
Communication Patterns: a Novel Modeling
Approach for Software Defined Radio Systems

Andrea ENRICI, Ludovic APVRILLE and Renaud PACALET
Institut Mines-Telecom

Telecom ParisTech, CNRS/LTCI
Biot, France

Email : {andrea.enrici, ludovic.apvrille, renaud.pacalet}@telecom-paristech.fr

Abstract—Efficiently programming Software Defined Radio
applications still remains a pending challenge. While most of
the efforts are focused on the processing part of a design, com-
munications are a great source of performance and portability
issues that is often neglected. Within the frame of a Model Driven
Engineering methodology for the design of dataflow processing
applications, this paper proposes a novel approach to model
complex communication interactions. This approach relies on
communication patterns to capture communication protocols and
standards at system-level, independently of computations. A case
study for cognitive radio shows how communication patterns are
efficiently used to generate cross-platform models that can be
ported and refined to specific applications and architectures.

Keywords—Software defined radio; hardware/software code-
sign; model-driven engineering

I. INTRODUCTION

In the last decade, the demand for more flexible and
reconfigurable solutions able to support multiple communi-
cation standards has lead to a shift from radios where the
full range of capabilities was supplied by hardware elements
to Software Defined Radios (SDRs) [1] where some or all
of the physical layer functions are software defined [2]. This
technological shift takes advantage of common Digital Signal
Processing (DSP) algorithms, shared by modern air-services
protocols and standards (e.g., Global Positioning System). A
SDR system is composed of a platform, intended as the set
of hardware elements (e.g., DSPs) and software layers (e.g.,
Operating System), on top of which a software waveform is
executed. The latter is defined as the software application
coordinating and configuring the platform in order to transform
the information contained in the signals to be transmitted
and received. Implementing a waveform in software adds
greater flexibility to radio systems as their functionality can
be changed by a simple software update without the need
to change equipment. This added flexibility yields numerous
advantages including increased service life time of equipments,
cross-platform portability of the software, reduced costs and
better ease in terms of system implementation, upgrade and
maintenance. In order to adequately exploit the benefits of
software waveforms, SDR platforms provide a way to im-
plement computations and communications in a very generic
and flexible way. However, the price to pay for this flexibility
and genericness is an increase in the complexity of program-
ming SDR platforms [3]. Currently, the latter are manually
programmed by system experts in languages like C/C++.
Nevertheless, such languages do not shield programmers from

the system complexity, leading to higher development costs,
longer time-to-market of new products, as well as reduced
cross-platform portability of waveforms.
Thus, a current hot topic for the industrial and scientific
community is to find an efficient way to automatically program
such complex systems [4]. Currently, the most promising
strategies rely on Model Driven Engineering (MDE) com-
bining Domain Specific Modeling Languages (DSMLs) with
transformation engines and generators to synthesize source
code or alternative model representations [5]. Methodologies
for the design of SDR systems employing the above strategies
are discussed in Section II. These methodologies, however,
either informally prioritize computations over communications
or propose non-portable solutions that are specific for a given
platform. A consequence of such approaches is that the limited
expressive power of models restricts the systems that can be
described and does not allow to efficiently exploit all the
platform capabilities in terms of addressing and data transfers.
The work presented in this paper enriches DiplodocusDF [6], a
methodology for design and code generation of heterogeneous
processing applications of type dataflow, based on MDE and
UML. The main contributions introduced here are (1) a novel
feature to capture complex communication schemes, early at
system-level, independently of computations and (2) a novel
approach for modeling SDR systems in a portable way.
This paper is organized as follows: the related work is de-
scribed in Section II followed by the context of our works,
in Section III. Section IV describes our solution to model
communications, its integration into DiplodocusDF and how
the latter paves the way to a novel modeling approach. To show
the benefits of our contributions, Section V applies them to a
practical case study for cognitive radio. Conclusion along with
the state and directions of our works are given in Section VI.

II. RELATED WORK

SDR design is a hardware/software co-design topic that
deals with most issues of design space exploration for embed-
ded real-time systems. The complexity of SDR systems and
their need to dynamically adapt to the environment (cognitive
radio) make current methodologies for embedded real-time
systems unsuitable to properly cope with all the requirements
of SDR design (e.g., flexibility, heterogeneous processing,
hardware abstraction). UML methodologies that reflect this
statement, are those for the development of embedded ap-
plications that are based on the MARTE profile [7]. UML-
MARTE in fact, lacks the notations to describe dataflow
applications such as SDR in a pure abstract way and its

procedural approach leads to models with only one cen-
tralized controller, as mentioned in [6]. UML-MARTE has
been successfully proposed for platform design, instead: the
MOPCOM [8] project applies this profile to describe real
time properties and to modeling in order to generate code
for implementation and verification. On the other hand, closer
to the aims of DiplodocusDF, the A3S project [9] provides
a tool and a methodology to design, model and verify SDR
systems in UML, targeting non-functional characteristics of
both hardware and software components. A3S defines a UML
profile, specific to SDR, but lacks the generation of valida-
tion and implementation code, as opposed to DiplodocusDF.
Nevertheless, UML is not the only solution for abstract system
modeling of SDR systems: other existing approaches are based
on dataflow graph (DFG) representations. [10] is a MDE
approach that proposes a lightweight programming model for
describing SDR applications, by means of dataflow Models
of Computation. The authors propose a minimally intrusive
design flow that, however, needs preexisting tools, libraries and
processes to breathe life into models. The paper [11] presents
an interesting solution that, to our knowledge, shares the most
with DiplodocusDF in terms of gathering within a unique
framework several concepts and tools for heterogeneous de-
sign of SDR systems. The authors propose a methodology
based on the Syndex tool [12], that allows executable code
generation from high-level models through a series of graph
transformations. The proposed approach is oriented to ultra-
fast prototyping for heterogeneous platforms so as to deal
with realistic implementations instead of simulation results.
Applications are described as extended DFGs where nodes rep-
resent processing operations and edges represent data transfers.
Similarly in the architecture graph, vertexes model hardware
components and hyper-edges represent communication media.
The key strength of the proposed methodology lays in its
support for heterogeneous processing platforms (e.g., Field-
Programmable Gate Arrays), the automatic code generation
and the associated scheduling. With respect to communication
modeling, [11] does not extend the way communications
are handled in Syndex, so the critics related to graph-based
approaches in Section III-C can be addressed to [11] also.

III. CONTEXT

In order to illustrate SDR platforms, this section provides
an outline of the hardware architecture of Embb [13], the
platform on which the implementation code generated by
DiplodocusDF has been successfully executed. A more de-
tailed description of DiplodocusDF follows.

A. The hardware platform Embb

The authors in [13], propose a new generic baseband
architecture for SDR applications. An instance of such a
platform is depicted in Fig. 1. It is composed of (1) DSP
units, (2) a system interconnect and (3) a main CPU. The
DSP units are in charge of executing the processing operations
(e.g., FFT). They are equipped with a hardware accelerator
as computational unit (Processing SubSystem, PSS), a DMA
to transfer data, an internal memory mapped on the main
processor memory and a microncontroller (µC) that allows to
reduce interventions of the main CPU. The latter is linked
to DSPs via the system interconnect that allows data-blocks

and control information to be exchanged among units. The
main processor executes the waveform control operations: it
manages data-transfer operations, the computational units and
the interface with the external environment (Fig. 1, yellow
area).

Interconnect (AVCI Crossbar)

External Env.

Interface

JTAG, ...)

(Flash, I2C,

main

AXI

CPU

Control SystemProcessing System

Interface

DSP3DSP2

R

D
G

B

I

E

DSP1

DSPn

DMA
Memory
PSS

µC

RF

Fig. 1. The architecture of an Embb instance

Executing parallel applications on SDR platforms is not trivial
because of both memory and computational resource pooling.
This implies dense flows of data and control information
being transferred among hardware units. Since these flows
access shared resources (e.g., the bridge in Embb between
the control and the processing systems), their impact over
the system’s performance cannot be neglected and urges for
modeling techniques to properly take them into account when
designing applications.

B. The DiplodocusDF methodology

DiplodocusDF [6] is a UML MDE methodology for the
design of heterogeneous dataflow applications for real time
embedded systems, in particular radio (such as Software
Defined Radio), Fig. 2. It stems from DIPLODOCUS, [14],
a UML Model Driven Engineering methodology for hw/sw
partitioning of Systems on Chip at high abstraction level,
currently implemented by the free software TTool [15]. The
core strength of DIPLODOCUS is the automatic transforma-
tion of models for simulation and formal verification [16].
However, the DIPLODOCUS approach is too abstract to
permit automatic code generation for SDR systems as models
lack the necessary expressiveness to face the complexity of
platforms and waveforms. DiplodocusDF is a first attempt to
fill the aforementioned gaps; it enriches DIPLODOCUS with
the following extensions:

• A dataflow semantics: an application is modeled
as a dataflow graph, where nodes represent tasks
(processing, routing, addressing operations) and edges
are used to carry data-blocks and the related control
parameters (e.g., r/w memory addresses).

• A specialization of the architecture language: het-
erogeneous platforms are represented as a network
of computation nodes (e.g., DSPs), storage nodes
(e.g., memories) and data-transfer nodes (e.g., bus)
interconnected by communication edges.

• An environment for automatic generation of exe-
cutable code: the description of a waveform mapped
over a platform is translated in C-language code via
an Intermediate Representation completed by the plat-
form Application Programming Interface (API) and by
a Run Time Environment for scheduling computations.

Further Refinement

Simulation

Analysis
Static Formal

Executable

Application Modeling Architecture Modeling

modeling
Platform
modeling

Waveform

Mapping

SimulationSimulation
Static Formal

Analysis
Static Formal

Analysis

Intermediate

Representation
API

Code generation

C−waveform
Run Time

Environment

Fig. 2. The DIPLODOCUS (solid lines) and DiplodocusDF (dotted lines)
methodologies

C. Communication modeling in DiplodocusDF

Since DiplodocusDF is a graph-based methodology, it mod-
els communication exchanges among processing operations by
means of edges in the waveform DFG. At mapping stage,
edges are projected over buffers, defined as memory regions
of the platform storage elements, in a one-to-one fashion.
Consequently, this forces the buffer of the producer operation
to reside in the same memory as the one of the consumer
operation. At mapping stage, the application graph is adapted
to the platform addressing capabilities in order to take into
account data transfers. This typically implies the injection
of additional nodes in the application, e.g., to map multiple
edges to the same buffer, to model data transfers that employ
a DMA. This adaptation may also lead to alter the natural
sequence of processing operations. As for the graph-based
approaches of Section II, in DiplodocusDF application models,
data transfers from a producer node to a consumer node can
only be mapped on simple P2P paths in the platform. In other
words, no complex data-transfer scheme with more than one
DMA and with intermediate memories between the source and
destination memories can be described. The source node and
the destination node of a transfer must be able to directly
access a storage element via either a bus or one single DMA.
These characteristics restrict the design space in terms of
waveforms and platforms that the methodology can describe.

IV. COMMUNICATION PATTERNS

In addition to computations, the processing of radio sig-
nals includes communication exchanges between architecture
nodes (e.g., DSP, bus). For instance, these communications
represent exchanges for operations running on different units,
or items (i.e., data, instructions) fetched from memory as part
of one processing operation. These communications may be
implemented by means of different standards and protocols
(e.g., AMBA, PCI Express) within the same platform, thus
making each transfer different in terms of performances and
interactions among nodes. However, communications share
common patterns independently of the mechanisms being used.
Thus, our objective is not to model communication standards in
details, but rather to model their underlying patterns at a high
level of abstraction and adapt them to the transfer capabilities

of a specific platform. This permits to describe the influence of
communication interactions on the system’s performance and
to provide models with the expressive power to generate code
for communications in a portable way. To reach this target, the
initial concepts of communication pattern [17] are extended
and the resulting contribution is integrated into an enriched
DiplodocusDF methodology.

A. Communication Patterns in a Nutshell

A Communication Pattern (CP) describes a transfer be-
tween architecture actors. It is associated to a communication
flow, between a source S and a destination D nodes in the
application that are continuously connected by a set of edges.
In other words, edges must build a path in the application
graph that links S to D without interruptions. More formally,
a communication pattern is defined as a tuple:

CP = (Narch, Earch,≺N ,Napp, Eapp,A,≺A)

• Narch is the set of architecture actors involved in the
transfer;

• Earch is the set of architecture edges connecting the
architecture actors of Narch;

• ≺N ⊆ Narch ×Narch is a total order relation among
architecture actors;

• Napp represents the source S and destination D nodes
from the application;

• Eapp is the set of edges from the application graph
that make up the communication flow from S to D;

• A is a set of actions performed by Narch to accom-
plish the transfer;

• ≺A ⊆ A×A is a partial order relation among actions;

A CP is represented independently with respect to the wave-
form and platform models as an extended UML Sequence
Diagram. Fig. 3 shows an abstract communication pattern for
the communication flow of edge ed1 in Fig. 6. In Fig. 3, a
generic data transfer is requested by a Controller actor and
executed by a Transfer actor between a source and a destination
storage actors. The actors (Narch) in Fig. 3, are architecture
supernodes representing generic architecture elements that
are purely functional. Supernodes can be classified in three

SRCstorage Controller Transfer DSTstorage

TransferRequest(Id, SIZE)

Transfer(Id, SIZE)

Transfer(Id, SIZE)

Transfer(Id, SIZE)

TransferDone(ID)

Fig. 3. An abstract communication pattern

classes: storage (e.g., memory) for item storing, controller
(e.g., CPU, DSP) for control and configuration, transfer (e.g.,
bus, bridge) for routing and dispatching. Fig. 3 also shows
some of the actions A among the architecture actors. An action
is associated to an actor and provided with a type representing

its functionality and a set of parameters to specify the latter.
Actions are classified in three types: Message Actions, Execu-
tion Specification Actions and Conditional Actions.

Message Actions represent an abstraction of the interactions
used by communication protocols and standards. A message
action can either be blocking or non-blocking: the former
blocks the sender until completion while the latter allows the
sender to switch to another task (e.g., TransferRequest() in
Fig. 3).

Execution Specification Actions model the processing time
of an ongoing communication. The semantics of these actions
depend on the underlying architecture node and can be ob-
served after mapping CPs over the architecture. Two execution
specification operators are defined: Exec, which represents the
cost of actively executing a communication operation (e.g.,
the number of cycles taken by a bus to execute a transfer) and
Delay, which is a generic time interval used when a node is
not actively involved in a communication operation, e.g., to
model the time taken to complete a DMA transfer from the
CPU perspective.

Conditional Actions add conditional behavior to communi-
cation patterns to capture, for instance, precedence constraints
in complex transfers. Conditional actions are of two types: the
loop construct (Fig. 5, 10) and the if-else construct, respec-
tively for iterative and conditional communication exchanges.
A conditional action includes other actions and may be nested
according to the scenario being described.

B. The Proposed Methodology

Following the above description of what a communication
pattern is and looks like, it is now illustrated how describ-
ing communications with CPs results in a novel modeling
approach. The added value of communication patterns is the
separation of concerns between communications and compu-
tations that allows to elegantly capture the functionality of
an application description. Since both communications and
computations involve different sets of architecture elements,
this separation of concerns translates into a separate mapping
and refinement on the architecture graph. Fig. 4 illustrates
such a novel approach that intends to replace the classic Y-
Chart [18] scheme adopted by DiplodocusDF in the modeling
phase of Fig. 2. Instead of projecting the application on the
architecture in one single stage, followed by an adaptation
stage, computations in the waveform DFG are mapped first
and communications (CPs) are mapped next. In our approach,
computations are atomic operations whose execution cannot
be split over several processing nodes. Thus, mapping of
computations is done in a single step by associating the
application nodes onto the architecture processing nodes (level
L2, Fig. 4). Conversely, as complex communication paths are
expressed by multiple kinds of elements, a separate mapping
step is required. In Fig. 4, the box corresponding to level L3
regroups this mapping in a single stage.

The top-most level of the methodology, L0 in Fig. 4, is
represented by three sets of repositories containing the building
bricks of the application, architecture and communication
patterns. The application repository contains nodes for signal
processing operations and edges for inter-node communication
that are used to build the waveform DFG. For the architecture
graphs and the communication pattern models, two separate
repositories are provided, as supernodes in CPs have a higher

graph

CMP = CoMPutation nodes
COM = COMmunication edges

mapping

Communication pattern
mapping

Communication

mapping

Intermediate Representation,
Further Refinement

Graph

Waveform
DataFlow

Computation

Level L0

Level L1

Level L2

Level L3

COMCMP
Platform

patterns

Arch. supernodes
(e.g., controller)

Arch. edges, nodes
(e.g., CPU, DMA)

App. edges, nodes
(e.g., FFT, CWM)

composition

Fig. 4. The proposed modeling approach

level of abstraction with respect to nodes in the platform.
Thus, at level L1, models consist in a waveform DFG (Fig. 6),
a platform graph (Fig. 8) and stand-alone communication
patterns (Fig. 3 and 9). At this level of abstraction, the purpose
of such high-level models for communications (CPs) and
computations (waveform DFG) is to express the application
in a functional and portable way, that transcends from the
actual platform implementation since the methodology aims
at designing portable SDR applications.
Once level-L1 models are available, at level L2 computations
are mapped over the architecture processing units according to
their computational power (Fig. 8). Due to the communication
capabilities of processing units, this mapping step constraints
the mapping of communication patterns at level L3. Here,
the abstract supernodes are mapped over the platform nodes:
storage supernodes are associated to memories, controller
supernodes to CPUs and transfer nodes to a network of DMAs,
buses and bridges (Fig. 5, 10). It is important to state that map-
ping of storage and controller supernodes takes place in a one-
to-one fashion. In fact, none of the two types of supernodes can
be split over multiple platform units. Allowing such a one-to-
many mapping would in fact imply additional transfers, within
the set of mapped units, that were not described in the initial
communication pattern. On the other hand, transfer supernodes
nodes are associated to a network of transfer units in a one-
to-many fashion to permit modeling of complex transfer paths
requiring intermediate elements in between the source and the
destination storage.
Fig. 5 shows the abstract communication pattern of Fig. 3,

BRIDGE Interconnect AXImainCPUFEP_MSS FEPdma FEPbus

TransferRequest(Id, SIZE, FEP_MSS, FEP_MSS)

TransferRequest(Id, ..., FEP_MSS)

TransferRequest(Id, ..., FEP_MSS)

TransferRequest(Id, ..., FEP_MSS)

Read(data_size, FEP_MSS)
Read(data_size, FEP_MSS)

Transfer(data)

Transfer(data)

transferred_size += data_size

Write(data, FEP_MSS)

TransferDone(Id)

TransferDone(Id)

TransferDone(Id)

TransferDone(Id)

transferred_size = 0

LOOP (transferred_size <= SIZE)

Fig. 5. The Communication Pattern of Fig. 3, after mapping level L3

mapped (level L3) on the architecture of Fig. 8. At level L2,
SRC and FFT computations have been mapped to mainCPU

and FEP (a DSP unit), respectively. Fig. 5 describes how data
between SRC and FFT is moved within memory FEP MSS
(where SRCstorage and DSTstorage supernodes have been
mapped) via the DMA FEPdma. mainCPU requests the DMA
transfer via a network of transfer nodes made up of AXI bus,
BRIDGE and Interconnect. Such a transfer is then executed
by iteratively reading data from FEP MSS, storing them into
the intermediate FIFO of FEPdma and writing to FEP MSS.
The latter actions are governed by a loop conditional action
that iterates according to the value of transferred size. A
notification is eventually sent back from FEPdma to mainCPU
via Interconnect, BRIDGE and AXI.

V. CASE STUDY: WELCH PERIODOGRAM DETECTOR

In this section, an implementation of the Welch
Periodogram Detector (WPD) algorithm is taken from [6]
as a scenario for a case study. WPD is a energy detection
algorithm used for sensing the spectrum and detecting when
a given frequency band can be opportunistically used. Fig. 6
shows the dataflow graph of level L1 for WPD, where only
edges and processing operations are modeled, together with
a FORK node to broadcast data. Here, a source (SRC)
produces the input vectors whose frequency representation
(FFT) is processed by the component-wise square of modulus
(CWM). Next, two CWM output vectors are component-wise
added (CWA) and the elements of the resulting vector are
summed (SUM) and collected (SINK). On the other hand,
Fig. 7 illustrates how the DFG of Fig. 6 is adapted, in
DiplodocusDF, to Embb by injecting routing and addressing
nodes (e.g., OVLP, DMA). Fig. 8 shows the architecture
graph of level L1 for the portion of Embb (Fig. 1) relevant
to the case study. The latter figure also displays mapping of
computation operations (level L2) and the mapping of storage
supernodes (level L3) for the CPs relevant to the case study.
The Front End Processor (FEP) DSP [13], offers all the
computational power required to process the WPD waveform.
It is modeled as an interconnected subsystem with a CPU
(FEP) for executing computations, a memory (FEP MSS)
for storing data and a DMA (FEPdma) for transfers to/from
the memory via an internal bus (FEPbus). The remaining
elements in Fig. 8 model the interconnect (Interconnect,
TAVCI, BRIDGE) and the control part (mainCPU, mainBus,
mainMemory, mainDMA) of Embb.
With respect to [6], the original case study is re-visited by
adding the following requirement: let us suppose that sensing
the spectrum with WPD is part of a larger scenario where the
frequency representation of the input signal must be stored
apart for later processing. Modeling such a requirement in
DiplodocusDF or in one of the graph-based methodologies
of Section II, would require a waveform re-design, e.g., to
add a node collecting the output of FFT plus the related
addressing and routing operations to perform the transfer.
Instead, communication patterns can capture this exigency
handily by adding one simple edge, ed8 in Fig. 6, to the
waveform DFG of level L1. The communication pattern of
level L1 for the communication flow corresponding to edges
ed1 and ed8 is showed in Fig. 9. Here, data are transferred
between Storage1 and Storage2 (edge ed1), then copied from
the latter to Storage3 (edge ed8). Computations at level L2
are mapped to FEP, while at level L3 the transfer path can
now be described with much greater flexibility: the designer

can chose to copy data to FEP MSS, mainMemory or any
combination of the two. Similarly, the communications can
be executed with or without DMA, via FEPdma, mainDMA,
Interconnect, FEPbus or any combination of these elements.
In this case study, it has been chosen to copy the FFT output
to mainMemory by means of mainDMA.

FORK
CWA

CWMFFT

SUM

SRC

SINK

ed1 ed2

ed6 ed7

ed3

ed4

ed5

ed8

Fig. 6. WPD waveform DataFlow Graph of level L1

SINK

DMA1

RES

SUM

CWA

CWMDMA FFT

FEED

REPDMX1
MX

DMX

OVLPSRC

Fig. 7. WPD waveform DataFlow Graph of level L1 adapted to Embb

<<DMA>>
FEPdma

<<DMA>>
mainDMA

<<MEMORY>> FEP_MSS

WPD::Storage1

WPD::Storage2

WPD::SRCstorage

WPD::DSTstorage

<<MEMORY>>
mainMemory

<<CPU>> FEP

WPD::SUM

WPD::FFT

WPD::CWM

WPD::CWA

<<CPU>> mainCPU

WPD::SRCWPD::SINK

<<BRIDGE>>
TAVCI

<<BRIDGE>>
BRIDGE

<<BUS>>

FEPbus

<<BUS>>
AXI

<<BUS>>
Interconnect

WPD::Storage3

Fig. 8. The graph of the instance of Embb used for the WPD case study

For the sake of simplicity, Fig. 10 only illustrates the CP of
level L3 for edge ed8. The complete CP of level L3 for both
ed1 and ed8 can be composed by merging those in Fig. 5
and Fig. 10. In Fig. 10, the scenario is similar to that of
Fig. 5, but more actors are involved and data are copied instead
of being transferred. So, mainCPU programs a CopyRequest

Transfer1 Transfer2Storage1 Controller Storage2 Storage3

TransferRequest(Id, SIZE, storage1, storage2)

Read(Id, SIZE, storage1, storage2)

Transfer(Id, SIZE, storage1, storage2)

Write(Id, SIZE, storage1, storage2)

TransferDone(Id)

CopyRequest(Id, SIZE, storage2, storage3)

Copy(Id, SIZE, storage2, storage3)

Transfer(Id, SIZE, storage2, storage3)

Write(Id, SIZE, storage2, storage3)

CopyDone(Id)

Fig. 9. Communication Pattern of level L1 for edges ed1, ed8

Copy(data_size, FEP_MSS)

Copy(data_size, FEP_MSS)
Copy(data_size, FEP_MSS)

Transfer(data_size, FEP_MSS)

Copy(data_size, FEP_MSS)

Transfer(data_size, FEP_MSS)

Transfer(data_size, FEP_MSS)

Transfer(data_size, FEP_MSS)

Write(data, mainMemory)

Write(data, mainMemory)

CopyDone(Id)
CopyDone(Id)

CopyRequest(Id, SIZE, FEP_MSS, mainMemory)

CopyRequest(Id, SIZE, FEP_MSS, mainMemory)

mainMemoryAXIInterconnect TAVCImainDMA

copied_size += data_size

FEPbusmainCPU

copied_size = 0

FEP_MSS

LOOP (copied_size <= SIZE)

Fig. 10. Communication Pattern of level L3 for edge ed8

to mainDMA via the bus AXI. mainDMA then reads data
from the source memory FEP MSS via the transport network
made up of Interconnect, TAVCI and FEPbus. The read data
are stored in a FIFO in mainDMA and then written to the
destination mainMemory via the bus AXI. The latter actions
are iteratively executed until all data have been transferred ac-
cording to the loop conditional action and an acknowledgment
is sent to mainCPU by FEPdma via AXI bus.

VI. CONCLUSION AND FUTURE WORK

This paper described Communication Patterns, a novel
feature for modeling the behavior of complex communication
schemes at system-level. While CPs are presented here for
SDR systems, they also represent a solution for other dataflow
processing domains, e.g., image processing. As illustrated
by the case study, our contributions provide the expressive
power to describe complex multi-point transfer schemes that
cannot be captured by traditional graph-based approaches that
normally call for a re-design of the application. Moreover,
CPs make application models portable by eliminating the need
to adapt the latter to the addressing capabilities of a specific
platform, thus leading to finer and faster designs. This paves
the way to a novel modeling approach where waveform and
platform graphs are disjoint and information contained in the
models is separately mapped on the architecture in a extended
Y-Chart fashion. The main gain of Communication Patterns
results in the developer having complete control over commu-
nications, independently with respect to the rest of the appli-
cation and portably with respect to different platforms. Our
current works are dedicated to integrate CPs and the proposed
methodology in TTool. At this stage, the advantage of using
CPs is given in terms of modeling. However, once completely
integrated into TTool, CPs will allow the user to separately
investigate and extract information about the performance

of data/control transfers, either via simulation or via code
generation, without changing the rest of the system’s models.
Our future works will provide a more complete description of
mapping and refinement rules for CPs. For instance, level L3
will be extended into intermediate mappings where each class
of supernodes will be addressed separately, in order to target
buffer addressing and indexing. These aspects are currently
handled in DiplodocusDF waveforms by decorating edges
with addressing parameters (e.g., read/write memory offsets)
and instantiating dedicated nodes (e.g., OVLP in Fig. 7) that
define how data are stored in memories. Our aim is to embed
these functionalities in communication patterns and processing
operations in order to achieve portable waveforms made up of
pure dataflow representations like the one in Fig. 6.

REFERENCES

[1] J. Mitola III, Cognitive Radio: An Integrated Agent Architecture for
Software Defined Radio, Ph.D dissertation, Royal Institute of Technology
(KTH), May 2000.

[2] The SDR forum, http://www.wirelessinnovation.org, [retrieved: Decem-
ber, 2013].

[3] B. Trask, Two Thirds of SDR is SD, in SDR WInnComm, 2010, pp.
197-198.

[4] O. Anjum et al., State of the art baseband DSP platforms for Software
Defined Radio: A survey, in EURASIP Journal on Wireless Communi-
cations and Networking, vol. 2011, no. 1, 2011.

[5] D. C. Schmidt, Model-Driven Engineering, in IEEE Computer, vol. 39,
no. 2, 2006, pp. 25-31.

[6] J. M. Gonzalez Pina, Application Modeling and Software Architectures
for the Software Defined Radio, Ph.D dissertation, Telecom ParisTech,
May 2013.

[7] The UML profile for MARTE, http://www.omgmarte.org, [retrieved:
December, 2013]

[8] S. Lecomte, S. Guillouard, C. Moy, P. Leray and P. Soulard, A co-design
methodology based on model driven architecture for real time embedded
systems, in Mathematical and Computer Modelling, vol. 53, no. 34, 2011,
pp. 471-484.

[9] S. Rouxel et al., UML Framework for PIM and PSM Verification of SDR
Systems, in SDR Forum Technical Conference, 2005.

[10] C.C. Shen, W. Plishker, H.H. Wu and S.S. Bhattacharyya, A Lightweight
Dataflow Approach for Design and Implementation of SDR Systems, in
SDR-WInComm, 2010.

[11] C. Moy and M. Raulet, High-Level Design for Ultra-Fast Software De-
fined Radio Prototyping on Multi-Processors Heterogeneous Platforms,
in Advances in Electronics and Telecommunications, vol. 1, no. 1, 2010,
pp. 67-85.

[12] The AAA Methodology and Syndex, http://www.syndex.org/, [retrieved:
December, 2013].

[13] N. -ul. -I. Muhammad, R. Rasheed, R. Pacalet, R. Knopp and K. Khal-
fallah, Flexible Baseband Architectures for Future Wireless Systems, in
EUROMICRO DSD, 2008, pp. 39-46.

[14] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert and
R. Pacalet, A UML-based Environment for System Design Space Ex-
ploration, in IEEE ICECS, 2006, pp. 1272-1275.

[15] TTool, http://ttool.telecom-paristech.fr/, [retrieved: December, 2013].
[16] D. Knorreck, L. Apvrille and R. Pacalet, Formal system-level design

space exploration, in Concurrency and Computation: Practice and Expe-
rience, vol. 25, no. 2, 2013, pp. 250-264.

[17] C. Jaber, High-Level SoC Modeling and Performance Estimation Ap-
plied to Multi-Core Implementation of LTE eNodeB Physical Layer, Ph.D
dissertation, Telecom ParisTech, September 2011.

[18] B. Kienhuis, E.F. Deprettere, P. Van der Wolf and K.A. Vissers, A
Methodology to Design Programmable Embedded Systems - The Y-Chart
Approach, in IEEE SAMOS, 2002, pp. 18-37.

