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Abstract—Development of new products commonly relies on
existing designs where hardware and software are modeled
separately and their interactions investigated late at verification
time. Composing hardware with software yields more than the
sum of the two parts and solid design dedicates a great deal
of time and money to understand their interactions. This paper
presents a novel modeling methodology based on DiplodocusDF,
a UML Model-Driven Engineering approach for the design
of heterogeneous data processing systems. Our methodology
separately models conflicting aspects such as communications
versus computations, dataflow versus controlflow and allows for
their impact on the overall system’s performance to be separately
analyzed at various abstraction levels. Our methodology is
applied to a case study which shows how it is possible to study
interactions parallel to design, thus greatly reducing time-to-
market of new products and comprehension of existing designs.

I. INTRODUCTION

The manner in which hardware and software interact is a
key issue in the quest for increased performance that drives the
development of new embedded systems. On one hand, techno-
logical advances in hardware make possible the development
of devices with increasing computing power and complex
architectures. Synergistic developments in mathematics and
software engineering provide new methods for implementing
evolving algorithms (e.g., 3G, 4G wireless technologies). On
the other hand, interactions between hardware architectures
and software applications are poorly understood, in spite of
their fundamental role in determining the success of new
products.
One way to investigate interactions is to leverage debugging
techniques such as hand-written test programs, inspection
with oscilloscopes and logic analyzers, simulators, emulators.
Nevertheless, those solutions can only be applied to existing
designs and the know-how required to deploy them is a
major obstacle for new members of a design team to rapidly
and efficiently apply them. A different approach is, instead,
to apply modeling techniques either to existing designs via
reverse engineering or to new products via design space ex-
ploration of models from existing designs. Modeling strategies
are usually classified according to their abstraction level. At
the lowest abstraction level, Register-Transfer Level (RTL),
hardware description languages, e.g., Verilog, VHDL, are
directly used to model the architecture. At the next abstraction
level, Transaction Level (TL), languages such as SystemC and

SpecC are deployed to create libraries of building blocks that
are instantiated and interconnected to generate an architecture
model. Approaches at RTL and TL provide accurate simula-
tion results thanks to detail of architecture models but often
result to be application-specific and thus limited in terms of
portability. Moreover, a solid understanding of how models are
built and work complicates the analysis of hw/sw interactions
for users who are not system experts. The above limitations,
thus call for raising the level of abstraction to Electronic
System Level (ESL) where ”appropriate abstractions are used
to increase comprehension about the system and to enhance the
probability of a successful implementation of functionality in a
cost-effective manner using generic architecture and abstract
application models” [1]. Matlab/Simulink is an example of
a widely used tool for such system level design and anal-
ysis. Working at ESL normally simplifies models, augments
their portability and allows for the deployment of verification
techniques such as simulation and formal verification. Typical
methodologies, however, commit the analysis of hw/sw inter-
actions to verification phase only. This results into increased
costs and analysis time: the information about interactions that
was contained in models at design time is lost and must be
re-extracted by interpreting verification results.
This paper enriches DiplodocusDF [2], a UML Model-Driven
Engineering methodology for the design of heterogeneous
data processing systems. We propose a novel modeling ap-
proach to analyze hw/sw interactions, early at design time
where conflicting aspects such as computations vs commu-
nications, dataflows vs controlflows, are modeled by separate
features at different abstraction levels. We apply our enhanced
DiplodocusDF to a case study taken from the domain of
signal processing, showing the benefits of our solutions in
terms of reduced design time, enhanced design quality and
understanding of existing designs.
The next section depicts the context of DiplodocusDF. Sec-
tion III introduces the case study: an heterogeneous multipro-
cessor architecture with shared memory running an application
for signal processing. Section IV depicts the principles of our
approach to analyze hardware/software interactions. Such prin-
ciples are applied in Section V to the case study. Related works
in the field of hardware/software co-design are illustrated in
Section VI. Conclusions along with the state and directions of
our works are given in Section VII.



II. THE CONTEXT: DIPLODOCUSDF

DiplodocusDF is the result of a continuous workflow that
has its roots in DIPLODOCUS [3]. The latter is a UML Model
Driven Engineering methodology for hardware/software par-
titioning of Systems on Chip at high abstraction level, im-
plemented by the free software TTool [4]. DIPLODOCUS
targets control-oriented systems and it is based on the Y-Chart
approach [5]: the application and the architecture models are
independently developed and then merged at mapping step
where each element of the application is assigned to an ele-
ment of the architecture. The core strength of DIPLODOCUS
is the automatic transformation of models for simulation and
formal verification [6]. The simulation environment allows for
an interactive exploration of the application mapped onto a
particular architecture via a revisited version of Discrete Event
Model of Computation (MoC). Formal verification can be
performed on the application model before and after mapping
thanks to a translation of DIPLODOCUS’s concepts into
the formal semantics of LOTOS and the timed automata
underlying UPPAAL [7]. DIPLODOCUS’ formal verification
allows model-checking of system properties such as safety,
schedulability and performance.
DiplodocusDF stems from DIPLODOCUS, Figure 1, and ex-
tends the latter to target the design of heterogeneous dataflow
applications for real-time processing systems. DiplodocusDF
bridges the gap between these systems and DIPLODOCUS
by supplying for DIPLODOCUS’ abstract approach and its
lack of expressiveness to generate executable code for data-
dominated systems. The contributions of DiplodocusDF are
new modeling capabilities (e.g., dataflow semantics) for ap-
plication and architecture descriptions and a code generation
environment to synthesize executable C-code from an appli-
cation model. As Figure 1 shows, formal verification and
simulation in DiplodocusDF can be equally performed as in
DIPLODOCUS.
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Fig. 1. The DIPLODOCUS (dotted lines) and DiplodocusDF (solid lines)
methodologies.

III. A CASE STUDY

A domain where adding reconfigurability has blurred the
separation between hardware and software and therefore
has introduced new interactions is Software Defined Radio
(SDR) [8]. SDRs are complex telecommunication systems

where some or all of the physical layer functions are im-
plemented in software. This has made the signal processing
of radio equipments software-reconfigurable, whereas, previ-
ously, all functionalities where implemented in hardware. By
presenting an SDR architecture and application, this section
illustrates how the increased flexibility of SDR systems comes
at the price of new and complex hw/sw interactions.

A. The Architecture: Embb

The authors of [9] propose Embb, Figure 2, a generic
baseband architecture dedicated to SDR applications. Embb
is composed of a Processing System, left-hand side of Fig-
ure 2, interconnected to a Control System, right-hand side of
Figure 2. The Processing System operates on the raw samples
that are transmitted or received via the Radio Frequency
Interface (RFI) by executing signal processing operations, e.g.,
Fast Fourier Transform, on a set of interconnected Digital
Signal Processor (DSP) units. The latter are equipped with a
hardware accelerator (Processing SubSystem, PSS), a DMA, a
microcontroller (µC) and an internal memory, mapped on the
global address map of the main processor within the Control
System. According to the type of each DSP, the internal
memory of the latter may be further divided in independent
banks, accessible by the system interconnect, DMAs and µCs.
The system interconnect permits exchanges of control and
data items; it is composed of a Crossbar, a Bridge and a
Main Bus. The Control System, instead, is composed of a
main memory and a main processor that executes the control
part of an SDR application: it manages data transfers, DSPs,
their µCs, the interface with the air (RFI) and the External
Environment Interface. Control information within Embb are
exchanged either through a dedicated network of interrupt lines
and controllers interconnecting PSSs, DMAs and µCs with
the main CPU, or by means of control instructions passing
through the system interconnect. In the latter case, the Bridge
and its DMA are subject to contention between controlflows
and dataflows.
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Fig. 2. The architecture of an instance of Embb.

B. The Application: High Order Cumulants

The application we chose for this paper is a classification
algorithm, High Order Cumulants (HOC) as implemented
in [10], that is used in cognitive radio by a transmitter to sense
the spectrum and detect if another user is currently transmitting
in the same frequency range. The algorithm operates on



segments of the input stream that are independently processed
to extract a score. The occupancy of a specific frequency
range is determined by accumulating scores over a given
classification period and by comparing the accumulated scores
with a pre-computed threshold. The application graph for the
implementation described in [10] is illustrated in Figure 4.
Executing HOC on Embb is not trivial because of the pooling
of memory and DSPs, which implies the transfer of dense
flows of data and control information within and across the
Processing and Control Systems. These flows interact via
dependencies (i.e., data transfers and processings must be
configured by control instructions) and contention (i.e., data
transfers and control instructions compete for the Bridge).
Currently, a truly efficient analysis of these interactions can
only be efficiently performed by a platform expert.

IV. A METHODOLOGY FOR THE ANALYSIS OF
HARDWARE/SOFTWARE INTERACTIONS

By looking at modern computing devices from an ESL
perspective, it is easy to see that hardware and software depend
upon each other structure in order to function. An architecture
is designed to meet requirements of a specific application
domain (e.g., signal processing). Similarly, an application is
written with the capabilities of a given architecture in mind
(e.g., multiprocessor). Structure can be broadly defined as a
composition of parts (e.g., DSPs within an architecture, threads
within an application) that carries information about how those
parts relate and interact, e.g., how DSPs are interconnected,
how threads exchange information. The modeling phase of
our enhanced DiplodocusDF is based on the above princi-
ples, Figure 3. By modeling and mapping the structure of a
pair application-architecture, DiplodocusDF allows to analyze
hw/sw interactions such as: contentions between transfers of
data and control items as well as dependencies between data
transfer and processing operations. Models that are created
with DiplodocusDF are then used for improving design quality
(i.e., enhanced design space exploration), testing and debug-
ging (i.e., code generation and rapid prototyping on the real
hardware) as well as verification (i.e., model-checking and
simulation).
DiplodocusDF differentiates between an application and an

architecture according to the definition that the former imposes
a workload on the latter. From the specifications of an existing
design, the structure of the hardware architecture and of the
software application are extracted, upper part of Figure 3.
Models for the hardware and the software are composed
by instantiating and interconnecting building blocks taken
from an application and an architecture libraries (Composition,
Figure 3). In order to make the analysis of interactions
effective, we create the application and architecture models by
describing aspects that may potentially interact, with separate
modeling features. On the application side, computations and
control operations are described in a graph as different vertexes
interconnected by separate control and data edges. Exchanges
of data and control items, represented by the graph edges,
are described with Communication Patterns (CP) [11],
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Fig. 3. Analyzing hardware/software interactions with DiplodocusDF.

independently with respect to the computations and the control
operations of the graph. On the architecture side, the latter
is described as a graph whose building blocks are separately
classified according to their functionality: computation (e.g.,
DSPs), storage (e.g., memories), control (e.g., CPUs) and
communication (e.g., bus). Such elements are interconnected
by separate data and control paths via independent edges.
Once the application model (graph and Communication Pat-
terns) is available, it is mapped (Mapping, Figure 3) onto an
architecture graph that is built throughout four hierarchical
levels of abstraction. These levels are defined according to
the functionalities that an architecture offers to an application:
computations (level L0), storage (level L1), control (level L2)
and communications (level L3). At each level the architecture
model is expanded and refined (Refinement, Figure 3) by
exposing the hardware parallelism: if a given functionality is
implemented by an independent component, then a building
block for such a component is instantiated and interconnected
to the rest of the graph. For instance at storage level L1, for
each memory that can be independently accessed, a memory
unit is instantiated and interconnected. Such a hierarchy, based
on the functionalities of components, allows our approach to
be ported to architectures from different domains. Moreover,
the impact of each class of components on the design space can
be separately evaluated via formal verification and simulation
at each level of abstraction, provided a default mapping
is given for the application when not all the architecture
parallelism has been exposed.
In the next section, we apply the above principles to the case
study previously introduced in Section II.

V. THE METHODOLOGY APPLIED TO THE CASE STUDY

The structure of the High Order Cumulants algorithm is
illustrated in Figure 4. Here, the Source vertex splits the input
data stream into segments that are broadcast via the Fork node
to processing operations CWM1,2 (Component-Wise Modulus)
and CWS (Component-Wise Square). These operations process
the input segments to compute the classification score that is
accumulated over a classification period by the ACC vertex
which dispatches its result to the Sink. The latter compares



the accumulated scores with a pre-computed threshold and also
receives a copy of the input segments. Such a copy is not used
to compute the classification score but is rather instantiated
to illustrate how Communication Patterns can be deployed to
capture complex transfer schemes. In Figure 4, data dependen-
cies are represented by solid edges, while control dependencies
are pictured as dotted edges. The latter are labeled with the
control primitives being exchanged: start() and stop() are sent
from CWM1,2, CWS and Sink to control the Source input
stream. Control primitive set period() is sent by Sink to ACC
to configure the length of the classification period.
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Fig. 4. The application graph for HOC algorithm.

The application workload in terms of communications is
described by CPs associated to graph edges. An interesting
case is represented by edges e1,2,3,8,10 in Figure 4, where
a dataflow needs to be transferred from a memory location
accessible to Source, to a location reachable by operations
CWS, CWM1, Sink. This behavior is captured by the abstract
CP of Figure 5, independently with respect to the architecture
or the operations it serves. The architecture of Embb is initially
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Transfer(...)

Transfer(...)
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Fig. 5. The Communication Pattern for edges e1,2,3,8,10.

modeled at high abstraction level as illustrated in the left-hand
side of Figure 6: the memory space of the platform is modeled
by a memory unit (Storage System) interconnected via a bus
(System Interconnect) to a DSP for the platform’s processing
part (Processing System) and to a CPU for control operations
(Control System).
At level L1, right-hand side of Figure 6, the architecture

parallelism in terms of computations is exposed and two DSP
units replace the Processing System. The FEP (Front End
Processor) for vector and scalar processing and the ADAIFEM
(Analog-to-Digital-InterFace) for receiving input streams from
the air, are instantiated and interconnected. Consequently, we
map processing operations: CWM1,2, CWS and ACC to FEP,
the Source to ADAIFEM and the Sink to the Control System.

The architecture of Embb at level L0
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Fig. 6. The Embb architecture at the most abstract levels.

Clearly, CWM1 and CWS will have to be executed sequentially
in spite of the parallelism present in the application graph:
already at the very first step of the approach, an important in-
teraction that constraints the scheduling of all HOC operations
is exposed.

MAIN Control
System

Arbitration node

1 = highest priority (FEP)

32

1

2 = medium priority (DMA)

2 = lowest priority

(System Interconnect)

FEPdma

BANK1 BANK4BANK3BANK2

System Interconnect

FEP

ADAIFEM

DMA

ADA

MEM

DMA

ADAdma
MEM

Fig. 7. The architecture of Embb after the storage refinement of level L1.
Only the dataflow links are shown.

At level L1 in Figure 7, the Storage System of Figure 6 is
split: the FEP’s internal memory, made up of four banks,
is modeled by four memory units. Embb’s main memory
(MAIN MEM) and ADAIFEM’s memory (ADA MEM) are
instantiated as one memory unit each. The parallelism in
terms of access to memories is also modeled in Figure 7 by
Arbitration nodes and the instantiation of a DMA for each
DSP unit (ADAdma, FEPdma). From the point of view of
communications, the CP of Figure 5 must now be re-described,
to account for the mapping at level L0 and for the new
information about storage units. CWS, CWM1, Sink have been
mapped to units that can access different memories, so the
initial transfer of Figure 5 is refined with a first Transfer to
serve CWM1, CWS and a Copy to serve Sink, Figure 8. Without
Communication Patterns, as it was the case in DiplodocusDF
before our contribution, we would have re-designed from
scratch the application graph in order to accommodate for the
copy operation. Moreover, without a hierarchical approach,
the need for such a re-design would have emerged only after
design completion. Thus, at this level we get an understanding
of the complexity and role played by data transfers in Embb,
transfers which are as vital as computations. What we thought



to be able to describe with a single scheme is in fact much
more complicated that will be totally unveiled at level L3.
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Fig. 8. The Communication Pattern of Figure 5 at L1.
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At level L2, the study of interactions continues by exposing
the control parallelism of Embb: Control Block of Figure 6 is
split in three independent CPU units. The latter model Embb’s
Main CPU and the microcontrollers of FEP and ADAIFEM
(FEPµC, ADAµC). The control network of the platform is also
exposed by interconnecting the units with dedicated control
nodes and edges. As illustrated in Figure 9, Main CPU is
able to either exchange control information with the µCs via
dedicated control edges (interrupt lines) or via the System
Interconnect (control instructions). FEP and the ADAIFEM
can be driven either by the Main CPU or by the µCs. The
Control join node models the interrupt controller that gathers
control information from the DSPs to Main CPU via the
System interconnect. From the mapping point of view, the
CP’s Controller of Figures 5, 8 is mapped to mainCPU and
control primitives start(), stop(), set period() are mapped to
control edges as depicted in Figure 9. We now understand that
controlflows associated to the primitives start() and stop() may
result into conflicts with dataflows from memories, due to the
pooling of the System Interconnect.
At level L3, the architecture refinement is completed by ex-
posing the parallelism in terms of communications: the System
Interconnect bus is substituted by the mainBus and Crossbar,
interconnected by the Bridge, similarly to what shown in Fig-
ure 2. This stage unmasks the Bridge as the system bottleneck
in terms of communications due the contention between data
and control flows, as mentioned in the introduction to Embb of

Section III. The analysis of interactions is then completed by
mapping the actors of our Communication Pattern: we choose
to map the Transfer actor of Figures 5, 8 to a communication
network made up of BridgeDMA, Crossbar, and mainBus.
Such a mapping is displayed in Figure 10, for the Copy that
serves Sink.
Although not all graphs and CPs are shown here due to lack
of space, we understood the key system interactions in terms
of computations, storage, control and communications by
means of design only, without deploying simulation or formal
verification. These techniques can be used in DiplodocusDF
once design and analysis of interactions have been completed,
to extract numerical results for comparison and design space
exploration.
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Fig. 10. The CP of Figure 8 for the CopyRequest at L3.

VI. RELATED WORK

According to the novel classification scheme for ESL
methodologies proposed in [12], true ESL synthesis tools are
the well-known Daedalus [13], [14], Koski [15], Metropo-
lis [16], Ptolemy [17], PeaCE/HoPES [18], SCE [19]
and SystemCoDesigner[20]. With respect to these works,
DiplodocusDF targets the same hardware platforms, i.e., het-
erogeneous bus-based multiprocessor platforms, but does not
allow the complete generation of a system, as it does not
include the synthesis of an hardware implementation. Since the
purpose of the above works is to provide the highest possible
degree of automation, the study of hw/sw interactions is
delayed to verification phase as most of the design exploration
steps are carried out within dedicated tools. The hands-on ap-
proach of DiplodocusDF, that consists in manually composing
and mapping a pair application-architecture, directly impacts
the user with the system complexities thus unveiling most of
the hardware/software interactions earlier at design time.
Companies such as Xilinx and Altera provide design tool
chains that attempt to generate efficient implementations start-
ing from descriptions higher than the Register Transfer Level
of abstraction. The required input specifications are still so
detailed that understanding interactions is time consuming
and can be conducted only by system experts. In contrast,
DiplodocusDF raises the design to an even higher level of
abstraction allowing the study of hw/sw interactions in a short
amount of time and with little expertise in simulation and



formal verification.
With respect to DiplodocusDF component for DSE (i.e.,
the simulator), there exist a number of UML architectural
exploration environments ([21], [22], [23], [24], [25]) that
offer performance evaluation by supporting the mapping of
an application onto an architecture. In comparison to the
simulation of purely functional models offered by these tools,
the simulator of DiplodocusDF also accounts for architecture
constraints, e.g., arbitration of shared resources, speed and data
throughput of components.

VII. CONCLUSIONS

In this paper we have presented a novel modeling approach
to explore hardware/software interactions based on enhancing
DiplodocusDF, a methodology for the design of heterogeneous
data-processing systems. Our solution is based on separately
taking into account conflicting aspects of the application (e.g.,
computations vs communications, dataflows vs controlflows)
and on mapping them onto a progressively refined architecture
whose parallelism is exposed in terms of four functional
levels: computational, storage, control and communication.
The core strength of our approach is to enable the analysis
of hw/sw interactions early at design time while actually
designing the system itself. Thanks to the framework from
previous works on DIPLODOCUS and DiplodocusDF, our
models can be verified with simulation or formal verification.
We have successfully applied our methodology to an instance
of a baseband architecture and a signal processing application,
showing how we are able to capture and analyze interactions
as the design unfolds. The major benefits of our approach are:
(1) the analysis of hw/sw interactions early at design time,
that reduces time-to-market of new products by shortening the
post-design verification phase, (2) the improvement of design
quality and of the understanding of existing designs. When
modeling in our enhanced DiplodocusDF, the application and
the architecture models are completely disjoint thanks to the
separation of concerns introduced by Communication Patterns
and by separate modeling facilities for data and control as-
pects. The design space exploration does not require to re-
arrange or re-design the entire system models, but rather to
tune single features (e.g., modify the mapping of a Commu-
nication Pattern). Improved design quality and understanding
of existing designs are given by the novel modeling features
themselves (e.g., Communication Patterns, control exchange
primitives) coupled with the methodology. The former provide
the expressive power to represent complex communication
schemes, while the latter allows to unveil the interactions with
computations (e.g., contention between control and data flows)
thus introducing new points in the design space corresponding
to novel interactions. Although the modeling described here
is applied to a case study specific for telecommunication
systems, our approach can be ported to other heterogeneous
data-processing architectures and applications, e.g., image and
video processing.
Main research directions for the future are re-visiting the
code generation phase of DiplodocusDF so as to translate the

information captured at design time into an implementation
code capable to adapt to the environment needs with dynamic
scheduling and memory management.
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