
Demonstration of a Coverage Driven Verification Environment for
UML Models of Systems-on-Chip

Daniel Knorreck, Ludovic Apvrille, Renaud Pacalet
System-on-Chip Laboratory (LabSoC), Institut Telecom, Telecom ParisTech, LTCI CNRS

2229, Routes des Crêtes BP 193 F-06904 Sophia Antipolis, France
Email: {daniel.knorreck, ludovic.apvrille, renaud.pacalet}@telecom-paristech.fr

Abstract— The DIPLODOCUS UML profile targets the par-
titioning of Systems-on-Chip early in the design flow, following
the Y-Chart approach: application modeling, architecture mod-
eling, mapping. DIPLODOCUS is supported by an open-source
toolkit named TTool. One of the strengths of TTool is its capa-
bility to transform high level models into both simulation and
formal models so as to obtain performance results and proofs
of functional properties respectively. The version of TTool we
presented at DATE 2010 featured two extreme cases: simulation
and formal verification. The former produces only one possible
system execution, the latter exhaustively explores the entire
state space of the mapping model. Despite abstractions, formal
verification of medium sized models pushes model-checkers
to their limits. This year’s demonstration presents a brand
new strategy to enhance simulation with dynamic coverage
of the state space, which may be guided interactively by the
user or automatically conducted based on system requirements.
For that purpose, we combine several techniques, including
the static analysis of UML models, and also model checking
techniques.

I. DEMONSTRATION DESCRIPTION

A. Introduction

The demonstration presents TTool [1], a UML toolkit
implementing several formal UML profiles, including
DIPLODOCUS. DIPLODOCUS is a UML profile for
the design and partitioning of Systems-on-Chip at a
high level of abstraction. TTool provides diagramming
facilities for DIPLODOCUS diagrams, as well as
simulation and formal verification at the push of a
button from DIPLODOCUS diagrams.
The increasing complexity of today’s Systems-on-Chip
(SoC) advocates for verification as early as possible in the
design flow, even when low level models of those SoC are
not available yet. Indeed, reconsidering design choices late
in the design flow turns out to be extremely costly. Design
Space Exploration at system level relies on high level
models of the target system to identify the most suitable
hardware/software platform complying to given constraints.
To assess the satisfiability of both functional and non
functional requirements (e.g., delay, throughput, latency),
simulation [9] and static formal analysis techniques [8] have
been introduced in the DIPLODOCUS UML profile: this
profile, which is MARTE compliant, specifically targets the
partitioning of Systems-on-Chip. DIPLODOCUS follows
the Y-Chart approach [12], that is, its supports a three-stage
methodology: application, architecture and mapping stages.
Since formal verification on low-level models faces the state

explosion problem, it is merely applied to subparts of the
system where data has been abstracted to its mere presence
or absence. While this limitation is partially resolved when
raising the abstraction level, the state explosion issue still
remains a major obstacle for the verification of medium
sized system level models. Furthermore, representing
high-level mapping models is extremely cumbersome in
formal languages. Methods have been proposed to transform
graphical high level models (UML, etc.) endowed with
a formal semantics into a representation which can be
analyzed by model checkers. Nonetheless, we experienced
that the transformation of sophisticated mapping models
results in complex syntactical structures, often pushing both
UPPAAL [3] and CADP [5] model checkers to their limits.
Moreover, even if the specification is accepted by the
model-checker, system space coverage cannot be varied:
formal verification is exhaustive by definition and model-
checkers are conceived to explore all possible states. As
a consequence, varying the coverage of the initial model
requires to reconfigure the model transformation algorithm
and to regenerate the formal model. However, from a
designer’s perspective, it would be desirable to generate
an executable model once and to subsequently traverse an
interesting fraction of its state space. Criteria for electing
this subset may range from explicit selection by the user
(e.g., to simulate a given ratio of various possible UML
branches) to heuristics taking into account (non-) functional
properties. In the latter case decisions concerning the
coverage are made on the fly, at simulation runtime. The
ultimate objective is to let the user trade off simulation
time against coverage of the UML model (see Figure
Figure 1).

In last year’s demonstration, mapped models were as-
sessed using formal verification and simulation (compare
Figure 1, extreme cases). The former is not always well
suited for the analysis of mapped models, as mentioned
initially. The latter offers to the designer two options: either
non-determinism in the application model is simply resolved
using a random number generator, or different executions
may be manually checked with interactive simulation capa-
bilities (breakpoints, state saving, state recovery, etc). There
was no automated exploration feature available covering an
automatically or manually determined subset of the state
space (see Figure 1, intermediate case): this limitation is



Fig. 1. Varying Model Coverage in DIPLODOCUS

addressed in the following. We propose a novel way to
enhance simulation coverage of high level models based
on model checking and static program analysis techniques.
More specifically, DIPLODOCUS mapping models are stat-
ically analyzed to spot non-significant elements not being
part of the state vector so as to speed up the identification
of recurring system states.

The remainder of this description is structured in
four sections: Section I-B provides an overview of the
DIPLODOCUS UML profile. Section I-C presents the main
technical elements of the demonstration. Then, the paper
reviews relate works (section I-D) and draws perspectives
(section I-F).

B. DIPLODOCUS

DIPLODOCUS is based on the following fundamental
principles:

• Use of a widely accepted high level language: UML.
• Clear separation of application and architecture,

enforcing the so called Y-Chart approach [12].
• Data abstraction: only the amount of data exchanged

between functional entities is modeled. Data dependent
decisions are abstracted and expressed in terms of non-
deterministic and statistical operators.

• Functional abstraction: algorithms are described using
abstract cost operators. The complexity of computa-
tions is thus taken into account without actually having
to carry them out.

DIPLODOCUS design stages are (Figure 2) :

1) Applications are first described as a network of ab-
stract communicating tasks using a UML class dia-
gram. Each task behavior is expressed in terms of a
UML activity diagram.

2) Targeted architectures are modeled independently
from applications as a set of interconnected generic
hardware nodes (e.g. CPUs, buses, memories, hard-

ware accelerators, bridges), using UML deployment
diagrams.

3) A mapping defines how application tasks are bound to
execution entities, and communications between tasks
are assigned to communication and storage nodes.

Fig. 2. Global view of our Design Space Exploration Approach

Within a SoC design flow, Design Space Exploration
is carried out at a very early stage. Hence, the main
DIPLODOCUS objective is to help designers to spot a
suitable hardware / software architecture even if algorithmic
details have not yet been stipulated thoroughly. To achieve
this, DIPLODOCUS relies on fast simulation [9] and for-
mal proof techniques [8], both at application and mapping
level. Due to the high abstraction level of both application
and architecture models, simulation speed can be increased
significantly with regards to simulations usually performed
at lower abstraction level (e.g. TLM level, RTL level, etc.).
Additionally, formal techniques may be applied before and
after mapping.

C. Extending DIPLODOCUS for Coverage Driven Simula-
tion

Fig. 3. State Space Exploration Concept

The state space of the application comprises all possible
interleavings of task executions and is only constrained
by inter-task synchronization. As depicted in Figure 3, the
space is spanned by the actual command in a task, local
task variables and the state of inter task communication
primitives. The mapping of application tasks onto an
architecture further constrains this space by introducing
shared resources like processors, buses, etc (cf. Constraints
arrow in Figure 3). However, as data dependent behavior
is abstracted with non-deterministic operators, several
execution traces are still possible. They may significantly



differ in terms of non-functional properties like execution
time, resource usage, etc. and in whether they satisfy
functional requirements. It may therefore be important to
explore more than one possible branch. Moreover, designer
intuition, measurements taken during simulation or an
analysis of formally expressed properties in conjunction
with the application model could lead simulation into the
right direction.

Our development environment TTool has recently been
enhanced with techniques essential to the realization of the
coverage selector shown in Figure 3. These techniques can
be applied regardless of how the selector setting is actually
determined. To prevent execution paths from being explored
more than once, representations of encountered states have
to be maintained, similar to what is done in Model Checkers
like SPIN [7]. Then, the challenge is twofold: measures have
to be taken to minimize the size of particular state vectors
and the number of times the latter have to be stored and
compared.
As explicit state representations are greedy in terms of mem-
ory, a thorough analysis of the application yields the minimal
state information (see bold arrow in Figure 3). Reaching
Definition Analysis, Live Variable Analysis and Induction
Variable Analysis are commonly accomplished by compilers
in the context of machine independent optimizations [2].
They reveal constant variables and variables whose content
is not significant at a specific point in a task.
Moreover, Local Input Dependence Analysis detects so called
Check Points in a task where traces are likely to branch or
join, thereby giving directions on when to compare and store
states (cf. sampling symbols in Figure 3).

D. Related work

There have been several efforts to extend the insight
provided by simulation in order to address the changing
behavior and demands of today’s embedded applications.
To this end, simulation techniques are often combined
with formal methods. In the following, we roughly survey
the landscape of related work in the field of high level
modeling.
The common ground of all approaches is the attempt to
examine a large fraction of possible system executions,
optimally the whole state space whilst limiting verification
run time and memory consumption. The listed work differs
from ours in the way concerns (application, architecture)
are separated [4] [6], the abstraction level of the task model
is chosen [14] [15] [13], and the model of computation
emphasizes data or control flow [11].

E. The Demonstration - TCP/IP Protocol Implementation of
a Smart Card

In our demonstration, we illustrate the above described
simulation and verification features in TTool (screenshot
depicted in Figure 4) by means of the model of a TCP/IP
Protocol implementation of a smart card. A smart card has

Fig. 4. The TTool Development Environment

the size of a credit card and is equipped with a microchip that
securely stores data mainly used for identification purposes.
The data may be periodically refreshed in order to main-
tain or enhance the functionality of the card. Smart cards
are commonly used for telephone calling, electronic cash
payments, establishing identity when logging on to some
online account or when demanding public health services,
paying small amounts of money (bus, parking, subway fees,
etc.). Smart Cards comprise several hardware components
like a microprocessor and different kinds of (non-)volatile
memories (ROM, EEPROM, RAM Flash). Most smart card
systems adhere to the ISO-7816 standard which includes
multiple parts defining for example physical characteristics,
dimensions, involved protocols and other system properties.
For the creation of our model, we mainly relied on the
third part of the standard dealing with electronic signals and
transmission protocols (ISO 7816-3).

1) Application modeling: The communication application
has been decomposed into four DIPLODOCUS tasks cor-
responding to the main functional blocks. A task called
InterfaceDevice represents the terminal the smart card com-
municates with, for instance the card reader at a cash desk.
Another task (SmartCard) models the transmission protocol
defined in ISO 7816-3. The Application task models a
basic exemplary application which merely makes use of the
basic TCP services: establishing a session, sending some
application data and finally tearing down the connection.
The TCP task accounts for the different phases of the
TCP protocol like connection establishment, data transfer,
connection termination. Last but not least, a Timer task may
trigger time outs in the main TCP task.

2) Architecture and mapping: To demonstrate the appli-
cability of our methodology, two candidate architectures are
experimented with. A first basic mapping consists of one
single CPU onto which all tasks are mapped. A second
option is to map the SmartCard, TCP and Application tasks
on one CPU named MainCPU, and to provide a dedicated
Hardware Accelerator to the Timer and InterfaceDevice task



Fig. 5. Component based Diagram of the Smart Card Application

respectively. The three CPUs are connected via an on chip
bus. In this second mapping, up to three tasks may execute
concurrently and thus application level parallelism can be
better exploited. Due to data and synchronization dependen-
cies, further increasing the number of processing elements
would not yield considerable performance improvements.

F. Conclusions and future directions

The demonstration highlights the combination of static
analysis and model checking techniques to enhance the sim-
ulation coverage of UML models of SoC. This methodology
yields a trade-off between exhaustive and costly formal
verification and efficient simulation exhibiting a limited
coverage. The two latter corner cases were already supported
by the DIPLODOCUS methodology and presented at DATE
2010. As opposed to conventional UML frameworks, both
simulation and formal verification outreach the functional
level by considering constraints imposed by hardware archi-
tectures.
Our simulation framework has recently been enhanced with
the suggested static analysis techniques. We will shortly
integrate the automatic identification of recurring system
states. In the medium term, the necessary coverage of the
model providing a sufficient degree of confidence in simula-
tion results should be automatically deduced from formally
expressed requirements. For this purpose, an appropriate
enhancement of SysML Parametric Diagrams has already
been proposed [10].

REFERENCES

[1] TTool, the Turtle Toolkit: http://labsoc.comelec.enst.fr/turtle.
[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

principles, techniques, and tools. Pearson Education, Boston, MA,
USA, 2007.

[3] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and
tools. In Lecture Notes on Concurrency and Petri Nets. W. Reisig and
G. Rozenberg (eds.), LNCS 3098, Springer-Verlag, 2004.

[4] A. Bobrek, J.J. Pieper, J.E. Nelson, J.M. Paul, and D.E. Thomas. Mod-
eling shared resource contention using a hybrid simulation/analytical
approach. Design, Automation and Test in Europe Conference and
Exhibition, 2004. Proceedings, 2:1144–1149 Vol.2, Feb. 2004.

[5] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
CADP 2006: A Toolbox for the Construction and Analysis of Dis-
tributed Processes. In Computer Aided Verification (CAV’2007),
volume 4590, pages 158–163, Berlin Germany, 2007.

[6] Paula Herber, Florian Friedemann, and Sabine Glesner. Combining
model checking and testing in a continuous hw/sw co-verification
process. In Catherine Dubois, editor, 3rd International Conference on
Tests and Proofs (TAP’09), volume LNCS, pages 121–136. Springer,
2009.

[7] G.J. Holzmann. The model checker spin. Software Engineering, IEEE
Transactions on, 23(5):279–295, May 1997.

[8] D. Knorreck and L. Apvrille. Formal system-level design space ex-
ploration. In Proceedings of the 10th Annual International Conference
on New Technologies of Distributed Systems (NOTERE’2010), Tozeur,
Tunisia, May 2010.

[9] Daniel Knorreck, Ludovic Apvrille, and Renaud Pacalet. Fast simula-
tion techniques for design space exploration. In Objects, Components,
Models and Patterns, volume 33 of Lecture Notes in Business Infor-
mation Processing, pages 308–327. Springer Berlin Heidelberg, 2009.

[10] Daniel Knorreck, Ludovic Apvrille, and Pierre de Saqui-Sannes. Tepe:
a sysml language for time-constrained property modeling and formal
verification. In Proceedings of the third IEEE International workshop
UML and Formal Methods - ULM&FM’2010. IEEE, November 2010.

[11] S. Kunzli, F. Poletti, L. Benini, and L. Thiele. Combining simulation
and formal methods for system-level performance analysis. Design,
Automation and Test in Europe, 2006. DATE ’06. Proceedings, 1:1–6,
March 2006.

[12] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers. A
methodology for architecture exploration of heterogeneous signal
processing systems. In Signal Processing Systems, 1999. SiPS 99.
1999 IEEE Workshop on, pages 181–190, 1999.

[13] Gabor Madl, Nikil Dutt, and Sherif Abdelwahed. Performance
estimation of distributed real-time embedded systems by discrete event
simulations. In EMSOFT ’07: Proceedings of the 7th ACM & IEEE
international conference on Embedded software, pages 183–192, New
York, NY, USA, 2007. ACM.

[14] Peter van Stralen and Andy D. Pimentel. Trace-based scenario
database for high-level simulation of multimedia mp-socs. 2010.

[15] A. Viehl, T. Schonwald, O. Bringmann, and W. Rosenstiel. Formal
performance analysis and simulation of UML/SysML models for esl
design. Design, Automation and Test in Europe, 2006. DATE ’06.
Proceedings, 1:1–6, March 2006.


