
Fast Evaluation of Power Consumption of
Embedded Systems using DIPLODOCUS

Feriel Ben Abdallah and Ludovic Apvrille
Institut Mines-Telecom, Telecom ParisTech, LTCI CNRS

Telecom ParisTech - LabSoC

EURECOM, CS 50193 - 06904 Sophia Antipolis cedex

Email: feriel.benabdallah, ludovic.apvrille@telecom-paristech.fr

Abstract— DIPLODOCUS is a UML profile targeting the
design space exploration of Systems-on-Chip at a high level of
abstraction. It is supported by an open source toolkit named
TTool, which enables the designer to develop, simulate and
formally verify SoC models. Up to now, performance criteria
such as CPU and bus loads were the main metrics used for
the exploration. The main objective of our research works is to
provide methods and tools to quickly estimate the power con-
sumption at the first steps of a system design. This work enhances
DIPLODOCUS with power consumption modelling and analysis.
Both software and hardware power management techniques can
now be modelled in an abstract way. So enhanced DIPLODOCUS
offers the possibility to evaluate different power management
policies, and to estimate the system power consumption.

I. INTRODUCTION AND MOTIVATION

Power management is a critical design constraint

particularly in mobile devices as a high power consumption

reduces the lifetime of battery-operated systems and

increases heat dissipation which requires expensive cooling

technologies. To address this issue, many power reduction

techniques have been proposed in the literature. For example,

the dynamic voltage/frequency scaling (DVFS) technique [8]

adjusts on the fly the operating frequency as well as the

voltage of electronic components with respect to changing

workloads or to a given power management strategy. The

clock gating [5] is a special case of DVFS with two

frequencies (nominal frequency and zero frequency). It

consists of freezing the clocks of inactive elements (e.g.,

processors) in order to save power. This technique is widely

used because it is conceptually simple and it is ideally

suited for implementing self-managed components. Dynamic

power reduction techniques are usually complemented with a

manager. The latter takes decision on the choice of operation

modes according to the execution of applications in the

system, e.g., according to the computational complexity

of tasks. With the advent of very complex applications on

mobile devices, managers have also become very complex,

commonly working closely with Operating Systems, thus

taking decisions from information on the load of the systems,

the types of tasks under execution, etc.

One critical problem is that reliable results on the power

savings techniques can only be obtained at late design stages,

which might be too late for design consideration [6]. It is

noteworthy that wrong estimates of power consumption may

lead to a poor system performance or even to system failures,

e.g, in a system where critical tasks are running, a wrong

estimate of the remaining charge of the battery can cause

a system failure, also a bad estimate of required energy

consumption may cause inadequate choice of the architecture

which can be very expensive. Thus, it is imperative to

address power consumption early in the design flow. To

efficiently guide early choices, high-level power estimation

and optimization would be extremely beneficial. Moreover,

to explore systems on chip in a exhaustive and efficient

way, tools and unified interfaces for timing, performance,

and power analysis exploration are needed. In this context,

Model Driven Development (MDD) [3] was used for power

estimation at high level of abstraction ([16], [9]). This

methodology allows developers to use models to specify

what system functionality is required and what architecture

is to be used instead of the use of a programming language

defining how the system is implemented. MDD is based

essentially on meta models, models and model transformation

concepts and it aims at constructing an abstraction layer

to avoid dealing with details and allow model reutilization.

DIPLODOCUS [1] is a UML-based environment introduced a

few years ago to address the design space exploration (DSE)

of Systems-on-Chip. A UML profile customizes UML for a

given domain, using its extension capabilities [18].

This paper presents how DIPLODOCUS has been extended to

efficiently support power consumption evaluation. Basically,

our solution relies on the definition of new UML diagrams

to capture in a fast and abstract way power management

techniques and DVFS operational modes. Also, the overall

power consumption of a system mapped onto a given

hardware architecture can be evaluated.

This paper is organized as follows: Section 2 presents research

work related to high level power evaluation techniques. Section

3 introduces main features of DIPLODOCUS. Section 4

describes the extensions introduced to DIPLODOCUS to

include power consumption / management aspects in DSE.

Section 5 presents the experimental results, and finally section

6 concludes the paper.

2013 39th Euromicro Conference Series on Software Engineering and Advanced Applications

978-0-7695-5091-6/13 $26.00 © 2013 IEEE

DOI 10.1109/SEAA.2013.8

138

II. RELATED WORK

Several research works focus on the evaluation of power

consumption at a high level of abstraction. For example, Tiwari

et al. [21] proposed a first approach for evaluating the power

consumption in embedded systems at a high-level through

the introduction of the concept of Instruction Level Power

Analysis (ILPA). ILPA defines a base cost for each processor

instruction in order to compute the average of the overall

power consumption of a given realistic benchmark program.

One important drawback of this technique is the evaluation

of inter-instruction overheads that depend on the neighboring

instructions, which is not necessarily reflected in the cost

computed solely from base cost. Moreover, since ILPA is built

around an instruction set simulator (ISS), it is considered as

a slow technique for large DSE (Design Space Exploration)

[19].

In order to have a better accuracy, Laurent et al. [14] pro-

posed the FLPA (Functional Level Power Analysis) which cut

processors into functional block like processing unit, internal

memory, instruction management unit, and others, in contrast

to ILPA that considers the processor as a black box model.

Laurent et al. establish a functional analysis for each block to

specify and discard the non consuming blocks. Then, in order

to estimate the overall consumption, different measurements

are then used to figure out the parameters that affect the power

consumption of each consuming block. Power models of these

blocks are finally determined using linear regression with a

set of power measurements. Even though the FLPA technique

seems more accurate than the ILPA, it is still considered as

an expensive technique for early power system-level DSE.

Indeed, the designer needs an optimized definition of the

CPU blocks and a time consuming evaluation of their power

parameters.

We can overcome the limitations of measurement-based power

estimation methodologies (ILPA, FLPA) by raising the level

of abstraction at which the system description, analysis and

simulations are performed. Raising the level of abstraction

means describing the applications and the power management

mechanisms in a higher (more abastract) level. We call this

methodology Model Driven Power estimation (MDP). Our

methodology allows for rapid estimation of power consump-

tion in the earliest stages of development, i.e., it allows

for design space exploration at the model level, considering

not only functional aspects but also those related to energy

consumption such as temperature, battery, etc. In this context,

Arpinen et al. [2] proposed extensions to the OMG UML

profile MARTE (Modeling and Analysis of Real-Time and

Embedded systems) [17]. Marte defines some features to

characterize power consumption in embedded systems (power

package, power supply package, battery package, and cooling

supply package). Arpinen et al. added features allowing the

designer to model dynamic power management policies basing

on finite state machines. This approach is still at the conceptual

level, and no analysis tools have been developed yet to evaluate

energy dissipation.

On the other hand, DIPLODOCUS / TTool is an advanced

DSE environment for functional aspects of embedded systems

but it still lack the concepts of power consumption definition

and analysis. The purpose of this work is to extend it to inte-

grate the power consumption aspects of an embedded system.

We provide the possibility to establish a fast simulation and

analysis of results when executing an application scenario with

different power management policies. Our approach relies on

the use of abstract power estimation models, using an UML-

based estimation methodology. More precisely we propose

extensions to the DIPLODOCUS UML profile in order to add

the missing concepts for the definition and analysis of power

consumption aspects. The following section briefly introduces

DIPLODOCUS on which power consumption extensions are

then applied.

III. DIPLODOCUS

DIPLODOCUS is a UML profile targeting the design space

exploration of embedded systems at a high level of abstrac-

tion. It is implemented by an open source toolkit named

TTool [1] and is based on the Y methodology [11]. Indeed,

DIPLODOCUS clearly separates application and architecture

modeling (Fig. 1). Its abstractions allows for fast simulation

and formal analysis techniques. In particular, DIPLODOCUS

communication channels carry only unvalued samples. The

main objective of our UML profile is to help designers

to spot a suitable hardware/software partitioning regarding

functionality, performance, silicon area, power consumption

metrics. The DIPLODOCUS modeling methodology is based

on three main stages:

Application modeling: The application platform is modeled

as a network of tasks communicating with channels, events,

and requests. Each task behavior is described with a UML

activity diagram extended with communication operators and

abstract computational complexity operators (e.g., EXECI

x, i.e. execute x int operations). Three communication and

synchronization operators have been defined [13]:

1) Channels are characterized by a point-to-point unidirec-

tional communication between two tasks. Channel types

are:

a) Blocking Read/Blocking Write (BR-BW)

b) Blocking Read/Non Blocking Write (BR-NBW)

c) Non Blocking Read/Non Blocking Write (NBR-

NBW)

2) Events are characterized by a point-to-point unidirec-

tional asynchronous communication between two tasks.

Events are stored in an intermediate FIFO queue which

may be finite or infinite.

3) Requests are characterized by a multi-point to one

point unidirectional asynchronous communication be-

tween tasks. A unique infinite FIFO between senders

and the receiver is used to store all incoming requests.

Consequently, a request cannot be lost.

Architecture modeling: The architecture platform is mod-

eled as a set of interconnected parametrizable execution nodes

139

Fig. 1. DIPLODOCUS modeling methodology integrating the power manager

(CPUs, HW accelerators, DSPs), storage nodes (memories),

and communication nodes (buses and bridges). It is described

with a UML deployment diagram where DIPLODOCUS links

and nodes have their own UML stereotype.

Mapping: The mapping phase is described using a set of

interconnected hardware nodes on which tasks, channels,

events and requests are mapped.

DIPLODOCUS is amenable for modeling and analyzing em-

bedded systems using fast simulation techniques. The sim-

ulation speed benefits from the high abstraction level of

both application and architecture models, as compared to

simulations usually performed at lower abstraction levels (e.g.

TLM level, RTL level, etc.). Additionally, formal analysis [12]

may be applied using automatic code generation to the formal

languages such as LOTOS [7] or UPPAAL [4].

IV. POWER MANAGEMENT FOR DIPLODOCUS UML

PROFILE

The main objective of this work is to define a UML

profile allowing designers to evaluate the impact on their

systems on various power management policies, and therefore

to capture candidate power management policies - handmade

one, predefined policies - and then to evaluate the energy

consumption resulting from these different policies. As a first

approach, we focus our work on CPUs power consumption

only. The power consumption of a processor is caused by

two factors: the first one is the dynamic dissipation due to

the charging and discharging of load capacitances, the second

one is the static dissipation due to the leakage current. The

dynamic power consumption defined in [22] is given by:

Pdynamic = C ∗ f ∗ V 2
dd ∗ α (1)

where Vdd is the supply voltage, f is the operating frequency

and α is the switching activity. α represents the percentage of

CMOS circuit switches during one clock tick and C is the total

circuit capacitance. The static power consumption defined in

[22] is given by:

Pstatic = Ileakage ∗ Vdd (2)

Two main sources of leakage currents are the sub-threshold

drain-source and gate leakage effects. The static power is

not dependent of operating frequency, and thus the static

power does not contribute to the computational performance

of components in a similar manner as the dynamic power [20].

Eq (1) informs us about the CPU’s power-related char-

acteristics that should be defined. Thus, we extend

DIPLODOCUS CPU metaclass to a new stereotype named

EnergyAwareCPU (Fig. 3). Note the DIPLODOCUS CPU

model abstracts the hardware processing unit and its operating

system. Its behaviour can be customized by the following

parameters (amongst others): cache miss ratio, number of

cores and scheduling algorithm [12]. As for Vdd and f
in Eq(1), we set them in a new designed profile named

DynamicPowerManager. This choice is explained by the

fact that recent processors commonly support several voltage

and frequency levels i.e., they have different power Operating

Points (OP), and they can be switched from one OP to

another one. We associate with each EnergyAwareCPU a

DynamicPowerManager. The idea is to build up a FPSM

(FinitePowerStateMachine) for each CPU, and then link

it with a defined power management policy that is in charge

of selecting the current OP, and which therefore triggers the

transitions between OPs (f, v). Fig. 2 represents the power

manager metamodel that covers both software and hardware

parts, and which are mainly composed of a paramatrizable

FPSM that we call CPUFinitePowerStateMachine and a

PowerPolicyManager.

A. CPU Finite Power State Machine

In order to define the FPSM, we extend the UML

metaclass StateMachine to a new stereotype named

CPUFinitePowerStateMachine which contains two sub-

classes representing states PowerState, and transitions be-

tween states PowerStateTransition. PowerState is mainly

characterized with frequency, voltage values, and the static

power consumption defined in Eq (2). In the scope of an

energy-aware design space exploration, the designer can ex-

periment with any number of CPU power states. The stereo-

type PowerStateTransition extends the UML metaclass

Transition by introducing one extra attribute defining the

duration of each transition between two states. Each transition

has power and delay costs and is triggered according to power

140

Fig. 2. Dynamic Power Manager Metamodel

management policies specified by the designer.

Let us consider a basic but representative example. We con-

sider the following CPU modes: Execution, Sleep, and Idle
(Fig.4). Switching from one OP to another may produce a

significant energy gain at the cost of performance: this is a

way to avoid energy waste when the system does not need

high computation resources. The choice of the adequate OP

within a certain time interval T , is a critical task for the power

manager because of the tradeoff between the cost of staying in

or changing the OPs. For instance, if entering a lower power

state requires power supply shutdown, returning from this state

to the active one requires restoring the context.

B. Power Policy Manager

Power management algorithms called policies can be

implemented in either hardware or software. The PPM

(Power Policy Manager) is defined through the stereotype

PowerPolicyManager (see Fig. 2). The PPM is an entity

meant to decide - using a given policy - which operating

point is the most suitable one to minimize the system power

consumption. PowerPolicyManager contains a list of deci-

sion policies and a boolean attribute that specifies whether the

battery is taken into consideration or not. When designers are

not meant to describe their own power management policies,

the DIPLODOCUS DPM profile includes predefined policies

that rely on the CPU utilization rate, on timers, and on battery

level metrics. These three parameters can be used in one

single policy, but for the sake of clarity we present their use

separately. More complex policies can be easily built, so as to

offer more design space exploration possibilities.

1) Policy 1: CPU rate of utilization: Many studies have

shown that the energy consumption increases with the CPU

rate of utilization [15]. One possible way to control a CPU

Fig. 3. DIPLODOCUS Extension for DPM

energy consumption is to define thresholds- defined based on

aspects related to energy consumption- stating whether the

CPU has an over utilization or an under utilization. As CPUs

have several operating points, we propose to set for each

operating point Ok(fk, vk) two corresponding thresholds:

Uok
and Uuk

for over and under utilization, respectively.

For a given time interval t, we can measure the utilization

rate, say U , of the CPU under its actual operating point Ok,

and with Uom and Uum as thresholds. We can then define

the power manager policy as follows (see algorithms 1 and

2). The first algorithm, manages the under utilization case

where we seek the first operating point Ok whose fk and

vk are lower than those of the actual operating point. Ok

should satisfy U > Uuk
condition. Algorithm 2 manages the

over utilization case where we seek the first operating point

Ok whose fk and vk are bigger than the actual operating

point. Ok should satisfy U < Uok
condition. In case of

141

Transition Condition (policy 1)

E12 U < UuExecution1and U < UoExecution2

E21 U > UoExecution2

SE21 U > UoSleep2 and U > UoExecution2

SE22 U > UoSleep2 and U > UoExecution2

Fig. 4. Example of CPU Finite Power State machine

conflict between operating points, we always select the under

utilization operating point.

2) Policy 2: battery level: One important point when

defining the power manager policy related to the set of

available operating points is to consider the battery levels

(see Table I). This policy could depend on the importance of

executed tasks, just because some of them could be critical,

and must ensure for example their dealine. Thus, we give the

designer the possibility to change the behavior of the power

manager according to battery level and priority of running

tasks.

Let us now consider the simple model we presented in

Fig. 4. We define in Table I operating points accordingly

to battery levels, with f5 < f4 < f3 < f2 < f1 and

v5 < v4 < v3 < v2 < v1. Note that a couple (f5, v5)

consumes much less energy than the couple (f1, v1). So the

battery related policy of this example consists of decreasing

the number of available operating points of execution, with

the use of low frequency/voltage couples, according to the

battery levels, in order to save energy. For example, as long as

battery power is good tasks are allowed to run at the highest

frequency (f1 in our example). Whereas, when the battery

becomes critical the system scales back to lower frequency

and lower voltage running mode (in our example (f3,v3)).

3) Policy 3: Timeout: The timeout policy is an industry

standard for DPM [10]. It is defined as follows: when an idle

time starts, a timer (with duration Tf) is triggered. If after

Tf the system remains idle, then the power manager switches

the system to off state, until it receives an interruption that

marks the end of the idle time. Timeout policy is very

common technique of power reduction in embedded systems

thanks to its simplicity. The drawback of Timeout policy

is that it wastes energy while waiting for the timeout to expire.

Fig. 5. Component based diagram of the Application

V. EXPERIMENTAL RESULTS

In this section, we report on experiments using a very sim-

ple case study. We compare two power-management policies

based on their respective impact on the energy consumption

for a given embedded system, i.e. with the same tasks, the

same hardware architecture, and the same mapping. The first

policy simply assumes the CPU frequency is fixed to a

given value during all the system execution - which is the

usual way DIPLODOCUS operates, whereas the second one

consists in selecting different CPU frequencies according to

the computational requirements of the application tasks.

A. Application Model

Fig. 5 presents the DIPLODOCUS task diagram of our

proposed application. The diagram has three periodic tasks

named Text, Voice and Video - their period is the same -,

as well as a main control task called User. The User task

abstracts three possible scenarios: (i) concurrent execution of

Text, Voice and Video tasks. (ii) The concurrent execution

of Text and Voice, and (iii) execution of the Text task only.

The behaviour of the three periodic tasks is abstracted with

a computational cost operator EXECI x whose value x is

different for each task. For example, the Video task requires

a higher computational power than the Voice task. The latter

requires higher computational power than Text task.

The fact that we can have several scenarios with different com-

putational requirements makes the energetic analysis interest-

ing with this abstract application. Indeed, the power manager

will switch from an operating point to another one differently

in each scenario because the computational requirements of

each scenario strongly differ.

B. Architecture Model and Mapping

For the easiness of results presentation, we use one single

CPU onto which the four tasks are mapped.

C. Power Manager Model

1) Power states and Power transitions: As explained in

the previous sections, the power states and transitions of

142

Algorithm 1 Under utilization Case

1: U < Uum
2: k = m + 1
3: boolean chosenstate = 0
4: while chosenstate == 0 and k < M + 1 do
5: pick operating point k;
6: calculate U ;
7: if U < Uuk then
8: k = k + 1;
9: else

10: if U > Uok then
11: choose operating point Ok−1;
12: else
13: choose operating point Ok;
14: end if
15: chosenstate = 1;
16: end if
17: end while
18: if chosenstate == 0 then
19: choose the default designer policy in this case
20: end if

Algorithm 2 Over utilization Case

1: U > Uom
2: k = m− 1
3: boolean chosenstate = 0;
4: while chosenstate == 0 and k > 0 do
5: pick operating point k;
6: calculate U ;
7: if U > Uok then
8: k = k − 1;
9: else

10: choose operating point Ok;
11: chosenstate = 1;
12: end if
13: end while
14: if chosenstate == 0 then
15: choose the default designer policy in this case
16: end if

Policy Execution1 Execution2 Idle1 sleep1 sleep2

Battery critical f3,v3 f3,v3 f3,v3 f4,v4 f5,v5

Battery low f1,v1 f3,v3 f3,v3 f4,v4 f5,v5

Battery good f1,v1 f2,v2 f3,v3 f4,v4 f5,v5

TABLE I

POWER MANAGEMENT POLICY WITH CONSIDERATION OF BATTERY

the CPU are modelled using the DPM profile. For the first

case, we model the FPSM by a single state with frequency

f1 = 400 MHz and voltage v1 = 1.72 V , which consti-

tute the unique CPU operating point. For the second case,

the FPSM is composed of two power state, linked by two

power transitions. RUNNING1 characterized by the operating

point (f21 = 400 MHz, v21 = 1.72 V) and RUNNIN2

characterized by the operating point (f22 = 133 MHz, v22 =
1.55 V). We consider that the transitions between different

modes takes zero time units. Note that the transition duration

is parametrizable through the DPM profile.

2) Power Policy: An important issue in real time appli-

cations is to respect time constraints. To do so, we suggest

not to overpass a certain CPU load value. Also, this metric

can be very useful for power consumption optimization since

it gives a possible way to control the CPU frequency and

voltage by the definition of two thresholds stating whether the

CPU has an over utilization or an under utilization. Over and

under utilizations can also be defined according to the right

respect of time constraints, or not. These thresholds are defined

based on aspects related to energy consumption such as heat

dissipation and battery charge. Finally, we use the following

formula to compute the CPU load every time a task starts or

ends execution:

CPULoad =
n∑

i=1

(Ci ∗ TimePerCycle)/Ti (3)

where Ci is the computational complexity in cycles of the task

i, Ti is its associated period, and n the number of running

tasks. Ci = CiE + CiC where CiE is the computational time

Fig. 6. Simulation results of the second policy

of the execution operations, and CiC is the computational time

of communication operations. CiE =
∑n

i=1 nEXECI .

CiC = aR ∗ tc/tb + aW ∗ tc/tb, with aR the number of read

samples, aW the number of writen samples, tb bus size, and

tc channel size. The first policy relying on only one Operating

Point, under and over utilization thresholds are defined only

for the second policy: 30% and 80% for OP = (f21,v21), and

0% and 90% for OP = (f22,v22), respectively.

D. Results and discussion

We model the following scenario, the user sends requests

to use Video, Voice and Text, then he/she uses Voice and Text

without Video, and finally he/she uses Text only. When we

143

use the first policy, we start with a CPU load of 68%. Once

the Video is over, the CPU load becomes 28%, and at the end

of the scenario the CPU load is 8%. Notice that we cannot

run all this scenario with the lowest frequency as the time

constraint would not be respected (the CPU load would be

greater than 1), and so we can use only OP = (f1, v1)
OP. When we use the second policy with our modeled power

manager, the scenario starts with a CPU load similar to the

one of the first policy (i.e., 68%), then it changes to 28% when

the video ends, which is lower than the threshold 30%. Our

algorithm checks the FPSM associated with the CPU to know

the possible frequencies that the system may use, in order to

lower the consumption, but without having an over utilization

in the CPU load. The power manager decides to switch to

the operating point (f22, v22), in which time constraints are

still respected. Thus, the power consumption decreases without

altering the functional constraints. The CPU load becomes

84% when running the Text and Voice, and then 24% when

running the Text only. For the first policy we have a total

energy consumption of 11.278 mJ , whereas for the second

policy we have a total energy consumption of 6.08 mJ . Fig. 6

shows the simulation results of the second policy. Notice that

the slope of the energy consumption curve is reduced when

the frequency decreases which explains the energetic gain.

Naturally an adequate choice would be to choose the second

policy from an energy saving perspective. We clearly show

that our modelling approach enabled us to perform a costless

energetic analysis, in a high abstract level. It is noteworthy to

mention that we have used a very short simulation time for

the easiness of presentation.

VI. CONCLUSION AND FUTURE DIRECTIONS

The Design Space Exploration as proposed by the

DIPLODOCUS UML profile was missing an important

metric: power consumption evaluation. Thus, this paper

explains how DIPLODOCUS can be extended with the

possibility to model both hardware and software-related

power management techniques: definition of operation

modes, and description of policies to select operation modes.

An intuitive case study demonstrates the relevance of our

approach.

Yet, two important points are still to be studied. First, we

need to validate the relevance of the power consumption

abstractions that have been defined by comparing the results

obtained for large-scale applications, that is, we need to

compare results obtained at DIPLODOCUS levels with the

results that would be obtained with the implementation of

these applications. Second, we intend to formally verify

safety properties (e.g., deadlock absence) of power managers

modeled in TTool.

REFERENCES

[1] Ludovic Apvrille. Ttool for diplodocus: An environment for design
space exploration. In Proceedings of the 8th international conference
on New technologies in distributed systems, NOTERE ’08, pages 28:1–
28:4, New York, NY, USA, 2008. ACM.

[2] Tero Arpinen, Erno Salminen, Timo D. Hmlinen, and Marko Hnnikinen.
Marte profile extension for modeling dynamic power management of
embedded systems. Journal of Systems Architecture - Embedded Systems
Design, pages 209–219, 2012.

[3] Colin Atkinson and Thomas Kühne. Model-driven development: A
metamodeling foundation. IEEE Softw., 20(5):36–41, 2003.

[4] Gerd Behrmann, Re David, Kim G. Larsen, M. Oliver Mller, Paul
Pettersson, Wang Yi, Johan Bengtsson, Fredrik Larsson, Alexandre
David, Tobias Amnell, Arne Skou, Carsten Weise, Thomas Hune,
Ansgar Fehnker, Klaus Havelund, Judi Romijn, Franck Cassez, Franois
Laroussinie, Patricia Bouyer, and Justin” Pearson. Uppaal: Model
checking timed automata.

[5] Luca Benini and Giovanni de Micheli. Dynamic Power Management:
Design Techniques and CAD Tools. Kluwer Academic Publishers,
Norwell, MA, USA, 1998.

[6] Luca Benini and Giovanni De Micheli. System-level power optimization:
Techniques and tools. ACM TRANSACTIONS ON DESIGN AUTOMA-
TION OF ELECTRONIC SYSTEMS, 5(2):115–192, 2000.

[7] Tommaso Bolognesi and Ed Brinksma. Introduction to the iso specifi-
cation language lotos. Comput. Netw. ISDN Syst., 14(1):25–59, March
1987.

[8] Kihwan Choi, Wonbok Lee, Ramakrishna Soma, and Massoud Pedram.
Dynamic voltage and frequency scaling under a precise energy model
considering variable and fixed components of the system power dis-
sipation. In IEEE/ACM International Conference on Computer Aided
Design, November 2004.

[9] Saadia Dhouib, Eric Senn, Jean-Philippe Diguet, Johann Laurent, and
Dominique Blouin. Model driven high-level power estimation of em-
bedded operating systems communication services. Embedded Software
and Systems, Second International Conference on, 0:475–481, 2009.

[10] Q. Jiang, H.-S. Xi, and B.-Q. Yin. Adaptive optimisation of timeout
policy for dynamic power management based on semi-markov control
processes. Control Theory Applications, IET, 4(10):1945 –1958, october
2010.

[11] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and Kees A.
Vissers. A methodology to design programmable embedded systems
- the y-chart approach. In Embedded Processor Design Challenges:
Systems, Architectures, Modeling, and Simulation - SAMOS, pages 18–
37, London, UK, UK, 2002. Springer-Verlag.

[12] D. Knorreck, L. Apvrille, and R. Pacalet. Fast simulation techniques
for design space exploration. In 47th International Conference Objects,
Models, Components, Patterns, volume 33, pages 308–327, Zurich,
Switzerland, June 2009.

[13] Daniel Knorreck, Ludovic Apvrille, and Renaud Pacalet. Formal system-
level design space exploration. Concurrency and Computation: Practice
and Experience, 25(2):250–264, 2013.

[14] Johann Laurent, Eric Senn, Nathalie Julien, and Eric Martin. High Level
Energy Estimation for DSP Systems. In in Proc. Int. Workshop on
Power And Timing Modeling, Optimization and Simulation PATMOS,
pages 311–316, 2001.

[15] Chia-Hung Lien, Ying-Wen Bai, and Ming-Bo Lin. Estimation by
software for the power consumption of streaming-media servers. Instru-
mentation and Measurement, IEEE Transactions on, 56(5):1859 –1870,
oct. 2007.

[16] Ons Mbarek, Amani Khecharem, Alain Pegatoquet, and Michel Auguin.
Using model driven engineering to reliably accelerate early low power
intent exploration for a system-on-chip design. In Proceedings of the
27th Annual ACM Symposium on Applied Computing, SAC ’12, pages
1580–1587, New York, NY, USA, 2012. ACM.

[17] O M G Document Number and Associated Files. Uml profile for marte
: Modeling and analysis of real-time embedded systems. Engineering,
15(November):738, 2009.

[18] OMG. Unified Modeling Language (OMG UML). (November), 2007.
[19] Roberta Piscitelli and Andy Pimentel. A high-level power model for

mpsoc on fpga. IEEE Computer Architecture Letters, 99, 2011.
[20] Jan Rabaey. Low Power Design Essentials. Springer Publishing

Company, Incorporated, 1st edition, 2009.
[21] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of

embedded software: A first step towards software power minimization.
IEEE Transactions on VLSI Systems, 2:437–445, 1994.

[22] Wei Zhang, James Williamson, and Li” Shang. chapter Power Dissipa-
tion, pages 41–80. Springer US, 2011.

144

