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Abstract—The design methodology of an embedded
system should start with a system-level design space
exploration dividing functions into hardware and
software. However, since this partitioning decision
is taken at a high level of abstraction, we propose
regularly validating the selected partitioning during
software development.

The paper introduces a new model-based engi-
neering process with a supporting toolkit TTool, first
performing system-level design space exploration, and
then assessing these partitioning choices at different
levels of abstraction during software design. Explo-
ration and partitioning choices are verified using
a press-button approach, enabling simulation and
formal verification directly from SysML models. High-
level simulations/verification rely on custom model-
checkers and abstract models of software and hard-
ware, while low-level simulations rely on automatically
generated C-POSIX software code executing on a
cycle-precise virtual prototyping platform. An auto-
motive case study on an automatic braking application
illustrates our complete approach.

Index Terms—Virtual prototyping, Embedded sys-
tems, System-level design, Automotive engineering

I. INTRODUCTION

A challenge for adaptive, intelligent motor vehi-
cles was formulated by DARPA. In Europe as well,
manufacturers became aware that nearly 90% of the
road accidents are caused by human error, and 52%
due to a collision. To cope with this fact, automated
braking systems were developed.

Control elements of such systems have become
increasingly complex [3], pushing current system

development techniques to their limits. One of the
limitations is the lack of integration between the de-
sign space exploration of the system, and the design
of the software components itself. Since models of
software components are generally tested/executed
on the local host, and only later integrated once
the target is available, errors due to the interaction
between hardware and software are discovered very
late in the development cycle - e.g., during the
integration phase - that may lead to reconsideration
of partitioning decisions taken during the design
space exploration phase.
Thus, it would be useful to develop a fully inte-
grated method to model critical software compo-
nents, candidate hardware architectures, and then to
evaluate the execution of the former onto the latter
using automated model transformation techniques
at a low-level of abstraction. Our contribution
presents an easy-to-comprehend methodology inte-
grating desgin space exploration and software de-
velopment, with all stages contained within a single
modeling framework TTool. Section II presents the
related work, Section III the overall method. Sec-
tion IV details an automotive case study then used
to exemplify the high-level design space exploration
(Section V) and the software components design
(Section VI). Finally, discussion and perspectives
on future work are presented in Section VII.



II. SYSTEM-LEVEL DESIGN FOR EMBEDDED
SYSTEMS

A number of system-level design tools exist,
offering a variety of verification and simulation
capabilities at different levels of abstraction.
Capella [15] relies on Arcadia, a comprehensive
model-based engineering method. It is intended
to check the feasibility of customer requirements,
called needs, for very large systems. Capella pro-
vides architecture diagrams allocating functions to
components, and advanced mechanisms to model
bit-precise data structures. Capella is however more
business focused.
Metropolis [2] targets heterogeneous systems, and
architectural and application constraints are closely
interwoven. This approach is more oriented towards
application modeling, even if hardware components
are closely associated to the mapping process.
While our approach uses Model-Driven Engineer-
ing, Metropolis uses Platform-Based Design.
Sesame [4] proposes modeling and simulation fea-
tures at several abstraction levels for Multiprocessor
System-on-Chip architectures. Pre-existing virtual
components are combined to form a complex hard-
ware architecture. Models’ semantics vary accord-
ing to the levels of abstraction, ranging from Kahn
process networks to data flow for model refinement,
and to discrete events for simulation. Currently,
Sesame is limited to the allocation of processing
resources to application processes. It models neither
memory mapping nor the choice of the communi-
cation architecture.
The ARTEMIS [14] project originates from het-
erogeneous platforms in the context of research on
multimedia applications in particular. It is strongly
based on the Y-chart approach. Application and
architecture are clearly separated: the application
produces an event trace at simulation time, which
is then read in by the architecture model. However,
behavior depending on timers and interrupts cannot
be taken into account.
MARTE [18] shares many commonalities with our
approach, in terms of the capacity to separately
model communications from the pair application-
architecture. However, it intrinsically lacks a sepa-
ration between control and message exchange. Even

if the UML profile for MARTE adds capabilities to
model Real Time and Embedded Systems, it does
not specifically support architectural exploration.
Other works based on UML/MARTE, such as Gas-
pard2 [7], are dedicated to both hardware and
software synthesis, relying on a refinement process
based on user interaction to progressively lower
the level of abstraction of input models. However,
such a refinement does not completely separate
the application (software synthesis) or architecture
(hardware synthesis) models from communication.
MDGen from Sodius [17] starts from Rhapsody,
which can automatically generate software, but
not hardware descriptions from SysML. SysML in
Rhapsody is untimed and sequential. Also, timing
and hardware specific artifacts such as clock/reset
lines are generated automatically.
The Architecture Analysis & Design Language
(AADL [6]) allows the use of formal methods for
safety-critical real-time systems. Similar to our en-
vironment, a processor model can have different un-
derlying implementations and its characteristics can
easily be changed at the modeling stage. Recently,
[20] developed a model-based formal integration
framework which endows AADL with a language
for expressing timing relationships.

III. METHODOLOGY

A. Modeling Phases

Our approach combines design space exploration
and software design that follows in the same envi-
ronment/toolkit (as shown in Figure 1). The method
is organized as follows:

1) The method starts with design space explo-
ration. This phase contains three sub-phases:
the modeling of the functions to be realized
by the system (functional view), the candi-
date architecture expressed as an assembly
of highly abstracted hardware nodes, and the
mapping phase. A function mapped over a
processor is considered a software function.
On the contrary, a function mapped over a
hardware accelerator corresponds to a custom
ASIC.

2) Once a mapping has been decided, i.e., the sys-
tem is fully partitioned between software and
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Fig. 1. Overall Approach

hardware functions, the design of the software
and the hardware can start. Our approach offers
software modeling while taking into account
hardware parameters. Thus, a deployment view
displays how the software components relate to
the hardware components.

TTool [1], a free and open-source toolkit, supports
the entire method with SysML diagrams.

B. Simulation, Verification and Prototyping

During the methodological phases, simulation
and formal verification help in deciding whether
safety, performance and security requirements are
fulfilled. TTool offers a press-button approach for
performing these proofs. Model transformations
translate the SysML models into an intermediate
form that is sent into the underlying simulation
and formal verification toolkits. Backtracing
to models is then performed to better inform
the users about the verification results. During
functional modeling, verification intends to identify
general safety properties (e.g., absence of deadlock
situations). At the mapping stage, verification
intends to verify if performance and security

requirements are met. Hardware components are
highly abstracted. For example, a CPU can be
defined with a set of parameters such as an average
cache-miss ratio, power-saving mode activation,
context switch penalty, etc.
Software components can also be verified
independently from any hardware architecture in
terms of safety and security. For example, when
designing a component implementing a security
protocol, the reachability of the states and absence
of security vulnerabilities can be verified. When
the software components are more refined, it
becomes important to evaluate performance. Since
the target system is commonly not yet available,
our approach offer two facilities: a deployment
diagram in which software components can be
mapped over hardware nodes (see 4), and a
press-button approach to transform the deployment
diagram into a SoCLib specification built upon
virtual component models [16]. SoCLib is a public
domain library of models written in SystemC,
targeting shared-memory architectures based on
the Virtual Component Interconnect protocol [19].
Hardware is described at several abstraction levels:



Fig. 2. Automotive Case Study Architecture Diagram in DIPLODOCUS

Fig. 3. Active Braking Block Diagram

TLM-DT (Transaction level with distributed time),
CABA (Cycle/Bit Accurate), and RTL (Register
Transfer Level). SoCLib also contains a set of
performance evaluation tools [9], [10]. CABA level
simulation potentially allows us to measure cache
miss rates, latency of memory accesses and of any
transactions on the interconnect, fill state of the
buffers, taking/releasing of locks etc.
Since SoCLib hardware models are much more
precise than the ones used at design space
exploration level, precise timing and hardware
mechanisms - e.g. cache miss - can be evaluated. If
the performance results differ too greatly from the

ones obtained during the design space exploration
stage –e.g., a cache miss ratio – then, the design
space exploration shall be performed again to assess
if the decided architecture is still the best according
to the system requirements. If not, the definition of
software components may be (re)designed. Once
the iterations over the high-level design space
exploration and the low level virtual prototyping of
software components finished, software code can
be generated from the most refined software model.

IV. AUTOMOTIVE CASE STUDY

Our methodology is illustrated by an automotive
embedded system designed in the scope of the Euro-
pean EVITA project [5]. Recent on-board Intelligent
Transport (IT) architectures comprise a very het-
erogeneous landscape of communication network
technologies (e.g., LIN, CAN, MOST, and FlexRay)
that interconnect in-car Electronic Control Units
(ECUs). The increasing number of such equipment
triggers the development of novel applications that
are commonly spread among several ECUs to fulfill
their goals.
An automatic braking application serves as a case
study [11]. The system works essentially as follows:
an obstacle is detected by another automotive sys-
tem which broadcasts that information to neighbor-
ing cars. A car receiving such information has to
decide if it is concerned with this obstacle. This
decision includes a plausibility check function that



Fig. 4. Deployment Diagram of the Active Braking Application: five CPUs and two RAMs

takes into account various parameters, such as the
direction and speed of the car, and also information
previously received from neighboring cars. Once the
decision to brake has been taken, the braking order
is forwarded to relevant ECUs. Also, the presence of
this obstacle is forwarded to other neighboring cars
in case they have not yet received this information.
The stages of the methodology include Partitioning
by Design Space Exploration, Software Design,
and Prototyping, with different models at each
stage. Figure 2 shows the model for Partitioning:
a Architecture Diagram with the tasks divided
onto different CPUs and Hardware Accelerators.
Figure 3 shows the Block Diagram for Software
Design. Figure 4 shows the Deployment Diagram.
We elaborate in detail on the different stages in the
following sections.

V. PARTITIONING WITH DIPLODOCUS

A. Models

The HW/SW Partitioning phase of SysML-
Sec, implemented in the DIPLODOCUS profile of
TTool, intends to model the abstract, high-level
functionality of a system [13]. It follows the Y-
chart approach (as shown in the upper right section
of Figure 1), first modeling the abstract functional
tasks (Application View), candidate architectures
(Architectural View), and finally mapping tasks to
the hardware components (Mapping View) [12].
Before the next stage, simulation and formal ver-
ification ensure that our design meets performance,

behavioral, and schedulability requirements. Ap-
plication Modeling, Architectural Modeling, and
Mapping are presented in detail in the rest of this
section.

1) Application View: The Application View
comprises of a set of communicating tasks. The
behavior of tasks is described abstractly. Functional
abstraction allows us to ignore the exact calcula-
tions and data processing of algorithms, and con-
sider only relative execution time. Each individual
task describes its abstract functional behavior using
communication operators, computation elements,
and control elements. Data abstraction allows us to
consider only the size of data sent or received, and
ignore details such as type, values, or names. On
the Component Design Diagram, an extension of
the SysML Block Instance Diagram, the designer
specifies the list of tasks, and within the task,
attributes and ports indicating communication.

2) Architectural View: The architectural model
(Figure 2) displays the underlying architecture as
a network of abstract execution nodes, communi-
cation nodes, and storage nodes. Execution nodes
consist of CPUs and Hardware Accelerators, de-
fined by parameters for simulation. All execution
nodes must be described by data size, instruction
execution time, and clock ratio. CPUs can further be
customized with scheduling policy, task switching
time, cache-miss percentage, etc. Communication
nodes include bridges and buses. Buses connect ex-
ecution and storage nodes for task communication
and data storage or exchange, and bridges connect



buses. Buses are characterized by their arbitration
policy, data size, clock ratio, etc, and bridges are
characterized by data size and clock ratio. Storage
nodes are Memories, which are defined by data size
and clock ratio.

3) Mapping View: Mapping partitions the ap-
plication into software and hardware as well as
specifying the location of their implementation on
the architectural model. A task mapped onto a
processor will be implemented in software, and a
task mapped onto a hardware accelerator will be
implemented in hardware. The exact physical path
of a data/event write may also be specified by
mapping channels to buses and bridges.

B. High-Level Simulation

Fig. 5. High Level Simulation of the Active Braking Automo-
tive system

Simulation of DIPLODOCUS partitioning spec-
ifications involves executing tasks on the differ-
ent hardware elements. Each transaction executes
for a variable time depending on execution cycles
and CPU parameters. The simulation shows perfor-
mance results like bus usage, CPU usage, execution
time, etc. Users can download a vcd trace to view

detailed bus/CPU activity in gtkwave of a single ex-
ecution sequence. Simulations help users decide on
an architecture and mapping. TTool assists the user
by automatically generating all possible architec-
tures and mappings, and summarizes performance
results of each possible mapping. Users are pro-
vided with the “best” architecture under specified
criteria, such as minimal latency or bus/CPU load.
Thus, the mapping of tasks of our case study (see
Figure 2) ensures that the maximum latency be-
tween the decision (DangerAvoidanceStrategy) and
the resulting actions (doReduceDrivingPower and
DoBrake) respect safety requirements. Similarly,
we have verified that the worst latency between
the receving of an emergency message received by
DRSCManagement and the actions (e.g., DoBrake)
is always also below the specified limit. These
performance verifications are performed according
to the selected functions, operating systems and
hardware components. In particular, many parame-
ters of the hardware components are simple values
(we have for example selected a cache-miss ratio
of 5%) that are meant to be confirmed during the
software design phase.

VI. SOFTWARE DESIGN WITH AVATAR/SOCLIB

Once the partitioning is done, the AVATAR
methodology allows the user to design the software,
perform functional simulation and formal verifica-
tion, and finally test the software components in
a virtual prototyping environment. We will now
illustrate this with the case study.

A. Software Components
Figure 3 represents the software elements of the

active braking use case modeled with an AVATAR
block diagram. Software components are grouped
according to their destination ECU:

• Communication ECU manages communica-
tion with neighboring vehicles.

• Chassis Safety Controller ECU (CSCU) pro-
cesses emergency messages and sends orders
to brake to ECUs.

• Braking Controller ECU (BCU) contains two
blocks: DangerAvoidanceStrategy determines
how to efficiently and safely reduce the vehicle
speed, or brake if necessary.



Fig. 6. Active Braking Application: Cycle Accurate Simulation

• Power Train Controller ECU (PTC) enforces
the engine torque modification request.

The AVATAR model (see Figure 3) can be func-
tionally simulated using the integrated simulator
of TTool (see Figure 5). This simulator takes into
account temporal operators but completely ignores
hardware, operating systems and middleware. While
being simulated, the model of the software compo-
nents is animated.

B. Prototyping

To prototype the software components with the
other elements of the destination platform (hard-
ware components, operating system), a user must
first map them to a model of the target system.
Mapping can be performed using the new deploy-
ment features recently introduced in [8]. Thus, an
AVATAR deployment diagram is a SysML repre-
sentation of hardware components, their intercon-
nection, tasks and channels. Figure 4 shows the de-
ployment diagram of the active braking application
on five processors of a MP-SoC (in Figure 2 on five
clusters of a CAN) and two memory elements. New
extensions to TTool support model transformation
from SysML to SoCLib [8]. Some features pertain-
ing to mapping must be explicitly captured in the
deployment diagram, such as CPUs and memories,

while others, such as simulation infrastructure and
interrupt management, are added transparently to
the top cell during the transformation to SoCLib.
Figure 6 shows examination of system behavior on
the cycle accurate level: the SoCLib top cell can
produce a VCD trace of selected signals over time,
which can be examined with tools like gtkwave.
Note that every signal on the VCI interface is
detailed on this level, whereas the engineer just
places one arc in the SysML diagram and the
generated topcell shows one aggregate VCI signal
(for example signal_vci_rom).
We go one step further by interpreting the sequence
of such signals. Accesses to the interconnect are
monitored with the help of so-called hardware
spies which are more precise than simple tracing
mechanisms and help reduce the size of the trace.
We thus keep track of the simulation cycle; we
are also able to identify each software object (for
example a channel buffer) by its name by consulting
the symbol table. The sequence of read and write
operations to the memory location of the software
object, the taking and releasing of locks etc. then
permits a user to precisely determine operations –
for example, that a CPU performs a write access to
a channel [10].
Figure 4 shows one possible localization of two



such spy modules on the VCI interface between
CPU3 and the interconnect between the intercon-
nect and Memory0. The spies are displayed using
a small magnifier icon. For example, we wish to
monitor the transfers between the DangerAvoid-
anceStrategy block and the DangerAvoidanceStrat-
egy_brake__PlausibilityCheck_brake channel. To
investigate the cache miss ratio of CPU3, we trace
all the read and write accesses on the interconnect
between CPU3 and ICN. Similarly, to investigate
the latency to the memory Memory0, we place a
spy between CPU3 and Memory0.

VII. DISCUSSION AND FUTURE WORK

Our approach integrates both system-level design
space exploration and the design and prototyping of
refined software components in the same toolkit.
Using an automotive case study, we show how
different metrics can easily be evaluated at the push
of a button. In particular, transformations of the
software component model mapped onto a deploy-
ment diagram help precisely determine the cache
miss of the application. From these evaluations,
partitioning choices can be confirmed or invalidated.

The close integration of partitioning and software
design facilitates the invalidation of partitioning
decisions. The current backtracing to models assists
the engineer in investigating how to better partition
the model or to reconsider the software components.
Ideally, once an invalidation has been encountered,
it would be helpful for the toolkit to automatically
suggest another partitioning. We will implement this
increased automation as part of our future work.
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