
Modeling Heterogeneous Embedded Systems
with TTool

Daniela Genius∗, Marie-Minerve Louërat∗, François Pêcheux∗

Ludovic Apvrille†, Haralampos Stratigopoulos∗
∗ Sorbonne Université, LIP6, CNRS UMR 7606,

Email: first_name.last_name@lip6.fr
† Télécom ParisTech, Université Paris-Saclay, Institut Mines-Telecom

Email: first_name.last_name@telecom-paristech.fr

Abstract—Embedded systems are increasingly hetero-
geneous, comprising digital and analog integrated cir-
cuits, sensors, and actuators. This paper presents a first
step towards an integrated modeling and simulation tool
for verification and virtual prototyping of heterogeneous
embedded systems on different abstraction levels.

I. INTRODUCTION

The complexity of recent embedded systems pushes
current design techniques to their limits. In particular,
the space to be explored is getting larger. Model-
oriented design of complex embedded systems is
nowadays a current practice concerning software de-
velopment; the hardware aspects of such systems are
however less frequently designed using this kind of
approach.

Many applications e.g. from robotics, automotive
and autonomous systems require moreover heteroge-
neous modeling - including modeling of analog/mixed
signal (AMS) and radio frequency (RF) features.

Nevertheless, the related work in the next section
demonstrates the lack of an integrated tool offering
at the same time heterogeneous system modeling with
automated handling of synchronization issues between
MoC, cycle and bit precise simulation, validation of
the analog part, as well as formal verification of
application code running on general purpose CPUs for
the digital part.

II. RELATED WORK

Well established tools like Ptolemy II [19][20],
based upon a data-flow model, address heterogeneous
systems by defining several sub domains [?]. Although
hierarchy is provided, instantiation of elements control-
ling the time synchronization between domains is left
to the responsibility of designers.

Metropolis [8] is based on a high level model
and facilitates the separation of computation from
communication concerns. Heterogeneous systems are
taken into consideration, but heterogeneity can only
be represented using processes, mediums, quantities

and constraints. Hierarchical models are not allowed:
all processes should be implemented in the same
hierarchical level.

Metro II [?] introduces hierarchy and allows Adap-
tors for data synchronization as a bridge between the
semantics of components belonging to different MoCs.
The model designer still has the difficult task of imple-
menting time synchronization by means of constraints,
assertions, annotators and schedulers. As a common
simulation kernel handles all process execution, MoCs
are not well separated.

The above are not based on SystemC. Among the
frameworks based on SystemC are HetSC [?], HetMoC
[?] and ForSyDe [?], all having the disadvantage that
instantiation of elements and controlling the synchro-
nization have to be managed by the designer.

In the scope of [2], a mixed analog-digital systems
proof-of-concept simulator has been developed [12],
based on the SystemC AMS extension standard [17],
[4]. Another simulator is proposed in [3]. Integration
with software code for general-purpose CPUs and with
an operating system is however not yet addressed in
these approaches.

Outside the analog/mixed signal domain,
UML/SysML based modeling techniques [24],
[13] are popular with industry targeting embedded
systems, but are still rarely used in the domain of
heterogeneous system design. Furthermore, with few
exceptions such as [22], [15], they do not lower the
level of abstraction to cycle bit accurate level.

III. SYSTEMC AMS EXTENSIONS

"SystemC AMS extensions" is a standard describing
an extension of SystemC with AMS and RF features
[23][17]. The usual approach for modeling the digital
part of a heterogeneous system with SystemC [1] is
to rely on the Discrete Event (DE) part of SystemC
AMS extensions. The Timed data Flow (TDF) part
adds support for signals where data values are sampled
with a constant time step.

Final
software
code

Refinements

VHDL/Verilog

Virtual Prototype

Deployment
Hardware

design
Abstractions

Simulation
 and
Verification

Micro kernel
MPSoC
Model in
SystemC

HW/SW Partitioning

Functional

Software Design Hardware
model

Fig. 1. Hardware/Software partitioning and Code generation for MPSoC platforms

A TDF module is described with an attribute rep-
resenting the time step and a processing function.
The time step is associated to a time period during
which the processing function should be executed.
The processing function corresponds to a mathematical
function which depends on the module inputs and/or
internal states. At each time step, a TDF module first
reads a fixed number of samples from each of its input
ports, then executes the processing function, and writes
a fixed number of samples to each of its output ports.

A TDF port is described with three attributes:
• Tp represents the time period.
• R is the rate of data i.e. the number of read or

written samples by a TDF port during each period.
• D models the delay, the number of samples of

the TDF port when a simulation starts.
TDF modules can interact with the DE world (such as
digital MPSoC platforms) using converter ports.

However, it is pointed out in [5] that it is hard to
build a modeling environment synchronizing DE and
TDF. Indeed, the TDF model of computation is based
on the Synchronous Data Flow (SDF) formalism that
considers models as a network of synchronous data
flow blocks, and does not easily match the one of DE
systems. Recent work [6] [10] models the interaction
between TDF and DE by colored timed Petri Nets and
checks causality issues between TDF and DE MoC
automatically.

IV. HIGH LEVEL MODELING WITH TTOOL

TTool [7] is a SysML based, free and open-source
software for model-based engineering of embedded
systems at different abstraction levels: functional, par-
titioning, software design, deployment. The method

associated to these levels [15] details how to take
hardware/software partitioning decisions at a high level
of abstraction (upper part of Figure 1), and to regularly
validate these decisions during software development
(middle part of Figure 1).

Models of platforms are described in the hard-
ware/software partitioning and deployment stages.
Tasks destined to be implemented in hardware are
represented as hardware accelerators.

Models are thus composed of hardware and software
parts. Software tasks for the partitioning model are
captured within the functional abstraction level, and
software tasks used in deployments are captured in
the software design abstraction level. In both par-
titioning and deployment, the computation part of
tasks is then deployed to processors (which can be
hardware accelerators in the partitioning level), and
the communication and storage part is deployed to
buses and memories. An important advantage of TTool
is that it offers an automated approach for formal
verification and fast simulation on the three first levels
of abstraction, for the digital part. Formal verification is
based on internal model-checkers, or on external tools
like UPPAAL [11].

On the lowest level (i.e. the deployment level),
TTool offers the generation of a virtual prototype that
can be simulated with a cycle bit accurate simulator
for Multi Processor Systems on Chip (MPSoC) [14].
Processor models stem from the SoCLib [21] public
domain library written in SystemC. SoCLib targets
shared-memory multiprocessor-on-chip system archi-
tectures based on the Virtual Component Interconnect
[?] standard which separates the components’ function-

MainControl

+ state : Natural;
+ calculateTraj : Natural;
+ calculateDistance : Natural;

DistanceSensor

...

TemperatureSensor

+ samplingRate : Natural;
+ sensorOn : Boolean;

MotorControl

...
+ interval : Natural;

startTemptempData

ultrasonicData

samplingRate

changeRate

motorCommand

newCommand

stopTemp

Fig. 2. Functional model of the rover

<<CPU>>
CPU0

Rover::MainControlRover::MainControl

Rover::MotorControlRover::MotorControl

<<MEMORY>>
Memory0

<<BUS>>
Bus0

<<HWA>>
DistanceSensor

Rover::DistanceSensorRover::DistanceSensor

<<HWA>>
TemperatureSensor

Rover::TemperatureSensorRover::TemperatureSensor

Fig. 3. Hardware/Software partitioning of the rover

ality from their communication. The lower left part of
Figure 1 shows the generation of software code, cross-
compiled for a general purpose processor and running
under the MutekH [9] micro kernel on the SoCLib
virtual prototype of the (purely digital) MPSoC. The
initial Deployment diagram did not offer the possibility
to show hardware, neither digital nor analog. The lower
right part of the figure thus shows that we augment the
Deployment Diagram with abstractions found for these
hardware modules.

Several case studies have been performed in order to
explain how the abstraction levels of TTool relate, e.g.
an automotive obstacle detection [14] and a rover [16].
While sensors, GPS, radar, etc. can be approximately
modeled with highly abstracted digital blocks, the
accuracy of our models and verification would benefit
from more realistic models taking into account the
AMS part.

V. INTEGRATION OF ANALOG COMPONENTS

SystemC AMS uses the Timed Data Flow (TDF)
Model of Computation (MoC) which is based on the
timeless Synchronous Data Flow (SDF) [?]. So-called
converter ports serve as interface between the TDF and
DE MoC, raising potential causality issues. We adopted
the solution described in [?].

A. Contribution
Our initial idea was to add analog components to

the partitioning level, treating them at the same, very

abstract, level as the (digital) hardware accelerators.
After the partitioning stage, just like for such digital
components, analog components could be developed
independently from the software tasks. Yet, the devel-
opment of analog components must be compatible with
the partitioning decisions that can be revised in the next
abstraction levels (software design, deployment).

We have augmented the graphical interface of TTool
with the possibility to describe SystemC AMS blocks
with their DE, TDF and converter ports. However, the
behavior of the analog blocks, i.e. the processing func-
tion, must be provided directly in SystemC AMS since
the abstraction of the behavior of these components is
not likely to be easily modeled in a UML/SysML way.
For the moment, the SystemC AMS code is entered in
an editor associated to the module.

We are currently implementing the generation of
SystemC AMS (TDF only) code of the components as
well as the top cells from these mixed graphical/textual
descriptions. This generation will have three phases:

1) In a first phase, we aim at generating fully func-
tional SystemC AMS top cells and TDF models
of analog components by limiting to platforms
without any software part and without preexist-
ing SoCLib components. For validation purpose,
we have selected some simple existing SystemC
AMS platforms from [3]: source-rectifier-sink,
vibration sensor, etc. which we try to reproduce
by our generator.

<<CPU>>
CPU0

Design::MainControl

Design::MotorControl

<<TTY>>
TTY0

<<RAM>>
Memory0

MainControl/in tempData

MainControl/out motorCommand

MainControl/in sensorData

<<VGSB>>
Bus0

<<HWA>>
Sensor1

Design::TemperatureSensor

<<HWA>>
Sensor0

Design::DistanceSensor

Fig. 4. Virtual Prototype

2) In a second phase, we intend to combine the
SystemC AMS TDF part with the digital MPSoC
platform (i.e. components using the DE MoC).
The automated generation and configuration of
purely digital versions of such a platform has
already been addressed in previous contributions
[14]. The (huge) remaining work is to combine
this infrastructure with the analog part. On the
software side, this phase will restrict to executing
some assembler instructions directly loaded into
memory, without the use of an operating system.

3) In a third phase, we intend to run larger scope
software, requiring an operating system and linker
script. We plan to reuse the SoCLib models of
digital components, requiring an adaptation to the
VCI standard.

B. Representing Analog Components in the MPSoC

The basic idea for the second and third phase is to
extend the principle of “hardware accelerators” of the
functional level of TTool to represent the integration
of analog/mixed components. For each component
described in SystemC AMS, a cycle-bit accurate in-
terface will be generated. Only these interfaces will be
“visible” for the MPSoC designer.

The separation of digital and analog design in TTool
in different panels allows us to maintain formal veri-
fication (with UPPAAL, e.g. deadlocks and starvation)
for the software part of the digital platform. The
schedulability of the analog part is validated using the
schedulability check of SystemC AMS [17].

VI. CASE STUDY

A rover system meant to assist rescuers to find
victims in debris is used as a case study. The rover
features several sensors including distance and temper-
ature sensors. Depending on the distance measured by
the ultrasonic distance sensor, the sampling rate of the
temperature sensor is adapted and the motor receives
commands to speed up or slow down. The rover was

initially described for a purely digital implementation,
code generated for software tasks deployed on a SoC
[16].

Figure 2 presents the functional model that abstract
sampling rates of sensors with numerical (integer)
values (type Natural). This model contains the two
sensor blocks and the motor control, managed by
a central control block communicating by channels
(blue arrows) and through events (pink arrows). The
current model is unable to express the analog nature
of the temperature and distance signals. Moreover, the
concrete values of the sampling rates cannot be given
at this level.

In Figure 3, MotorContol and MainControl are
mapped to the general purpose CPU, while the sensors
are considered as hardware accelerators, without yet
further specifying their (digital or analog) nature. Fig-
ure 4 shows the virtual prototype, where the software
tasks, MotorControl and MainControl, are mapped to a
general purpose processor using the method described
in [14], The temperature and distance sensors are
represented as hardware accelerator blocks on the
partitioning level as well as in the overview of the
virtual prototype.

A complete SystemC AMS model is out of the
focus of this paper. Let us consider the distance sensor.
Figure 5 shows the state machine on the partitioning
(purely functional) level. Figure 6 shows the repre-
sentation of the distance sensor as SystemC AMS
cluster. Note that modeling is much more detailed.
In fact, the sensor is modeled as a SystemC AMS
cluster containing two distinct TDF blocks, one for the
ultrasonic sensor itself and one for the analog to digital
(AD) converter. The latter features three ports: an input
port for the voltage issued from the ultrasonic sensor,
an input converter port for sampling rate control, and
an output converter port from TDF to the DE domain
for the outgoing bit stream.

It should be noted that simulation rate change is

not yet implemented, but that this will be possible
with SystemC AMS v2.0. We thus do not yet model
the changeRate event between MainControl and Dis-
tanceSensor in Figure 2. As an approximation, we
implement the sampling rate as an integer value s to
be read on the soclibIn port and which determines the
number of iterations in a for loop: every s samples
read from sensorIn a bit vector representing the current
sample is written to soclibOut, the others are ignored.
We assume a common rate of 1 for all ports of a
module. The maxVoltage value can either be generated
directly from TTool as done here or passed as a
parameter.

The corresponding code will then be generated by
TTool and the simulator solves the synchronization
issues as mentioned before. Figure 7 finally shows
the SystemC AMS code for the converter block of
the distance sensor that we aim to generate from the
SysML description. Delays of zero and rates of one
are not shown.

evt
changeRate()

chl
samplingRate(1)

chl
ultrasonicData(1)

samplingRate

Loop for ever

Fig. 5. Functional model of the distance sensor

samplingRate

ultrasonicData
bitStream

Ultrasonic
sensor

Analog to digital
converter

sensorIn

soclibIn

soclibOut

sensorOut

Fig. 6. SystemC AMS representation of the distance sensor

VII. CONCLUSION AND PERSPECTIVES

We outline a method to integrate analog components
into a multi-level modeling tool for complex embedded
systems. [5] describes a formalization of the conversion

between the digital and the AMS part in the form of
timed colored Petri Nets. Thus, the results of [?] on co-
simulation of analog and digital SoCLib components
for virtual prototyping can be generalized.

The work is still at its beginning; we are currently
working on the automatic generation of purely TDF
platforms from SysML designs. The next step is the
integration with the digital MPSoC. Once this step is
achieved, we will be able to simulate more complex
heterogeneous systems with extended software parts
running on (digital) general-purpose processors and
(light) operating systems.

In the spirit of SoCLib, we have also started to
define a library of basic analog components that can be
parametrized and configured to some degree. This will
be another challenging task: each analog component
has specific features like e.g. equations for which it
is much harder to determine common aspects than for
their digital counterparts.

REFERENCES

[1] SystemC. In http://www.systemc.org.
[2] Beyond Dreams (Design Refinement of Embedded Analogue

and Mixed-Signal Systems). 2008-2011.
[3] Heterogeneous Inception. In https://www-

soc.lip6.fr/trac/hinception, 2012-2015.
[4] Accellera systems initiative. SystemC AMS extensions Users

Guide, Version 1.0.
[5] L. Andrade, T. Maehne, A. Vachoux, C. Ben Aoun, F. Pêcheux,

and M.-M. Louërat. Pre-Simulation Formal Analysis of Syn-
chronization Issues between Discrete Event and Timed Data
Flow Models of Computation. In Design, Automation and Test
in Europe, DATE Conference, Mar. 2015.

[6] L. Andrade Porras. Principles and implementation of a generic
synchronization interface between SystemC AMS models of
computation for the virtual prototyping of multi-disciplinary
systems. PhD thesis, Université Pierre et Marie Curie, 2016.

[7] L. Apvrille. TTool, an open-source toolkit for the modeling
and verification of embedded systems. In http://ttool.telecom-
paristech.fr/.

[8] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,
and A. L. Sangiovanni-Vincentelli. Metropolis: An inte-
grated electronic system design environment. IEEE Computer,
36(4):45–52, 2003.

[9] A. Becoulet. Mutekh. http://www.mutekh.org.
[10] C. Ben Aoun. Principles and Realization of a Virtual Proto-

typing Environment for Composable Heterogeneous Systems.
PhD thesis, Université Pierre et Marie Curie, 2017.

[11] J. Bengtsson and W. Yi. Timed automata: Semantics, algo-
rithms and tools. In Lecture Notes on Concurrency and Petri
Nets, pages 87–124. W. Reisig and G. Rozenberg (eds.), LNCS
3098, Springer-Verlag, 2004.

[12] K. Einwich. SystemC AMS PoC2.1
Library, COSEDA, Dresden, 2016.
http://www.coseda-tech.com/systemc-ams-proof-of-concept/.

[13] A. Gamatié, S. L. Beux, É. Piel, R. B. Atitallah, A. Etien,
P. Marquet, and J.-L. Dekeyser. A model-driven design
framework for massively parallel embedded systems. ACM
Trans. Embedded Comput. Syst, 10(4):39, 2011.

[14] D. Genius and L. Apvrille. Virtual yet precise prototyping: An
automotive case study. In ERTSS’2016, Toulouse, Jan. 2016.

[15] D. Genius, L. W. Li, and L. Apvrille. Model-Driven Per-
formance Evaluation and Formal Verification for Multi-level
Embedded System Design. In Conferénce on Model-Driven

template<int NBits>
class adconverter : public sca_tdf::sca_module {

public:
typedef sc_dt::sc_int<NBits> data_type;// bit vector

sca_tdf::sca_de::sca_in<double> sensorIn; // TDF input port
sca_tdf::sca_de::sca_in<data_type> soclibIn; // TDF input converter port
sca_tdf::sca_de::sca_out<data_type> soclibOut; // TDF output converter port

converter<NBits>::adconverter(sc_core::sc_module_name nm)
: sensorIn("in"), soclibIn("soclibIn"), soclibOut("soclibOut") {}

protected:
void set_attributes() {

sensorIn.set_rate(1);
sensorIn.set_delay(0);
soclibIn.set_rate(1);
soclibIn.set_delay(0);
soclibOut.set_rate(1);
soclibOut.set_delay(0);

}

void processing() {
data_type res;
int s = soclibIn.read();
int step;
using namespace std;
for(step=0; step < s; step++){

double in = sensorIn.read();
}

sc_dt::sc_int<NBils> res = lround((in/maxVoltage)*((1<<(NBits-1))-1));
soclibOut.write(res);
}

}

Fig. 7. SystemC AMS model of the analog AD converter

Engineering and Software Development (Modelsward’2017),
Porto, Portugal, Feb. 2017.

[16] D. Genius, L. W. Li, and L. Apvrille. Multi-level Latency
Evaluation with an MDE Approach. In Conferénce on
Model-Driven Engineering and Software Development Mod-
elsward’2018 (to appear), Funchal, Portugal, Jan. 2018.

[17] IEEE. IEEE Std 1666.1 standard.
https://standards.ieee.org/findstds/standard/1666.1-2016.html,
January 2016.

[18] K. Latif, M. Selva, C. Effiong, R. Ursu, A. Gamatie, G. Sas-
satelli, L. Zordan, L. Ost, P. Dziurzanski, and L. S. Indrusiak.
Design space exploration for complex automotive applications:
An engine control system case study. In Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools,
RAPIDO ’16, pages 2:1–2:7, NY, USA, 2016. ACM.

[19] E. A. Lee. Disciplined heterogeneous modeling. In D. Petriu,
N. Rouquette, and O. Haugen, editors, Proceedings of the
ACM/IEEE 13th International Conference on Model Driven
Engineering, Languages, and Systems (MODELS), pages 273–
287. LNCS 6395, Springer-Verlag, Oct. 2010.

[20] C. Ptolemaeus, editor. System Design, Modeling,
and Simulation using Ptolemy II. Ptolemy.org, 2014.
http://ptolemy.org/books/Systems.

[21] SocLib consortium. The SoCLib project: An integrated system-
on-chip modelling and simulation platform. Technical report,
CNRS, 2003. www.soclib.fr.

[22] S. Taha, A. Radermacher, and S. Gérard. An entirely model-
based framework for hardware design and simulation. In
DIPES/BICC, volume 329 of IFIP Advances in Information
and Communication Technology, pages 31–42. Springer, 2010.

[23] A. Vachoux, C. Grimm, and K. Einwich. Analog and mixed
signal modelling with systemC-AMS. In ISCAS (3), pages

914–917. IEEE, 2003.
[24] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P.

Diguet. A co-design approach for embedded system modeling
and code generation with UML and MARTE. In DATE, pages
226–231. IEEE, 2009.

	Introduction
	Related Work
	SystemC AMS Extensions
	High Level Modeling with TTool
	Integration of Analog Components
	Contribution
	Representing Analog Components in the MPSoC

	Case Study
	Conclusion and Perspectives
	References

