices may be considered. At formal verification
level, this means that all branches have to be explored.
But on a more refined model, branches of a choice are not
randomly taken, but they are usually rather selected according
to the result of operations. Finally, abstractions shall be
resolved before doing the prototyping phase. To do so, an
AVATAR user could use the AVATAR state machines to put
more information in its model. Unfortunately, when coming
to complex algorithms - e.g., in our case, cryptographic
algorithms - , a graphical model based on state machines
is not practical. Therefore, the best option is probably to
directly replace given elements of an AVATAR design with
its corresponding implementation code, e.g. replacing a
computeFor(minDuration, maxDuration) by the C algorithm
it models. If this C code included into the model is actually



Fig. 5. Reachability and liveness of the state ”EmergencyTakenIntoAccount” of the block ”PlausibilityCheck”

ignored by the integrated simulation and formal verification
capabilities of TTool, this code can be automatically included
in the POSIX/C code generated by TTool.
Finally, the most abstract AVATAR models performed with
TTool generally represent the control part of applications, and
are thus often amenable to simulation and formal verification.
On the contrary, more refined models resolve non determinism
behaviors with low-level representations (e.g. in C) of data
and algorithms. Those refined models are not amenable to
simulation and formal verification, but are definitely useful
for prototyping purpose.

We now basically explain how TTool generates C/POSIX
code from AVATAR designs.

A. Code generation
Basically, the C/POSIX code generator of TTool works as

follows:
• One .c and one .h file which contains a representation of

the state machine are generated for each block. The trans-
lation of operations on variables, method calls and tests
is quite straightforward. On the contrary, synchronous
data exchange, asynchronous data exchange, and time
manipulation are more complex and are thus handled by
the AVATAR library (i.e., the AVATAR runtime).

• The main file (main.c) is in charge of defining one thread
per block, setting the attributes of those threads (e.g.,
on which CPU each thread must be executed, which
scheduling policy to use, etc.), starting all threads, and
finally waiting for their termination.

B. The AVATAR runtime
The AVATAR runtime is a set of libraries that handle

all synchronous and asynchronous communications between

blocks. Basically, it relies on data structures to store requests
from blocks, and on mutex and condition variables to achieve
necessary synchronization between threads of blocks. Its im-
plementation is lightweight (about 2000 lines of C code).
The AVATAR runtime is automatically linked against the
generated code when compiling the latter.

C. Example with the automotive application

The model of the active braking system can be prototyped
as described here. The generated source code is usually first
prototyped on the local platform. A simple reason for this
is that the final hardware target may not yet be available, or
even clearly defined. However, when the hardware platform
has been specified, the prototyping phase is as follows:

1) Generation of the cross-compiler. A cross-compiler for
the target platform must be generated. In our example,
we have used gcc-based cross-compilers. In the scope
of our example, we have prototyped the active baking
application on various 32-bit processor architectures,
including PowerPC, Arm, Mips and Sparc.

2) Generation of the C/POSIX code. From an AVATAR
model in which non deterministic behaviors have been
resolved (ideally), TTool generates a set of .c and .h
files, as explained in previous sections. The main file
describes how threads are mapped on the different CPUs.

3) Compilation of the code. The generated C code, the
AVATAR runtime, and MutekH are compiled with the
cross-compiler, and linked together as one executable
file. The executable file could obviously be run on the
real hardware or a virtual prototyping platform built
using SoCLib.

4) Prototyping with SoCLib. The SoCLib simulator is
started with the desired hardware configuration which



runs the executable file generated at previous step.
Our example has been tested on several processors:
PowerPC, which are wildly uses in automotive systems,
but also Mips, Arm and Sparc processors. In all cases,
we have used a 5 processors: one CPU per ECU, and
one CPU to execute the environment blocks.

5) Result analysis. Results of the prototyping simulation
can be visualized either in the console, or directly in
TTool as a UML sequence diagram (see Figure 6). The
GNU debugger gdb can also be used to have more
information about the execution of the code, e.g., about
memory allocations, to perform step-by-step execution,
to monitor which threads are currently executing, etc.
Using traces, important prototyping information can be
obtained. In our case, the latency between the receiving
of an emergency message and the corresponding braking
action can be clearly evaluated for each processor type.

VIII. RELATED WORK AND DISCUSSION

The contribution presented in this paper is twofold. First,
it is based on a SysML-based modeling environment (TTool).
Second, the prototyping phase relies on a prototyping platform
(SoCLib based) and an embedded operating system (MutekH).

A. Modeling and verification environments

Like many other formalized UML-based environments,
AVATAR gives a formal semantics to design diagrams, and
integrates the possibility to formally express properties with
a SysML diagram, a feature usually not supported by other
environments. Indeed, the latter commonly rely on formalisms
external to UML, e.g., temporal logic formulae, or CCSL
in MARTE [19]. The environment presented in [20] offers
verification capabilities from UML diagrams captured in the
Rhapsody toolkit. But, contrary to AVATAR and TTool, this
environment does not support a full engineering process, and
in particular, it does not offer any facility for requirement cap-
ture or prototyping. Verification takes as input CTL formulae.
In TTool, reachability or liveness properties of an action can
be verified with a right-click on that action.

The OMEGA environment [21] integrates requirement cap-
ture in its methodology and toolkit. Unfortunately, properties
can not be easily derived from requirements and used within
the verification framework. Both TTool and OMEGA do
not support continuous streams. On the contrary, the Artisan
toolkit [22] supports them, and also allows for probabilities
on transitions, and manages interruptible regions.

The TopCased environment [23] is developed within the
Eclipse framework, itself recently enriched with Papyrus [24].
TopCased regroups several model analysis tools and code
generators mostly implemented with model transformation
techniques. As a whole, TopCased has probably much more
functionalities than TTool. the latter is more focused on an
engineering process with dedicated third-party tools.

UML/SysML to ESL [25] targets the modeling of System-
on-Chips and supports simulations and formal proofs from
UML models. Worst case execution times can be computed

as well. But the communication semantic is more limited than
in AVATAR. More generally, research on high-level electronic
design has led to the definition of several environments:
SysML to VHDL-AMS [26] or SysML to Simulink [27]. In
mechanics also, SysML is used conjointly with Modelica [28].

Other non-UML environments make it possible to model a
system and formally verify it. UPPAAL [3] is a good example
of such environments. UPPAAL can indeed model a system
in terms of communicating temporal automata. The formal
verification of CTL properties is directly embedded into the
toolkit. But, UPPAAL can definitely not support a whole
engineering process nor it can support the documentation of
a project. This remark applies to other formalisms - and their
related toolkits - such as Petri nets and the TINA toolkit [29],
or LOTOS and the CADP toolkit [30].

B. Prototyping platforms

Prototyping platforms have been proposed at different levels
of abstractions.
At a very high-level of abstraction, the DIPLODOCUS/TTool
approach [31] targets the design space exploration of System-
on-chips. Application functions can be mapped on abstract
CPUs or hardware accelerators, and then can be evaluated with
simulation [32] or formal verification techniques [33]. How-
ever, results that can be expected at that level of abstractions
are related to bus or CPU loads, rather than to a precise timing
execution on a hardware platform.
SystemC is a widely spread set of C++ libraries and simulation
kernel for modeling and implementing electronic systems [34]
[35]. Several levels of abstraction have be defined in SystemC,
ranging from transactional level modeling to a cycle accurate
level modeling. The SoCLib library of component models
[4] is based on SystemC. SoCLib supports two levels of
abstractions: TLM (Transaction Level Modeling) and CABA
(Cycle Accurate Bit Accurate). Other open prototyping plat-
forms like SkyEye [36] and QEmu are not based on SystemC
components.

C. Embedded operating systems

Multiple operating system projects are available for use
as a target POSIX platform for code generation which have
different features and memory footprints. As our approach is
based on free software projects for modeling or performing
simulations and proofs, the operating system running on the
target platform had to be free. This thus rules out VxWorks and
similar proprietary operating systems from the scope of our
demonstration even if the use of such software is technically
possible in our toolchain. The SoCLib prototyping platform
has a number of supported operating systems, including
UNIX like implementations such as NetBSD as well as some
lightweight embedded operating systems.

NetBSD and various Linux flavors are system-call based and
require a separate set of user library packages in order to build
and run applications. System start-up of such large operating



Fig. 6. Prototyping environment based on TTool, MutekH, and SoCLib

system kernels running on top of a SystemC simulator may
require a large amount of time.

Most embedded operating systems can be used without
system-call interfaces, the application is thus compiled along
with the kernel and all objects files are linked in a monolithic
binary file. Some well known operating systems based on
this approach include FreeRTOS, eCos and RTEMS. eCos
and RTEMS may suit our needs because of their support
in SoCLib, and their implementation of the thread POSIX
interface. We expect to support them in the future. The
operating system chosen in the scope of our study is MutekH.
It offers similar features: it’s highly configurable and comes
with suitable libraries, and with the additional benefit of
heterogeneous multiprocessors support and a better SoCLib
integration.

Moreover, when used along with the SoCLib platform,
MutekH can be configured to provide necessary information
related to memory allocation and execution stack boundaries to
the MemoryChecker SoCLib module. This information along
with details of memory accesses performed by the processors
allow this module to track suspicious memory access and
report them to the developer. This feature is of great help on
hardware were no Memory Management Units can be used
which prevents relying on memory protection to find bugs
or undersized stacks [37]. Those debugging features apply to
both operating system and user codes. In our approach, the

user code refers both to the generated code and also to the C
code directly provided by the user as design model parameters.

IX. CONCLUSIONS AND FUTURE WORK

The combination of AVATAR/SysML/TTool and SoCLib/-
MutekH offers an integrated platform for embededd systems
engineering and prototyping. Indeed, this platform offers at the
same time a well-known modeling language (UML, SysML),
an easy-to-use proof environment and a prototyping simulation
platform comprising several commonly used microprocessors
and operating systems. Simulation, proofs and prototyping can
be performed at the push of a button and their results are
displayed directly in the model. The paper presents the whole
AVATAR methodology and illustrates the contribution with an
active braking automotive application. In particular, the formal
validation phase demonstrates that emergency messages may
result in automatic braking actions. Additionaly, the proto-
typing phase enables an accurate evaluation of the latency
between an emergency message and the braking of the car,
taking into account hardware components used in the target
platforms.

Our future work intends to apply this methodology to a
wider set of embedded systems, including aeronautics plat-
forms.



REFERENCES

[1] D. Knorreck, L. Apvrille, and P. De Saqui-Sannes, “Tepe: A sysml lan-
guage for time-constrained property modeling and formal verification,”
ACM SIGSOFT Software Engineering Notes, vol. 36, no. 1, pp. 1–8,
Jan. 2011.

[2] L. Apvrille, “Webpage of TTool,” in http://ttool.telecom-paristech.fr/,
2011.

[3] J. Bengtsson and W. Yi., “Timed automata: Semantics, algorithms and
tools,” in Lecture Notes on Concurrency and Petri Nets. W. Reisig and
G. Rozenberg (eds.), LNCS 3098, Springer-Verlag, 2004, pp. 87–124.

[4] SoCLib, “SoCLib: an open platform for virtual prototyping of multi-
processors system on chip (webpage),” in http://www.soclib.fr, 2010.

[5] LIP6, “Mutekh,” http://www.mutekh.org.
[6] J. Bengtsson and W. Yi., “Timed automata: Semantics, algorithms and

tools,” in Lecture Notes on Concurrency and Petri Nets. W. Reisig and
G. Rozenberg (eds.), LNCS 3098, Springer-Verlag, 2004.

[7] B. Blanchet, “Automatic verification of correspondences for security
protocols,” Journal of Computer Security, vol. 17, no. 4, pp. 363–434,
Jul. 2009.

[8] EVITA, “E-safety Vehicle InTrusion protected Applications,”
http://www.evita-project.org/.

[9] H. Seudié, J. Shokrollahi, B. Weyl, A. Keil, M. Wolf, F. Zweers, T. Gen-
drullis, M. S. Idrees, Y. Roudier, H. Schweppe, H. Platzdasch, R. E.
Khayari, O. Henniger, D. Scheuermann, L. Apvrille, and G. Pedroza,
“Secure on-board architecture specification,” EVITA Project, Tech. Rep.
Deliverable D3.2, 2010.

[10] H. Schweppe, M. S. Idrees, Y. Roudier, B. Weyl, R. E. Khayari,
O. Henniger, D. Scheuermann, G. Pedroza, L. Apvrille, H. Seudié,
H. Platzdasch, and M. Sall, “Secure on-board protocols specification,”
EVITA Project, Tech. Rep. Deliverable D3.3, 2010.

[11] E. Kelling, M. Friedewald, T. Leimbach, M. Menzel, P. Sger, H. Seudi,
and B. Weyl, “Specification and evaluation of e-security relevant use
cases,” EVITA Project, Tech. Rep. Deliverable D2.1, 2009.

[12] M. Idrees, Y. Roudier, and L. Apvrille, “A framework towards the
efficient identification and modelling of security requirements,” in
5ème Conf. sur la Sécurité des Architectures Réseaux et Systèmes
d’Information (SAR-SSI 2010), Menton, France, May 2010.

[13] L. Balmeli, “An overview of the systems modeling language for product
and systems development - part 1 requirements, use-case, and test-
case modeling,” T.J. Watson Research Center and Tokyo Research
Laboratory, IBM, Software Group, Tech. Rep., 2006.

[14] O. M. G. OMG, “SysML,” in http://www.sysml.org/, 2011.
[15] A. Ruddle, D. Ward, B. Weyl, S. Idrees, Y. Roudier, M. Friedewald,

T. Leimbach, A. Fuchs, S. Gürgens, O. Henniger, R. Rieke, M. Ritscher,
H. Broberg, L. Apvrille, R. Pacalet, and G. Pedroza, “Security require-
ments for automotive on-board networks based on dark-side scenarios,”
EVITA Project, Tech. Rep. Deliverable D2.3, 2009.

[16] D. Knorreck, “Uml-based design space exploration, fast simulation and
static analysis,” Ph.D. dissertation, Telecom ParisTech, EDITE, Oct.
2011.

[17] R. Koymans, Specifying Message Passing and Time-Critical Systems
with Temporal Logic. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 1992.

[18] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Fluent temporal logic for
discrete-time event-based models,” in Proceedings of the 10th European
software engineering conference, ser. ESEC/FSE-13. New York, NY,
USA: ACM, 2005, pp. 70–79.

[19] F. Mallet, J. DeAntoni, C. André, and R. de Simone, “The
clock constraint specification language for building timed causality
models,” Innovations in Systems and Software Engineering, vol. 6,
pp. 99–106, 2010, 10.1007/s11334-009-0109-0. [Online]. Available:
http://dx.doi.org/10.1007/s11334-009-0109-0

[20] E. C. da Silva and E. Villani, “Integrating sysml and model-checking
techniques for the v&v of space-based embedded critical software (in
portugese),” in Brasilian Symposium on Aeropspace Engineering and
Applications, 2009.

[21] I. Ober and I. Dragomir, “Omega2: A new version of the profile
and the tools,” in 14th IEEE International Conference on Engineering
of Complex Computer Systems, UML-AADL’2009, Potsdam, 2009, pp.
373–378.

[22] Atego, “Artisan studio,” http://www.atego.com/products/artisan-studio/.
[23] P. Farail, P. Gaufillet, A. Canal, C. L. Camus, D. Sciamma, P. Michel,

X. Crgut, and M. Pantel, “The topcased project: a toolkit in open source

for critical aeronautic systems design,” in In ERTS2006: Embedded Real
Time Software, Toulouse, France, Nov. 2006.

[24] CEA, “Papyrus,” http://www.papyrusuml.org.
[25] A. Vielhl, T. Schonwald, O. Bringmann, and W. Rosenstiel, “Formal

performance analysis and simulation of UML/sysML models for ESL
design,” in DATE ’06: Proceedings of the conference on Design,
automation and test in Europe, Munich Germany, 2006, pp. 1–6.

[26] RealTime-at-Work, “Sysml-companion: Virtual prototyping from sysml
models,” in http://www.realtimeatwork.com/software/sysml-companion/,
2011.

[27] Y. Vanderperren and W. Dehaene, “From UML/SysML to Mat-
lab/Simulink: current state and future perspectives,” in DATE’06: Pro-
ceedings of the conference on Design, automation and test in Europe.
3001 Leuven, Belgium, Belgium: European Design and Automation
Association, 2006, pp. 93–93.

[28] C. J. Paredis, Y. Bernard, R. M. Burkhart, H.-P. de Koning, S. Frieden-
thal, P. Fritzson, N. F. Rouquette, and W. Schamai, “An overview of the
sysml-modelica transformation specification,” in INCOSE’2010, 2010.

[29] B. Berthomieu and F. Vernadat, “Time petri nets analysis with tina,” in
3rd Int. IEEE Conf. on The Quantitative Evaluation of Systems (QEST
2006), 2006, pp. 123–124.

[30] “The CADP toolkit,” http://www.inrialpes.fr/vasy/cadp.
[31] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and

R. Pacalet, “A UML-based Environment for System Design Space Ex-
ploration,” 13th IEEE International Conference on Electronics, Circuits
and Systems, 2006. ICECS 06, pp. 1272–1275, 2006.

[32] D. Knorreck, L. Apvrille, and R. Pacalet, “Fast simulation techniques
for design space exploration,” in 47th International Conference Objects,
Models, Components, Patterns, vol. 33, Zurich, Switzerland, Jun. 2009,
pp. 308–327.

[33] ——, “Formal system-level design space exploration,” in The 10th
annual international conference on New Technologies of Distributed
Systems (NOTERE’2010),. Tozeur, Tunisie: IEEE, Jun. 2010.

[34] T. Grotker, System Design with SystemC. Norwell, MA, USA: Kluwer
Academic Publishers, 2002.

[35] W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and W. Rosen-
stiehl, “The simulation semantics of systemc,” in In Proc. of DATE 2001.
IEEE CS. Press, 2001, pp. 64–70.

[36] SkyEye, “Webpage of SkyEye,” in www.skyeye.org/, 2011.
[37] N. Pouillon, A. Becoulet, A. V. D. Mello, F. Pecheux, and A. Greiner, “A

generic instruction set simulator api for timed and untimed simulation
and debug of mp2-socs,” in In IEEE Proc. of Rapid System Prototyping
2009. Paris, France: IEEE, 2009, p. 116?122.


