
AMULET: a Mutation Language Enabling Automatic
Enrichment of SysML Models
BASTIEN SULTAN,Mines Saint-Etienne, CEA, Leti, Centre CMP, France
LÉON FRÉNOT, École Normale Supérieure de Lyon, France
LUDOVIC APVRILLE, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
PHILIPPE JAILLON,Mines Saint-Etienne, CEA, Leti, Centre CMP, France
SOPHIE COUDERT, LTCI, Télécom Paris, Institut Polytechnique de Paris, France

SysML models are widely used for designing and analyzing complex systems. Model-based design methods
often require successive modifications of the models, whether for incrementally refining the design (e.g. in
agile development methods) or for testing different design options. Such modifications, or mutations, are
also used in mutation-based testing approaches. However, the definition of mutation operators can be a
complex issue and applying them to models is sometimes performed by hand: this is time consuming and
error prone. The paper addresses this issue thanks to the introduction of AMULET, the first mutation language
for SysML. AMULET encompasses the modifications targeting SysML block and state-machine diagrams, and
is supported by a compiler the paper presents. This compiler is integrated in TTool, an open-source SysML
toolkit, enabling the full support of design methods including model design, mutation and verification tasks in
a unique toolkit. The paper also introduces two case-studies providing concrete examples of AMULET use for
modeling vulnerabilities and cyber attacks, and highlighting the benefits of AMULET for SysML mutations.

CCS Concepts: • Software and its engineering → Compilers; Domain specific languages; System
modeling languages; Formal methods; Software development techniques; • Computing methodologies→
Model development and analysis.

Additional KeyWords and Phrases: Formal modeling, Formal verification, Mutations, SysML,Model enrichment

ACM Reference Format:
Bastien Sultan, Léon Frénot, Ludovic Apvrille, Philippe Jaillon, and Sophie Coudert. 2023. AMULET: a Mu-
tation Language Enabling Automatic Enrichment of SysML Models. ACM Trans. Embedd. Comput. Syst. 1, 1
(September 2023), 28 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
SysML models, in particular, have become a prevalent tool in the design and analysis of complex
systems. They offer a robust method for formalizing the knowledge of engineers, and can be utilized
for various behavioral analyses, including simulations and formal verification, depending on model
transformations. Traditionally, these analyses are employed during the design stages or later in a
system’s life cycle. There, the model acts as a digital twin, and is utilized, for example, to evaluate

Authors’ addresses: Bastien Sultan, bastien.sultan@emse.fr, Mines Saint-Etienne, CEA, Leti, Centre CMP, Saint-Étienne,
France, F–42023; Léon Frénot, leon.frenot@ens-lyon.fr, École Normale Supérieure de Lyon, 15, parvis René Descartes, Lyon,
France, F–69342; Ludovic Apvrille, ludovic.apvrille@telecom-paris.fr, LTCI, Télécom Paris, Institut Polytechnique de Paris,
Sophia-Antipolis, France; Philippe Jaillon, philippe.jaillon@emse.fr, Mines Saint-Etienne, CEA, Leti, Centre CMP, Saint-
Étienne, France, F–42023; Sophie Coudert, sophie.coudert@telecom-paris.fr, LTCI, Télécom Paris, Institut Polytechnique de
Paris, Sophia-Antipolis, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1539-9087/2023/9-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

HTTPS://ORCID.ORG/0000-0002-5031-5794
HTTPS://ORCID.ORG/0000-0002-1167-4639
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-5031-5794
https://orcid.org/0000-0002-1167-4639
https://doi.org/XXXXXXX.XXXXXXX

2 Sultan et al.

potential upgrades [12, 24]. However, a model is only a representation of a system’s architecture
and behavior at a specific point in time. Systems, particularly those that incorporate software
components, undergo various changes throughout their life cycle. These changes can be deliberate,
such as functional upgrades or security measures, or unexpected, such as cyberattacks or failures.
Regardless of the nature of the change, such a system evolution affects the knowledge we have
of the system. As a result, models that are no longer up-to-date need to be updated or "mutated"
to regain their accuracy by incorporating this specific evolution: this is the objective of a "model
mutation".
The need to enrich a system arises in various practical scenarios, and we will focus on three

examples to illustrate the motivation and benefits of our contribution. The first scenario is for
situations where the model designer is dealing with changes that are out of its will. In some
cases, system changes may involve elements that were not designed by the model designer (for
example, pre-existing solutions such as software patches for commercial off-the-shelf products or
attack vectors). In such cases, the mutations will need to account for these pre-existing elements
(cf.Fig. 1 (a)). The second scenario involves situations where the system changes, such as functional
upgrades or countermeasures, are actively designed and developed by the model designer. In this
case, the mutations will typically capture the specific changes the designer intends to deploy, as
illustrated in Fig. 1(b). This scenario is prone to involve several successive mutations in order to
adjust the changes after model verification and simulation, especially if the designer applies agile
development methods. Lastly, a third scenario is when engineers model the system in an iterative
way during the design stage, making continuous incremental improvements to the models. In this
case, mutations depict these incremental improvements towards achieving a more accurate model,
as illustrated in Fig.1(c). Model enrichment is a crucial task in all these scenarios, but depending
on the system’s complexity and the modeling language used, it can be a time-consuming and
error-prone process for model designers, especially because applying existing model-based design
methods can result in a large number of enriched models. For example, in [24] the authors generate
up to 47 mutated SysML models to evaluate the impact of four security countermeasures on a rover
swarm system.

The paper introduces three contributions that aim at facilitating the enrichment of SysMLmodels:
(1) SysMLmutation operators are mathematically defined, covering changes both at architectural

and behavioral level.
(2) A new language, called AMULET, is introduced. AMULET provides a syntax for describing

mutations to be applied to SysML models1.
(3) A dedicated compiler is introduced. It takes as input a SysML model and a set of mutations,

and generates the resulting SysML model. This compiler fully supports AMULET and has
been implemented as a new feature of the open-source SysML modeling and verification
toolkit TTool2.

These contributions completes the incremental model-checking algorithms we introduced in [8],
that lower the algorithmic complexity of the proofs when verifying a mutated SysML model by
reusing the previous proof results. Indeed, by integrating AMULET and incremental model-checking
within the framework of model-based design methods the time-consuming tasks of modifying and
verifying successive model increments are streamlined.

The rest of the paper is organized as follows. Section 2 provides an overview on the related
works. Sections 3 and 4 introduces our theoretical and practical contributions: Figure 1 illustrates
the conceptual relationships between the key concepts discussed in these sections. Indeed, we
1AMULET mutations support three SysML diagram types: state-machine, block definition and internal block diagrams.
2https://ttool.telecom-paris.fr

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

https://ttool.telecom-paris.fr

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 3

System SysML model SysML diagram

Block
diagram

State machine
diagramEvolution

Functional
upgrade Countermeasure Attack

Mutation

AMULET
expression

AMULET
compiler

11 models

∗

1
affects

1..∗1 models

1

1
describes

∗ parses

modifies

1 2..∗is composed of

(a) Generic system evolution case

System

Generated
source code

SysML model SysML diagram

Block
diagram

State machine
diagram

Expected
evolution

Functional
upgrade Countermeasure

Mutation

AMULET
expression

AMULET
compiler

11 models

∗

1
targets

1..∗1 models

1

1
describes

∗ parses

modifies

1 2..∗is composed of

is generated fromis deployed on

(b) “Digital twin” system evolution case

System SysML model SysML diagram

Block
diagram

State machine
diagram

Model
improvement

Mutation

AMULET
expression

AMULET
compiler

11 models

∗ 1concerns

1..∗1 models

1

1
describes

∗ parses

modifies

1 2..∗is composed of

(c) Model refinement case

Fig. 1. SysML models, mutations, AMULET and modeled objects: conceptual relations

always consider a system under design or validation modeled with a SysML model. This model is
composed of a block diagram and several state-machine diagrams such as mathematically defined
in Subsection 3.1. The system is subject to evolutions that are modeled with a set of mutations:
mutations are set functions such as defined in Subsection 3.3. These functions are described with
AMULET expressions (defined in Subsection 3.4) that are then parsed by the AMULET compiler
(introduced in Section 4) that modifies the SysML model accordingly. Practical application of these
concepts are introduced in Section 5 that introduces two case-studies providing results for assessing
the relevance of our contributions. Last, Section 6 discusses the strengths and limitations of our
contributions and concludes the paper.

2 RELATEDWORKS
2.1 Concerning model mutation-based methods
The concept of automata mutation [27] has led to the widespread use of mutation for testing
purposes, for evaluating both (formal) models and source code [4]. The traditional mutation testing
process involves the following stages: (1) a set of mutation operators is first defined, (2) these
operators are systematically applied to a base model (or program) to generate a set of mutated

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

4 Sultan et al.

versions, (3) the resulting set of mutated models (or programs) are tested and/or verified in order to
assess the capability of the test cases or verification process in eliminating the mutants that don’t
comply with the system requirements. In other terms, the aim of a mutation testing process is to
determine the implementation errors a set of test cases can detect. For instance, Aichernig et al. [2]
introduces such a process for mutation testing relying on UPPAAL timed automata. In a further
study [1], they define a set of mutation operators targeting UML state-machine diagrams (SMDs)
and introduce a mutation-based test method consisting in applying systematically each mutation
operator to each relevant element of the initial SMD (e.g., each operator targeting a transition
is applied to each transition, etc.) in order to create a set of mutant models that is then used to
evaluate the detection capabilities of three test suites. UML SMDs also are the target of the method
proposed by Mi et al. [18] consisting in the three stages described above. This paper defines a set of
mutation operators for UML SMDs that provide a wide coverage of possible SMDs modifications
(addition/deletion/modification of states, transitions, guards, actions and events). More recently,
Alenazi et al. [4] introduced a SysML mutations-based method aiming at improving automated
requirement traceability (traceability analysis returning a link between a LTL property and a subset
of states/transitions of a SMD that satisfy it). Based on SysML SMDs mutation operators and a base
(correct) SMD, this method generates a wide set of faulty models and checks them against a given
property in order to identify the faulty models that still satisfy it. Then, an algorithm is employed
to compare the set of mutants that satisfy the specified system requirement against the mutants
that do not, in order to minimize the number of “false positives” that are incorrectly identified as
satisfying the requirements. Relatedly, mutation of OCL [19] specifications have been investigated
in several papers, including [10] that focuses on test data generation through the mutation of OCL
specifications. Aichernig et al. [3, 22] used OCL mutations (focusing on pre-conditions and post-
conditions) for generating test cases for OCL specifications, and Jin and Lano [15] introduce a set of
OCL mutation operators for easying mutation testing. Their mutation operators mainly focus on the
“negation of the original specification”, i.e., = are replaced with ≠ in mutated conditions, ≤ with >,
etc. Our needs are partially addressed by these works since OCL can be used to specify constraints
for SysML models. However, OCL semantics are primarily geared towards expressions involving
pre-existing model elements whereas we require more extensive SysML model modifications, e.g.
block and attribute addition and deletion.
It has to be noted that all these approaches — excepting OCL mutation approaches — focus

on the mutations of “atomic” automata, i.e., on one single timed-automata or UML/SysML SMDs.
Therefore, the proposed mutation operators don’t encompass mutation for more complex models
such as networks of timed automata (NTAs) or SysML block diagrams. However, these mutations
are of prime importance when it is needed to represent major changes in a modeled system (e.g., the
addition of a network switch, or the removal of a communication channel between two components).
For these reasons, Sultan et al. [23, 26] proposed a definition for the mutation of a network of
UPPAAL timed-automatas in order to model vulnerabilities, attacks and countermeasures targeting
cyber-physical systems. Yet atomic mutation operators are not mathematically defined and UPPAAL
syntax obviously differs from SysML one. Therefore, we need to introduce new SysML mutations
operators targeting block diagrams as well as SMDs3.

2.2 Concerning mutation automation and mutation languages
The surveyed papers don’t systematically explain if the application of model mutations is automated
and how they achieve automation. Alenazi et al. [4] rely on a Python script to generate mutants

3Even if their mathematical definition is different, SMD mutation operators will obviously match with some operators
introduced in [1, 4, 18].

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 5

deriving from their base model. Sometimes, it is explicitely stated that models enrichments are
performed by hand [24]. In addition, even if mutation operators are defined, none of them proposes
a language supporting these operators excepting [23] that introduces a syntax for describing
mutations targeting UPPAAL NTAs. However, the compiler for this mutation language has not been
fully implemented. In a context of mutation-based testing, Aranega et al. [9] propose an approach
for automating the test set improvement stage (i.e., improving test cases in order to enable them to
detect moremutants). Their approach is language-independant. The paper introducesmetamodels of
generic mutation operators in order to analyze mutant models (i.e., identify the mutation operators
that have been applied on each mutant model). However, the mutant models generation is out
of the scope of this study and the operators metamodels cannot be used off-the-shelf to generate
SysML mutated models.

Actually, the major contribution in this field has been introduced by Gómez-Abajo et al. [13, 14]
who have designed a language-independent mutation language called Wodel and a framework
supporting it. The Wodel framework enables the users to (1) define a metamodel of the desired
modeling or programming language (2) define their own mutation operators with respect to this
metamodel, using the Wodel language and (3) generate mutants by applying these operators on
a set of entry models (or programs). A major strength of Wodel is that the mutation description
language and the framework are fully language-independent, i.e., users can generate mutants
of any model or program as long as they provide the relevant syntactic metamodel. Therefore,
using Wodel to generate mutants requires prior definition of the target language metamodel and
its mutation operators. Thus, users must precisely capture the abtraction levels of the language,
and correctly define the mutation operators. For some languages, it may be a difficult task. For
instance, in some SysML profiles, modifying a single block in one diagram can trigger changes
across diagrams, as demonstrated in Subsection 3.3. Also (see definition ??), the deletion of a signal
definition from a block implies the deletion, for each port connection between this block and
an other one, of the signal associations involving the deleted signal. This analysis—that may be
complex—falls to the user, and AMULET addresses this difficulty thanks to specific operators that
already take into account the needed cross-elements propagations. In addition, AMULET is directly
integrated in a SysML toolkit where the users can already design and verify the models, therefore
no external tool is needed and the complete design/mutation/validation process can be carried out
in a unique framework. Yet, AMULET is obviously less polyvalent than Wodel since it targets only
one modeling language.

3 SYSML MUTATIONS: THE THEORETICAL WAY
This section introduces our theoretical contributions. Prior to defining our mutation operators and
language, we first need to formally define the SysML diagrams they target: Subsection 3.1 focuses
on these preliminary definitions4. The rest of the section introduces our SysML mutation operators
and our language. It firstly provides an easy-to-read summary giving for each operator a simplified
notation and a short description of its effect (Subsection 3.2). Then, mathematical definitions of
these operators are provided (Subsection 3.3): these definitions describe the full semantics of each
operator with respect to the SysML formal semantics given in Subsection 3.1. Finally, the mutation
language supporting these operators is introduced (Subsection 3.4).

3.1 SysML models: mathematical definitions
Definition 3.1 (Types, Attributes, Expressions and Signals).

4Note that we previously introduced preliminary Definitions 3.1, 3.3, 3.4 and 3.7 in [25], and that Definitions 3.2 and 3.5 are
enhanced versions of two definitions provided in the same paper.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

6 Sultan et al.

• Types = {Bool,Z,N}
• Attr is a set of attributes, typed by 𝑡𝑦𝑝𝑒 : Attr → Types.
• Expressions are usual integer and boolean expressions over attributes. They are typed in the
usual way.

• Profiles = {(𝑡1, · · · , 𝑡𝑛) | 𝑛 ∈ N ∧ ∀1 ≤ 𝑖 ≤ 𝑛, 𝑡𝑖 ∈ Types}.
• Sign = InSign ⊔OutSign is5 a set of signals, typed by profile : Sign → Profiles.
Signals may be input or output signals: InSign contains input signals and OutSign contains
output signals.

Definition 3.2 (Basic Sets and associated Abstract Syntax).

• Meth is a set of methods, typed by profile : Meth → Profiles.
• 𝑚(𝑒1, . . . , 𝑒𝑛) is a method call, where𝑚 is a method and 𝑒1, . . . , 𝑒𝑛 are expressions respecting
the profile of𝑚.

• Port is a set of untyped ports enabling the connection of signals between blocks over links. A
link is a pair of ports having a communication semantics.

• CommSemantics = {({𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠} × {𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡,𝑢𝑛𝑖𝑐𝑎𝑠𝑡} ∪ {𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠} × {𝑙𝑜𝑠𝑠𝑦,
𝑢𝑛𝑙𝑜𝑠𝑠𝑦} × {𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑤𝑟𝑖𝑡𝑒, 𝑛𝑜𝑛 −𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑤𝑟𝑖𝑡𝑒}) × {𝑝𝑢𝑏𝑙𝑖𝑐, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒}} is the set of commu-
nication semantics. A link may be 𝑝𝑢𝑏𝑙𝑖𝑐 or 𝑝𝑟𝑖𝑣𝑎𝑡𝑒: a 𝑝𝑢𝑏𝑙𝑖𝑐 link may be eavesdropped by
an attacker. It may be 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 or 𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠: when a signal instance is exchanged
over a 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 link, both its transmission and reception take place simultaneously. A
𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 link 𝑙 is a 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 link if multiple subblocks6 of a block linked through 𝑙 can
receive a same signal instance sent over 𝑙 , or an𝑢𝑛𝑖𝑐𝑎𝑠𝑡 link otherwise. An 𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 link
may be 𝑙𝑜𝑠𝑠𝑦 or 𝑢𝑛𝑙𝑜𝑠𝑠𝑦: a signal instance sent over a 𝑙𝑜𝑠𝑠𝑦 link may never be received, while
a signal instance sent over an 𝑢𝑛𝑙𝑜𝑠𝑠𝑦 link will eventually be received. An 𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 link
may also be 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑤𝑟𝑖𝑡𝑒 or 𝑛𝑜𝑛 − 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑤𝑟𝑖𝑡𝑒 . Signal instances transmitted over an
𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 link are stored in a FIFO buffer: a 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑤𝑟𝑖𝑡𝑒 link ensures that no new
signal instance can be sent over the link if the buffer is full, while in a 𝑛𝑜𝑛 − 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑤𝑟𝑖𝑡𝑒

link new signal instances are dropped if the buffer is full.
• We consider four kinds of actions:
– assignments: 𝑎 := 𝑒 where 𝑎 is an attribute and 𝑒 an expression of the same type.
– Random assignments: 𝑎 :=? where 𝑎 is an attribute.
– Sending signals: 𝑠𝑒𝑛𝑑𝑠 (𝑒1, . . . , 𝑒𝑛), where 𝑠 is an output signal and 𝑒1, . . . , 𝑒𝑛 are attributes
respecting the profile of 𝑠 .

– Receiving signals: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑠 (𝑒1, . . . , 𝑒𝑛), where 𝑠 is an input signal and 𝑒1, . . . , 𝑒𝑛 are attributes
respecting the profile of 𝑠 .

Definition 3.3 (State Machine Diagram).
A state machine diagram is a directed (control flow) graph 𝑠𝑚𝑑 = (𝑠0, 𝑆,𝑇), where:

• 𝑆 is a set of states.
• 𝑠0 ∈ 𝑆 is the initial state.
• 𝑇 is a set of transitions 𝑡 = ⟨𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑎𝑓 𝑡𝑒𝑟, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑠𝑒𝑛𝑑 ⟩ where:
– 𝑎𝑓 𝑡𝑒𝑟 = 𝑡𝑖𝑚𝑒 ∈ N constrains the delay before firing 𝑡 .
– 𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑠𝑒𝑛𝑑 ∈ 𝑆2 are respectively the source and target states of 𝑡 .
– 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is a boolean expression that must be true to enable 𝑡7.

5"⊔" denotes the disjoint union.
6See definition 3.5 for the definition of a subblock.
7Note that in our semantics, when 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 holds true in two transitions originating from the same state, our system
allows non-determinism. This non-deterministic choice enables either of these two transitions to be fired.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 7

– actions is a sequence of actions/method calls executed when 𝑡 is fired.
attr (𝑠𝑚𝑑) (resp. meth(𝑠𝑚𝑑), sign(𝑠𝑚𝑑), insign(𝑠𝑚𝑑), outsign(𝑠𝑚𝑑)) denotes the set of attributes
(resp. methods, signals, input signals, output signals) used in 𝑠𝑚𝑑 .

A state machine diagram is syntactically correct if all states are reachable from 𝑠0 (by some
syntactic path on transitions).

Definition 3.4 (Block Description).
A block description is a 6-uple 𝐷 = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , 𝑠𝑚𝑑⟩ where 𝐴 ⊂ Attr, 𝑀 ⊂ Meth, 𝑆𝑖 ⊂ InSign,
𝑆𝑜 ⊂ OutSign, 𝑃 ⊂ Port, 𝑠𝑚𝑑 is a state machine diagram, and all these sets are finite.

It is syntactically correct if 𝑠𝑚𝑑 is syntactically correct, attr (𝑠𝑚𝑑) ⊆ 𝐴 and meth(𝑠𝑚𝑑) ⊆ 𝑀 .
Like in [6], we consider here a unique SysML block diagram that merges the block definition

diagram (BDD) and the internal block diagram (IBD) defined in the SysML specification [20].
Definition 3.5 (SysML Block Diagram).

A SysML block diagram is a 6-uple ⟨B, 𝑑,L, 𝜎, C,R⟩ where:
• B is a finite set of blocks.
• The function 𝑑 assigns a description to each block in the set B. For 𝐵 ∈ B, we denote 𝑑 (𝐵)
with {𝐴𝐵, 𝑀𝐵, 𝑃𝐵, 𝑆𝑖𝐵, 𝑆𝑜𝐵, 𝑠𝑚𝑑𝐵},

⊔
𝐵∈B

𝑃𝐵 with P,
⊔

𝐵∈B
𝑆𝑜𝐵 with S𝑜 and

⊔
𝐵∈B

𝑆𝑖𝐵 with S𝑖 .

• L ⊂ P × P is a set of links. It is an irreflexive and antisymmetric partial injection.
• The function 𝜎 : L → CommSemantics assigns a communication semantics to each link.
• C ⊆ L ×S𝑜 ×S𝑖 is a set of connections ⟨⟨𝑝𝑜 , 𝑝𝑖⟩, 𝑠𝑜 , 𝑠𝑖⟩ such that 𝑝𝑜 and 𝑠𝑜 belong to the same
block, and 𝑝𝑖 and 𝑠𝑖 belong to the same block.

• R ⊂ B × B is a block containment relation such that
– its transitive closure R∗ is a noetherian order.
– its inverse relation R−1 is a function.
When ⟨𝐵1, 𝐵2⟩ ∈ R, we say that 𝐵1 “contains”/“is a superblock of” 𝐵2 and that 𝐵2 “is contained
by”/“is a subblock of” 𝐵1.

Remark: the block containment relation enables to define a structural hierarchy between blocks
and has a a semantic implication on the state-machine diagrams of the contained blocks. Indeed,
as stated in definition 3.7, the state-machine diagram of a block can use send/receive actions on
signals belonging to the set of signals of its superblock, of the superblock of its superblock, and so
on.

Definition 3.6 (Set of all contained blocks of a block 𝐵).
Let M = ⟨B, 𝑑,L, 𝜎, C,R⟩ be a block diagram and 𝐵 ∈ B. 𝑠𝑢𝑏𝐵 = {𝐵′ ∈ B | 𝐵 R∗𝐵′} denotes the
set of all (directly or indirectly) contained blocks of 𝐵.

Notice that the constraints on R ensure that {𝐵} ∪ 𝑠𝑢𝑏𝐵 is a finite tree with 𝐵 as root.
Definition 3.7 (Syntactically Correct SysML Block Diagram).

Let M = ⟨B, 𝑑,L, 𝜎, C,R⟩ be a SysML block diagram. M is syntactically correct if and only if:
(1) ∀⟨⟨𝑝𝑜 , 𝑝𝑖⟩, 𝑠𝑜 , 𝑠𝑖⟩ ∈ C, profile(𝑠𝑜) = profile(𝑠𝑖).
(2) ∀𝐵 ∈ B, 𝑑 (𝐵) is syntactically correct and ∀𝑠𝑥 ∈ sign(𝑠𝑚𝑑𝐵),
(2a) ∃!⟨⟨𝑝𝑜 , 𝑝𝑖⟩, 𝑠𝑜 , 𝑠𝑖⟩ ∈ C, 𝑠𝑥 = 𝑠𝑜 ∨ 𝑠𝑥 = 𝑠𝑖 .
(2b) ∃𝐵′ ∈ B, (𝐵′, 𝐵) ∈ R∗ ∧ (𝑠𝑥 ∈ 𝑆𝑜𝐵′ ∨ 𝑠𝑥 ∈ 𝑆𝑖𝐵′).
In the previous definition:
• condition (1) ensures that each pair of signals connected over a link involves signals of the
same profile: a signal 𝑠𝑜 carrying an integer attribute and two boolean attributes shall be
connected to an input signal 𝑠𝑖 carrying the same attributes in the same order.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

8 Sultan et al.

• condition (2a) ensures that each signal instanciated in a state-machine diagram is connected
to another signal and that this signal cannot be connected to several signals.

• condition (2b) ensures that each signal used in 𝑠𝑚𝑑𝐵 belongs to the set of signals of 𝐵, or the
superblock of 𝐵, or the superblock of the superblock of 𝐵, etc.

3.2 SysML Mutations: operators summary
Mutation operators are classified according to their scope: the block diagram mutation operators
(see Table 1) modify the composition of the block diagrams without affecting the blocks, and the
block mutation operators (see Table 2) modify the description of the blocks.

Table 1. Overview of block-diagram mutation operators

Mutation Operator Short notation Description

𝑎𝑑𝑑𝐵𝑙𝑜𝑐𝑘 (M, 𝐵) M
𝔅+ (𝐵)
−−−−−→ M′ Adds block 𝐵 to block diagram M.

𝑑𝑒𝑙𝐵𝑙𝑜𝑐𝑘 (M, 𝐵) M
𝔅− (𝐵)
−−−−−→ M′ Deletes block 𝐵 from block diagram M.

𝑎𝑑𝑑𝐿𝑖𝑛𝑘 (M, (𝑝1, 𝑝2), 𝑐𝑠) M
𝔏+ (𝑝1,𝑝2),𝑐𝑠−−−−−−−−−→ M′ Adds a link between two ports 𝑝1 and 𝑝2 belonging to one

or two block(s) of block diagram M. The communication
semantics of this new link is given by 𝑐𝑠 .

𝑑𝑒𝑙𝐿𝑖𝑛𝑘 (M, (𝑝1, 𝑝2)) M
𝔏− (𝑝1,𝑝2)−−−−−−−→ M′ Deletes the link between the ports 𝑝1 and 𝑝2 from block

diagram M.

𝑎𝑑𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 (M, (𝑝𝑜 , 𝑝𝑖), 𝑠𝑜 , 𝑠𝑖) M
ℭ+ ((𝑝𝑜 ,𝑝𝑖),𝑠𝑜 ,𝑠𝑖)−−−−−−−−−−−−→ M′ Adds a connection between signals 𝑠𝑜 and 𝑠𝑖 over the link

between the ports 𝑝𝑜 and 𝑝𝑖 .

𝑑𝑒𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 (M, (𝑝𝑜 , 𝑝𝑖), 𝑠𝑜 , 𝑠𝑖) M
ℭ− ((𝑝𝑜 ,𝑝𝑖),𝑠𝑜 ,𝑠𝑖)−−−−−−−−−−−−−→ M′ Deletes the connection between signals 𝑠𝑜 and 𝑠𝑖 over the

link between the ports 𝑝𝑜 and 𝑝𝑖 .

𝑎𝑑𝑑𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (M, (𝐵1, 𝐵2)) M
ℜ+ (𝐵1,𝐵2)−−−−−−−−→ M′ Adds a containment relation between blocks 𝐵1 and 𝐵2 such

that 𝐵2 is a subblock of 𝐵1.

𝑑𝑒𝑙𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (M, (𝐵1, 𝐵2)) M
ℜ− (𝐵1,𝐵2)−−−−−−−−→ M′ Deletes the containment relation between blocks 𝐵1 and 𝐵2 .

3.3 SysML mutations: full mathematical definitions
For the needs of the definitions given in this section, we introduce the following notations:

• 𝔐 is the set of all SysML block diagrams.
• 𝔅 is the set of all blocks.
• Attr is the set of all attributes.
• Sign is the set of all signals.
• InSign (resp. OutSign) is the set of all input (resp. output) signals.
• Port is the set of all ports.
• States is the set of all states.
• Trans is the set of all transitions.
• Given a SysML block diagram M = ⟨B, 𝑑,L, 𝜎, C,R⟩ ∈ 𝔐, ∀𝐵 ∈ B, 𝐵 can be used as a
shorthand for its description 𝑑 (𝐵).

3.3.1 Mutations at block-diagram level. We define below all the mutations updating the composition
of the sets B, L, C and R, but without modifying the definition of the blocks (attributes, methods,
etc.) and their related state-machine diagrams. Eight mutations are formalized in this section:

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 9

Table 2. Overview of block mutation operators

Mutation Operator Short notation Description

𝑎𝑑𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (M, 𝐵, 𝑎) M
Attr+ (𝐵,𝑎)
−−−−−−−−→ M′ Adds attribute 𝑎 to block 𝐵.

𝑑𝑒𝑙𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (M, 𝐵, 𝑎) M
Attr− (𝐵,𝑎)
−−−−−−−−→ M′ Deletes attribute 𝑎 from block 𝐵.

𝑎𝑑𝑑𝐼𝑛𝑝𝑢𝑡𝑆𝑖𝑔𝑛𝑎𝑙 (M, 𝐵, 𝑠) M
InSign+ (𝐵,𝑠)
−−−−−−−−−→ M′ Adds input signal 𝑠 to block 𝐵.

𝑎𝑑𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑖𝑔𝑛𝑎𝑙 (M, 𝐵, 𝑠) M
OutSign+ (𝐵,𝑠)
−−−−−−−−−−−→ M′ Adds output signal 𝑠 to block 𝐵.

𝑑𝑒𝑙𝑆𝑖𝑔𝑛𝑎𝑙 (M, 𝐵, 𝑠) M
Sign− (𝐵,𝑠)
−−−−−−−−→ M′ Deletes signal 𝑠 from block 𝐵.

𝑎𝑑𝑑𝑆𝑡𝑎𝑡𝑒 (M, 𝐵, 𝑠) M
State+ (𝐵,𝑠)
−−−−−−−−→ M′ Adds state 𝑠 to the state-machine diagram of block 𝐵.

𝑑𝑒𝑙𝑆𝑡𝑎𝑡𝑒 (M, 𝐵, 𝑠) M
State− (𝐵,𝑠)
−−−−−−−−−→ M′ Deletes state 𝑠 from the state-machine diagram of block 𝐵.

𝑎𝑑𝑑𝑇𝑟𝑎𝑛𝑠 (M, 𝐵, 𝑡) M
Trans+ (𝐵,𝑡)
−−−−−−−−−→ M′ Adds transition 𝑡 to the state-machine diagram of block 𝐵.

𝑑𝑒𝑙𝑇𝑟𝑎𝑛𝑠 (M, 𝐵, 𝑡) M
Trans− (𝐵,𝑡)
−−−−−−−−−→ M′ Deletes transition 𝑡 from the state-machine diagram of block 𝐵.

• Definition 3.88 (resp. 3.9) defines the addition (resp. deletion) of a block to (resp. from) a
SysML block diagram.

• Definition 3.10 (resp. 3.11) defines the addition (resp. deletion) of a link between two blocks.
• Definition 3.12 (resp. 3.13) defines the addition (resp. deletion) of a signal connection between
two blocks.

• Definition 3.14 (resp. 3.15) defines the addition (resp. deletion) of a containment relationship
between two blocks.

Definition 3.8 (Block Addition).
A block addition is a function

𝑎𝑑𝑑𝐵𝑙𝑜𝑐𝑘 : 𝔐 ×𝔅 → 𝔐

(M, 𝐵) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩: M′ = ⟨B ∪ {𝐵}, 𝑑,L, 𝜎, C,R⟩.

Definition 3.9 (Block Deletion).
A block deletion is a function

𝑑𝑒𝑙𝐵𝑙𝑜𝑐𝑘 : 𝔐 ×𝔅 → 𝔐

(M, 𝐵) ↦→ M′

such that, given M = ⟨B, 𝑑,L, 𝜎, C,R⟩ and if we denote by 𝑠𝑢𝑏𝐵 the set of all sublocks of 𝐵 and
with 𝑃𝑠𝑢𝑏𝐵 =

⊔
𝐵′∈𝑠𝑢𝑏𝐵

𝑃𝐵′ the set of ports of the blocks of 𝑠𝑢𝑏𝐵 ,M′ = ⟨B′, 𝑑,L′, 𝜎 ′, C′,R′⟩, where:

• B′ = B \ ({𝐵} ∪ 𝑠𝑢𝑏𝐵).
• L′ = L ∩ P′2, where P′ =

⊔
𝛽∈B′

𝑃𝛽 .

• 𝜎 ′ : L′ → CommSemantics
𝑙 ↦→ 𝜎 (𝑙)

• C′ = {⟨𝑙, 𝑠𝑜 , 𝑠𝑖⟩ ∈ C|𝑙 ∈ L′}.
8Definition 3.8 is an enhanced version of a definition we have previously indroduced in [25].

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

10 Sultan et al.

• R′ = R ∩ B′2.
Note that M′ = M if 𝐵 ∉ B since B and {𝐵} ∪ 𝑠𝑢𝑏𝐵 are obviously two disjoint sets.

Definition 3.10 (Link Addition).
A link addition is a function

𝑎𝑑𝑑𝐿𝑖𝑛𝑘 : 𝔐 × Port2 × CommSemantics → 𝔐

(M, (𝑝𝑜 , 𝑝𝑖), 𝑐𝑠) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩:

M′ = ⟨B, 𝑑,L ∪ {⟨𝑝𝑜 , 𝑝𝑖⟩}, 𝜎 ′, C,R⟩ if:
– ⟨𝑝𝑜 , 𝑝𝑖⟩ ∈ P2

– 𝑝𝑜 ≠ 𝑝𝑖
– ¬∃⟨𝑝, 𝑝′⟩ ∈ L, 𝑝 = 𝑝𝑜 ∨ 𝑝 = 𝑝𝑖 ∨ 𝑝′ = 𝑝𝑜 ∨ 𝑝′ = 𝑝𝑖

M′ = M otherwise,
where ∀𝑙 ∈ L, 𝜎 ′ (𝑙) = 𝜎 (𝑙) ∧ 𝜎 ′ (⟨𝑝𝑜 , 𝑝𝑖⟩) = 𝑐𝑠 .

Definition 3.11 (Link Deletion).
A link deletion is a function

𝑑𝑒𝑙𝐿𝑖𝑛𝑘 : 𝔐 × Port2 → 𝔐

(M, (𝑝𝑜 , 𝑝𝑖)) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩, M′ = ⟨B, 𝑑,L′, 𝜎, C′,R⟩, where:
• L′ = L \ {⟨𝑝𝑜 , 𝑝𝑖⟩}.
• C′ = {⟨𝑙, 𝑠𝑜 , 𝑠𝑖⟩ ∈ C|𝑙 ∈ L′}.

Note that M′ = M if ⟨𝑝𝑜 , 𝑝𝑖⟩ ∉ L.

Definition 3.12 (Connection Addition).
A connection addition is a function

𝑎𝑑𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 : 𝔐 × Port2 ×OutSign × InSign → 𝔐

(M, (𝑝𝑜 , 𝑝𝑖), 𝑠𝑜 , 𝑠𝑖) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩:

M′ = ⟨B, 𝑑,L, 𝜎, C ∪ {⟨⟨𝑝𝑜 , 𝑝𝑖⟩, 𝑠𝑜 , 𝑠𝑖⟩},R⟩ if:
– ∃(𝐵1, 𝐵2) ∈ B2 s.t. 𝑝𝑜 ∈ 𝑃𝐵1 ∧ 𝑠𝑜 ∈ 𝑆𝑜𝐵1 ∧
𝑝𝑖 ∈ 𝑃𝐵2 ∧ 𝑠𝑖 ∈ 𝑆𝑖𝐵2

– ⟨𝑝𝑜 , 𝑝𝑖⟩ ∈ L
– ¬∃⟨⟨𝑝, 𝑝′⟩, 𝑠, 𝑠′⟩ ∈ C s.t. 𝑠 = 𝑠𝑜 ∨ 𝑠′ = 𝑠𝑖

M′ = M otherwise.

Definition 3.13 (Connection Deletion).
A connection deletion is a function

𝑑𝑒𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 : 𝔐 × Port2 ×OutSign × InSign → 𝔐

(M, (𝑝𝑜 , 𝑝𝑖), 𝑠𝑜 , 𝑠𝑖) ↦→ M′

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 11

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩, M′ = ⟨B, 𝑑,L, 𝜎, C \ {⟨⟨𝑝𝑜 , 𝑝𝑖⟩, 𝑠𝑜 , 𝑠𝑖⟩},R⟩.
Note that M′ = M if ⟨⟨𝑝𝑜 , 𝑝𝑖⟩, 𝑠𝑜 , 𝑠𝑖⟩ ∉ C.

Definition 3.14 (Containment Addition).
A containment addition is a function

𝑎𝑑𝑑𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑚𝑒𝑛𝑡 : 𝔐 ×𝔅2 → 𝔐

(M, (𝐵1, 𝐵2)) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩:
M′ = ⟨B, 𝑑,L, C,R ∪ {⟨𝐵1, 𝐵2⟩}⟩ if {𝐵1, 𝐵2} ⊆ B ∧ 𝐵1 ∉ 𝑠𝑢𝑏𝐵2 ∧

¬∃𝐵 ∈ B, ⟨𝐵, 𝐵2⟩ ∈ R
M′ = ⟨B, 𝑑,L, 𝜎, C, (R \ {⟨𝐵, 𝐵2⟩}) ∪ {⟨𝐵1, 𝐵2⟩}⟩ if {𝐵1, 𝐵2} ⊆ B ∧ 𝐵1 ∉ 𝑠𝑢𝑏𝐵2 ∧

∃𝐵 ∈ B, ⟨𝐵, 𝐵2⟩ ∈ R
M′ = M otherwise.

Definition 3.15 (Containment Deletion).
A containment deletion is a function

𝑑𝑒𝑙𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑚𝑒𝑛𝑡 : 𝔐 ×𝔅2 → 𝔐

(M, (𝐵1, 𝐵2)) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩, M′ = ⟨B, 𝑑,L, 𝜎, C,R \ {⟨𝐵1, 𝐵2⟩}⟩.
Note that M′ = M if ⟨𝐵1, 𝐵2⟩ ∉ R.

3.3.2 Mutations at block level. We define below the mutations that change the composition of the
elements of a block composing a SysML block diagram and their related state-machine diagrams.
Ten mutations are formalized in this section:

• Definition 3.17 (resp. 3.18) defines the addition (resp. deletion) of an attribute to (resp. from)
a block.

• Definition 3.19 defines the addition of an input signal to a block.
• Definition 3.20 defines the addition of an output signal to a block.
• Definition 3.21 defines the deletion of a signal from a block.
• Definition 3.22 (resp. 3.23) defines the addition (resp. deletion) of a state to (resp. from) a
block’s state-machine diagram.

• Definition 3.24 (resp. 3.25) defines the addition (resp. deletion) of a transition to (resp. from)
a block’s state-machine diagram.

For the needs of these definitions, we first introduce the containment substitution function
(Definition 3.16). The aim of this function is to replace a block 𝐵 with a block 𝐵′ in a set of
subblocks/superblocks pairs R.

Definition 3.16 (Containment Substitution).
Given a set of block pairsR and a block 𝐵, we denote byR𝐵 the set {⟨𝐵1, 𝐵2⟩ ∈ R|𝐵1 = 𝐵⊕𝐵2 = 𝐵}.
Given the function

𝑟𝑒𝑝𝑙𝑎𝑐𝑒 : 𝔅2 ×𝔅 ×𝔅 → 𝔅2

(⟨𝐵1, 𝐵2⟩, 𝐵, 𝐵′) ↦→

⟨𝐵′, 𝐵2⟩ if 𝐵1 = 𝐵

⟨𝐵1, 𝐵
′⟩ if 𝐵2 = 𝐵

⟨𝐵1, 𝐵2⟩ otherwise.
,

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

12 Sultan et al.

a containment substitution is a function
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 : (𝔅2)𝑛 ×𝔅 ×𝔅 → (𝔅2)𝑛

(R, 𝐵, 𝐵′) ↦→ (R \ R𝐵) ∪ {𝑟𝑒𝑝𝑙𝑎𝑐𝑒 (⟨𝐵1, 𝐵2⟩, 𝐵, 𝐵′) |⟨𝐵1, 𝐵2⟩ ∈ R𝐵}

Definition 3.17 (Attribute Addition).
An attribute addition is a function

𝑎𝑑𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 : 𝔐 ×𝔅 × Attr → 𝔐

(M, 𝐵, 𝑎) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩ and 𝑑 (𝐵) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , 𝑠𝑚𝑑⟩:{M′ = ⟨(B \ {𝐵}) ∪ {𝐵′}, 𝑑,L, 𝜎, C,R′⟩ if 𝐵 ∈ B
M′ = M otherwise,

where:
• 𝑑 (𝐵′) = ⟨𝐴 ∪ {𝑎}, 𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , 𝑠𝑚𝑑⟩.
• R′ = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 (R, 𝐵, 𝐵′).
• 𝐵′ ∉ B \ {𝐵}.

Definition 3.18 (Attribute Deletion).
An attribute deletion is a function

𝑑𝑒𝑙𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 : 𝔐 ×𝔅 × Attr → 𝔐

(M, 𝐵, 𝑎) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩ and 𝑑 (𝐵) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , 𝑠𝑚𝑑⟩:{M′ = ⟨(B \ {𝐵}) ∪ {𝐵′}, 𝑑,L, 𝜎, C,R′⟩ if 𝐵 ∈ B ∧ 𝑎 ∈ 𝐴𝐵

M′ = M otherwise,
where:

• 𝑑 (𝐵′) = ⟨𝐴 \ {𝑎}, 𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , 𝑠𝑚𝑑⟩.
• R′ = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 (R, 𝐵, 𝐵′).
• 𝐵′ ∉ B \ {𝐵}.

Definition 3.19 (Input Signal Addition).
An input signal addition is a function

𝑎𝑑𝑑𝐼𝑛𝑝𝑢𝑡𝑆𝑖𝑔𝑛𝑎𝑙 : 𝔐 ×𝔅 × InSign → 𝔐

(M, 𝐵, 𝑠) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩ and 𝑑 (𝐵) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , 𝑠𝑚𝑑⟩:{M′ = ⟨(B \ {𝐵} ∪ {𝐵′}), 𝑑,L, 𝜎, C,R′⟩ if 𝐵 ∈ B
M′ = M otherwise,

where:
• 𝑑 (𝐵′) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 ∪ {𝑠}, 𝑆𝑜 , 𝑠𝑚𝑑⟩.
• R′ = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 (R, 𝐵, 𝐵′).
• 𝐵′ ∉ B \ {𝐵}.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 13

Definition 3.20 (Output Signal Addition).
An output signal addition is a function

𝑎𝑑𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑖𝑔𝑛𝑎𝑙 : 𝔐 ×𝔅 ×OutSign → 𝔐

(M, 𝐵, 𝑠) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩ and 𝑑 (𝐵) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , 𝑠𝑚𝑑⟩:{M′ = ⟨(B \ {𝐵}) ∪ {𝐵′}, 𝑑,L, 𝜎, C,R′⟩ if 𝐵 ∈ B
M′ = M otherwise,

where:
• 𝑑 (𝐵′) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 ∪ {𝑠}, 𝑠𝑚𝑑⟩.
• R′ = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 (R, 𝐵, 𝐵′).
• 𝐵′ ∉ B \ {𝐵}.

Definition 3.21 (Signal Deletion).
A signal deletion is a function

𝑑𝑒𝑙𝑆𝑖𝑔𝑛𝑎𝑙 : 𝔐 ×𝔅 × Sign → 𝔐

(M, 𝐵, 𝑠) ↦→ M′

such that, given M = ⟨B, 𝑑,L, 𝜎, C,R⟩ and 𝑑 (𝐵) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , ⟨𝑠0, 𝑆,𝑇 ⟩⟩:{M′ = ⟨(B \ {𝐵}) ∪ {𝐵′}, 𝑑,L, 𝜎, C′,R′⟩ if 𝐵 ∈ B ∧ (𝑠 ∈ 𝑆𝑜 ∨ 𝑠 ∈ 𝑆𝑖)
M′ = M otherwise,

where:

•
{
𝑑 (𝐵′) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 \ {𝑠}, 𝑆𝑜 , 𝑠𝑚𝑑⟩ if 𝑠 ∈ 𝑆𝑖

𝑑 (𝐵′) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 \ {𝑠}, 𝑠𝑚𝑑⟩ if 𝑠 ∈ 𝑆𝑜 .

•
{C′ = C \ {⟨⟨𝑝𝑜 , 𝑝𝑖⟩, 𝑠𝑜 , 𝑠𝑖⟩|𝑠𝑖 = 𝑠} if 𝑠 ∈ 𝑆𝑖

C′ = C \ {⟨⟨𝑝𝑜 , 𝑝𝑖⟩, 𝑠𝑜 , 𝑠𝑖⟩|𝑠𝑜 = 𝑠} if 𝑠 ∈ 𝑆𝑜 .
• R′ = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 (R, 𝐵, 𝐵′).
• 𝐵′ ∉ B \ {𝐵}.

Definition 3.22 (State Addition).
A state addition is a function

𝑎𝑑𝑑𝑆𝑡𝑎𝑡𝑒 : 𝔐 ×𝔅 × States → 𝔐

(M, 𝐵, 𝑠) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩ and 𝑑 (𝐵) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , ⟨𝑠0, 𝑆,𝑇 ⟩⟩:{M′ = ⟨(B \ {𝐵}) ∪ {𝐵′}, 𝑑,L, 𝜎, C,R′⟩ if 𝐵 ∈ B
M′ = M otherwise,

where:
• 𝑑 (𝐵′) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , ⟨𝑠0, 𝑆 ∪ {𝑠},𝑇 ⟩⟩.
• R′ = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 (R, 𝐵, 𝐵′).
• 𝐵′ ∉ B \ {𝐵}.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

14 Sultan et al.

Definition 3.23 (State Deletion).
A state deletion is a function

𝑎𝑑𝑑𝑆𝑡𝑎𝑡𝑒 : 𝔐 ×𝔅 × States → 𝔐

(M, 𝐵, 𝑠) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩ and 𝑑 (𝐵) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , ⟨𝑠0, 𝑆,𝑇 ⟩⟩:{M′ = ⟨(B \ {𝐵}) ∪ {𝐵′}, 𝑑,L, 𝜎, C,R′⟩ if 𝐵 ∈ B ∧ 𝑠 ∈ 𝑆

M′ = M otherwise,
where:

• 𝑑 (𝐵′) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , ⟨𝑠0, 𝑆 \ {𝑠},𝑇 \ {⟨𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑠𝑒𝑛𝑑⟩|𝑠𝑠𝑡𝑎𝑟𝑡 = 𝑠 ∨𝑠𝑒𝑛𝑑 = 𝑠}⟩⟩.
• R′ = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 (R, 𝐵, 𝐵′).
• 𝐵′ ∉ B \ {𝐵}.

Definition 3.24 (Transition Addition).
A transition addition is a function

𝑎𝑑𝑑𝑇𝑟𝑎𝑛𝑠 : 𝔐 ×𝔅 × Trans → 𝔐

(M, 𝐵, ⟨𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑠𝑒𝑛𝑑 ⟩) ↦→ M′

such that, given M = ⟨B, 𝑑,L, 𝜎, C,R⟩ and 𝑑 (𝐵) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , ⟨𝑠0, 𝑆,𝑇 ⟩⟩:{M′ = ⟨(B \ {𝐵}) ∪ {𝐵′}, 𝑑,L, 𝜎, C,R′⟩ if 𝐵 ∈ B ∧ 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝑆 ∧ 𝑠𝑒𝑛𝑑 ∈ 𝑆

M′ = M otherwise,
where:

• 𝑑 (𝐵′) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , ⟨𝑠0, 𝑆,𝑇 ∪ {⟨𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑠𝑒𝑛𝑑⟩}⟩⟩.
• R′ = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 (R, 𝐵, 𝐵′).
• 𝐵′ ∉ B \ {𝐵}.

Definition 3.25 (Transition Deletion).
A transition deletion is a function

𝑑𝑒𝑙𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 : 𝔐 ×𝔅 × Trans → 𝔐

(M, 𝐵, 𝑡) ↦→ M′

such that, givenM = ⟨B, 𝑑,L, 𝜎, C,R⟩ and 𝑑 (𝐵) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , ⟨𝑠0, 𝑆,𝑇 ⟩⟩:{M′ = ⟨(B \ {𝐵}) ∪ {𝐵′}, 𝑑,L, 𝜎, C,R′⟩ if 𝐵 ∈ B ∧ 𝑡 ∈ 𝑇

M′ = M otherwise,
where:

• 𝑑 (𝐵′) = ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , ⟨𝑠0, 𝑆,𝑇 \ {𝑡}⟩⟩.
• R′ = 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 (R, 𝐵, 𝐵′).
• 𝐵′ ∉ B \ {𝐵}.

3.4 AMULET: a SysML mutation language
In order to describe and to automate the application of the different mutation operators proposed
in Sect. 3.3, we have defined a high-level language called AMULET (Appropriate SysML mUtation
Language Enhancing models enrichmenT). Although it is formally defined, AMULET has a syntax
close to natural language, so that it can be easily learnt by any SysML toolkit user. For instance,

the code line add state s0 in B0 stands for M
State+ (𝐵0,𝑠0)−−−−−−−−−−−→ M′, and add block B1 stands for

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 15

M
𝔅+ (𝐵1)−−−−−−→ M′. All the operators defined in Section 3.3 are supported by AMULET. Table 3 gives,

for each mutation operator at model level, the equivalent syntax in AMULET and one or several
examples. In the same way, Table 4 provides the equivalent AMULET syntax and examples for each
mutation operator at block level. We had to provide in this table two different syntax rules for the
𝑎𝑑𝑑𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 and 𝑑𝑒𝑙𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 operators, depending on the actions of the targeted transition.
Indeed, in our SysML implementation transitions involving actions on signals (i.e., a send or receive
operator in state-machine diagrams) are split into two separate transitions: the first one from the
source state to the send/receive operator, and the second one from the send/receive operator to
the destination state. As a result, adding a transition from a state 𝑠1 to a state 𝑠2 and containing
a send/receive action consists in three consecutive stages: (1) creating the send/receive operator,
(2) adding a transition from 𝑠1 to this operator and (3) adding a transition from this operator to 𝑠2.
Given several send/receive action operators can instanciate the same signal, we shall provide an
ID for this operator at stage (1). In the given example, the ID assigned to the action on signal is
myActionOnSignal, and it operates on the signal referred to as inSig.

Table 3. AMULET syntax for model-level mutation operators. In the AMULET syntax column, reserved
words are written in bold and optional tokens are written between square brackets. All the IDs are Strings,
and fifoSize is an Integer.

Mutation Operator AMULET syntax Examples

𝑎𝑑𝑑𝐵𝑙𝑜𝑐𝑘 (Def. 3.8) add block blockId add block Block1

𝑑𝑒𝑙𝐵𝑙𝑜𝑐𝑘 (Def. 3.9) remove block blockId remove block Block1

𝑎𝑑𝑑𝐿𝑖𝑛𝑘 (Def. 3.10) add [public | private] [synchronous
[broadcast] | asynchronous
[blocking] [lossy]] link [linkId]
[with maxFIFO = fifoSize] between
blockId and blockId

add link between Block1 and Block2
or
add asynchronous lossy link myLink between
Block1 and Block2

𝑑𝑒𝑙𝐿𝑖𝑛𝑘 (Def. 3.11) remove [public | private]
[synchronous [broadcast] | asynchro-
nous [blocking] [lossy]] link [with
maxFIFO = fifoSize] between blockId
and blockId and [block name]
or
remove link linkId

remove link between Block1 and Block2
or
remove link myLink

𝑎𝑑𝑑𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 (Def. 3.12) add connection from signalId in
blockId to signalName in blockId [in
[public | private] [synchronous
[broadcast] | asynchronous
[blocking] [lossy]] link [with
maxFIFO = fifoSize]]
or
add connection from signalId to
signalId in link linkId

add connection from sigOut in Block1 to sigIn
in Block2
or
add connection from sigOut to sigIn in link
myLink

𝑑𝑒𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 (Def. 3.13) remove connection from sig-
nalId in blockId to signalName
in blockId [in [public | private]
[synchronous [broadcast] | asynchro-
nous [blocking] [lossy]] link [with
maxFIFO = fifoSize]]
or
remove connection from signalId to
signalId in link linkId

remove connection from sigOut in Block1 to
sigIn in Block2
or
remove connection from sigOut to sigIn in link
myLink

𝑎𝑑𝑑𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 (Def. 3.14) attach blockId to blockId attach Block2 to Block1

𝑑𝑒𝑙𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 (Def. 3.15) detach blockId [from blockId] detach Block2 from Block1
or
detach Block2

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

16 Sultan et al.

Table 4. AMULET syntax for block-level operators. In the AMULET syntax column, reserved words are
written in bold and optional tokens are written between square brackets. All the IDs are String, intVal is
an Integer, guard is a boolean expression, actionExpression is a variable assignment or a method call, and
actionOnSignalExpression is a signal call.

Mutation Operator AMULET syntax Examples

𝑎𝑑𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (Def. 3.17) add attribute type attributeId [= intVal] in
blockId
NB: type = int | bool

add attribute bool myBool in Block1
or
add attribute int x = 42 in Block1

𝑑𝑒𝑙𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (Def. 3.18) remove attribute attributeId in blockId remove attribute myBool in Block1

𝑎𝑑𝑑𝐼𝑛𝑝𝑢𝑡𝑆𝑖𝑔𝑛𝑎𝑙 (Def. 3.19) add input signal signalId in blockId add input signal inSig in Block2

𝑎𝑑𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑖𝑔𝑛𝑎𝑙

(Def. 3.20)
add output signal signalId in blockId add output signal mySig in Block1

𝑑𝑒𝑙𝑆𝑖𝑔𝑛𝑎𝑙 (Def. 3.21) remove signal signalId in blockId remove signal outSig in Block1

𝑎𝑑𝑑𝑆𝑡𝑎𝑡𝑒 (Def. 3.22) add state stateId in blockId add state myState in Block1

𝑑𝑒𝑙𝑆𝑡𝑎𝑡𝑒 (Def. 3.23) remove state stateId in blockId remove state myState in Block1

𝑎𝑑𝑑𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (Def. 3.24)
(general case)

add transition [transitionId] in blockId
from stateId to stateId [with [guard] | with
after(intVal, intVal) |with "actionExpression"
|with [guard] and after(intVal, intVal) |with
[guard] and "actionExpression" | with af-
ter(intVal, intVal) and "actionExpression" |
with [guard] and after(intVal, intVal) and
"actionExpression"]

add transition in Block1 from state1 to
state2 with "x=0"

𝑎𝑑𝑑𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (Def. 3.24)
(if the set of actions contains
an action on signal, i.e., a send
or a receive action)

Stage 1. Creation of the action on signal oper-
ator
add action on signal actionOnSignalId in
blockId with actionOnSignalExpression
Stages 2-3. Creation of the two transitions be-
tween the initial state and the action on signal,
and between the action on signal and the des-
tination state
add transition [transitionId] in blockId
from stateOrActionOnSignalId to stateOrAc-
tionOnSignalId [with [guard] | with af-
ter(intVal, intVal) | with "actionExpression" |
with [guard] and after(intVal, intVal) | with
[guard] and "actionExpression" | with af-
ter(intVal, intVal) and "actionExpression" |
with [guard] and after(intVal, intVal) and
"actionExpression"]

Stage 1.
add action on signal myActionOnSignal in
Block1 with inSig(int x)
Stage 2.
add transition in Block1 from state1 to
myActionOnSignal with [x != 0]
Stage 3.
add transition in Block1 from
myActionOnSignal to state2 with "x =
x+1" and after(1,2)

𝑑𝑒𝑙𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (Def. 3.25)
(general case)

remove transition in blockId from stateId
to stateId [with [guard] | with after(intVal,
intVal) | with "actionExpression" | with
[guard] and after(intVal, intVal) | with
[guard] and "actionExpression" | with af-
ter(intVal, intVal) and "actionExpression" |
with [guard] and after(intVal, intVal) and
"actionExpression"]
or
remove transition transitionId in blockId

remove transition in Block1 from state1 to
state2 with "x=0"
or
remove transition myTransition in Block1

𝑑𝑒𝑙𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (Def. 3.25)
(if the set of actions contains
an action on signal, i.e., a send
or a receive action)

remove action on signal in blockId with
actionOnSignalExpression]
or
remove action on signal actionOnSignalId
in blockId

remove action on signal in Block1 with
outSig
or
remove action on signal myActionOnSignal
in Block1

Note that AMULET also supports operator composition thanks to further reserved words : for

instance,M
Sign− (𝐵0,𝑚𝑦𝑆𝑖𝑔)
−−−−−−−−−−−−−−→ M′ OutSign+ (𝐵0,𝑚𝑦𝑆𝑖𝑔)

−−−−−−−−−−−−−−−−−−→ M′′ where𝑚𝑦𝑆𝑖𝑔 is initially an input signal

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 17

will be written in AMULET modify signal mySig in B0 to output. However, for the sake of
brevity, and considering that the syntax outlined in Tables 3 and 4 adequately encompasses all
the mutation operators, we have chosen not to furnish a comprehensive syntax of these operator
composition commands within this paper.

4 SYSML MUTATIONS: THE PRACTICAL WAY
This section introduces our practical contributions. We firstly provide a brief introduction on the
SysML profile we used for the implementation and evaluation of AMULET. Then, we present the
implementation of the AMULET compiler and its user interface in the the open-source SysML
modeling and verification toolkit TTool.

4.1 SysML and AVATAR: differences
AVATAR is a real-time oriented SysML profile fully compliant with the SysML metamodel [21].
AVATAR provides a formal semantics for SysML block and state-machine diagrams, and we have
decided to use this profile for the implementation and evaluation of our mutation language. Addi-
tionally, AVATAR includes features that have been added to SysML. It’s worth noting that all the
mutation operators defined in Section 3.3 are compatible with AVATAR’s syntax.

4.1.1 In block diagrams. In line with the integration of block definition diagrams and internal
block diagrams as outlined in Definition 3.5, the AVATAR profile employs a unified block diagram
that combines block definition diagram and internal block diagram.

4.1.2 In state-machine diagrams. In AVATAR state-machine diagrams, a variable delay operator has
been added to transitions [21], i.e., the 𝑎𝑓 𝑡𝑒𝑟 operator takes a time interval as an argument. There-
fore, with respect to Definition 3.3 defining SysML state-machine diagrams, AVATAR transitions
are of the form 𝑡 = ⟨𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑎𝑓 𝑡𝑒𝑟, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑠𝑒𝑛𝑑⟩, where 𝑎𝑓 𝑡𝑒𝑟 = (𝑡𝑖𝑚𝑒𝑚𝑖𝑛, 𝑡𝑖𝑚𝑒𝑚𝑎𝑥) ∈ N2

constrains the delay before firing 𝑡 .

4.2 Implementation in TTool
In order to facilitate the integration of AMULET, a new compiler was developed and integrated
into TTool. This compiler was implemented using Java and its source code is publicly accessible on
TTool’s Git repository9 for the compiler package.

Figure 2 illustrates the functional architecture of the compiler, which is composed of three
consecutive stages. These stages are activated by four commands that have been added to TTool’s
command-line interpreter: a am (AVATAR Mutation), a amb (AVATAR Mutation Batch), a ap
(AVATAR Print), and a ad (AVATAR Draw). The a am command, for instance, takes a mutation
written in AMULET as an argument, parses it, and applies it to the model that is currently loaded in

TTool’s memory. For example, if a model M is loaded in TTool, the mutation M
State+ (𝐵0,𝑠0)−−−−−−−−−−−→ M′

can be applied to M using the following command: a am add state s0 in B0. The a amb
command, in turn, takes a file containing several mutations written in AMULET as an argument
and applies them one after another to the model that is currently loaded in TTool’s memory. The a
ap command displays the AVATAR model currently loaded in text format, and the a ad command
displays it in graphical format.

4.2.1 Stage 1: parsing the inputs. Obviously, the compiler takes as input a mutation command, and
an AVATAR model. When an a am command is provided, the compiler applies the AMULET string
after the a am command to AVATAR model currently opened in TTool’s graphical interface. In the
9https://gitlab.telecom-paris.fr/mbe-tools/TTool.git. Browse in ./src/main/java/avatartranslator/mutation.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

https://gitlab.telecom-paris.fr/mbe-tools/TTool.git

18 Sultan et al.

Mutation (AMULET line)Mutation batch
(AMULET source file)

Initial model (AVATAR
graphical model)

a ama amb

Mutation parser AVATAR parser

Mutation
(AvatarMutation object)

Initial AVATAR
specification

(AvatarSpecification
object)

Mutation engine
(AvatarMutation method)

Mutated AVATAR
specification

(AvatarSpecification
object)

Mutated model
(AVATAR textual model)

Mutated model (AVATAR
graphical model)

a ap a ad

Stage 1

Stage 2

Stage 3

Fig. 2. Functional architecture of the TTool integrated AMULET compiler

scope of an a amb command, each line of the mutation batch is handled one after the other by the
compiler. An AMULET string is parsed as follows:
(1) the string is tokenized;
(2) the token list is syntactically analyzed;
(3) an AvatarMutation object (the data structure we have designed to representing a mutation

after parsing an AMULET command) is created.
The applymethod of an AvatarMutation object (the method that modifies the model according

to the parsedmutation) does not directly processes AVATAR graphicalmodels but AvatarSpecification
objects10. Therefore, in parallel with the AMULET string parsing, the AVATAR graphical model is
also parsed in order to convert it into an AvatarSpecification object. Note that AvatarSpecification
class and parsing methods were already defined in TTool’s source code prior to this work. For
instance, its is used as input for other transformation models such as the ones for safety [11] or
security verifications [5].
At the end of this first stage, the two inputs have been converted to their relative objects. The

compiler can now work on this intermediate formats for applying the mutation.

4.2.2 Stage 2: applying the mutation. The apply method of the newly created AvatarMutation
object is then called with the AvatarSpecification object passed as argument. During this stage,
the latter is modified according to the mutation (e.g., a new block is added to its list of blocks).

4.2.3 Stage 3: providing the user with the mutated model. Once the mutated AvatarSpecification
has been generated, the user can either execute a new a am command or display the generated

10Again, we do not rely on generic data structures for representing AVATAR models, but on tailored AvatarSpecification
objects.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 19

AVATAR model in two formats: textual format (a ap command in the command-line interface) or
graphical format (a ad command).

4.3 About the syntactic correctness of the mutated model
It is important to note that the mutated model may not be syntactically correct. Most of the
operators defined in Sect. 3.3 ensure by definition the syntactic correctness (as per definition 3.7)
of the resulting block diagram. However, depending on the input block diagram, the following
operators may lead to a syntactically incorrect block diagram:

• 𝑑𝑒𝑙𝐵𝑙𝑜𝑐𝑘 , if a signal of the deleted block is associated with a signal used in another block’s
state-machine diagram.

• 𝑑𝑒𝑙𝐿𝑖𝑛𝑘 , if a pair of signals used in a block’s state-machine diagram is connected over the
deleted link.

• 𝑑𝑒𝑙𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛, if one of the signals involved in the deleted connection is used in a block’s
state-machine diagram.

• 𝑑𝑒𝑙𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , if one of the signal of the superblock (or of the superblock’s superblock,
and so on) is used in the detached subblock’s state-machine diagram.

• 𝑑𝑒𝑙𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 , if the attribute is used in the block’s state-machine diagram.
• 𝑑𝑒𝑙𝐼𝑛𝑝𝑢𝑡𝑆𝑖𝑔𝑛𝑎𝑙 , 𝑑𝑒𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑖𝑔𝑛𝑎𝑙 , if the signal is used in the block’s state-machine diagram.

Indeed, AMULET was initially designed to assist TTool users in applying identical mutations to
multiple models, mirroring the process observed in model-driven design methods like W-Sec [24]
or SysML-Sec [7]. As a result, AMULET encompasses all modifications allowed by the TTool’s
editor, even those that may result in syntactically incorrect block diagrams. While applying these
methods, it falls to the user to design a mutation that leads to a syntactically correct block diagram.
In this context, the AMULET operators represent successive steps undertaken to achieve a syntacti-
cally correct block diagram. For instance, if a 𝑑𝑒𝑙𝐵𝑙𝑜𝑐𝑘 operator is used, transitions using signals
associated with signals of the deleted block may be modified, or the signals used in those transitions
may be connected to signals of another block. These further modifications can be achieved by
using other mutation operators. Thus, in this case, since we support operators that can lead to
syntactically incorrect diagrams, users can apply these mutation operators in any order they prefer.

Furthermore, the support for mutations should not prevent the use of AMULET in design methods
involving automatic mutation generation and application, such as mutation-based model testing.
Indeed, since TTool already incorporates a SysML syntax-checker, it is trivial to automatically
identify and eliminate the syntactically incorrect mutants generated from the application of muta-
tion operations. This helps ensuring that only the syntactically correct mutations are retained for
subsequent stages of the process (e.g., testing).

5 CASE-STUDY: AUTOMATIC ENRICHMENT OF A MODEL WITH AN ARP SPOOFING
ATTACK SCENARIO

This section illustrates the AMULET language and its compiler with two case-studies. The first
case-study is basic since it only intends to give a better idea on how our approach works and
illustrate its relevance in the context of various system evolution scenarios. This first case-study is
illustrated with examples of AVATAR diagrams and AMULET source code. The second case study
is clearly more ambitious since it is based on a real industrial system we had to secure. Due to the
complexity of the models, diagrams and AVATAR source code are not provided here. However, we
provide metrics highlighting the benefits of AMULET in terms of reliability and modeling time.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

20 Sultan et al.

5.1 First case-study: a simple network
5.1.1 Model and tested evolution scenarios.
This case-study illustrates a practical and visual example of typical AVATAR model mutations,

and how AMULET helps in applying them. The system is built upon two computers communicating
through a router. Each component of the system is modeled with a distinct block (see Figure 3). In
order to provide concrete examples of the three system evolution cases mentioned in Sect. 1, we
have applied mutations on the intial model in order to model the following evolutions:

Scenario 1 (generic system evolution case and model refinement). We assume that a man-
in-the-middle attack could be performed in the system: here, the goal of the mutations is
to better understand how such an attack could impact our system. The man-in-the-middle
attack is captured as a new block modeling the attacker and with a slight modification to the
state-machine diagrams of the existing blocks (see Figure 5). Then, we assume that we want
to evaluate the impact according to different functional scenarios. One functional scenario
differs from another one in the content of the message sent from a computer to the other
computer (PC1, PC2). Here, the mutations focus on the modification of the value of the
attribute valueToSend in the block PC1.
Scenario 2 (model refinement). Model-driven engineering often involves incremental refine-
ment of the models: in this scenario, we add a additional boolean parameter to the messages
exchanged between PC1 and PC2. The mutations consist in adding a new attributes in the
three blocks and slightly modifying some signals and the three state-machine diagrams (see
Figure 4). This refinement targets the ten models generated in Scenario 1.
Scenario 3 (“digital twin” evolution case). Here we assume that the model designer wants to
improve the system design in order to mitigate the man-in-the-middle attack. The counter-
measure consists in adding a message authentication code (MAC) to the messages exchanged
from PC1 to PC2. The mutations involve adding new attributes in the three blocks, modifying
the signals and the state-machine diagrams. Here again, we assume that this evolution targets
the ten models generated in Scenario 1.

5.1.2 Refining the model: mutations and AMULET script.
Prior to discuss the metrics comparing the AMULET and the “by-hand” approach for deploying

these mutations, we provide here an AMULET script used for generating mutated models in the
context of Scenario 2. Applying this script on the diagrams shown in Fig. 3 generates the diagrams
shown in Fig. 4. This model generation involves 17 successive mutations provided below. However,
thanks to the AMULET syntax providing specific tokens for operator composition, the script only
comprises 11 lines.

M1
Attr+ (𝑃𝐶1,𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑇𝑜𝑆𝑒𝑛𝑑=𝑡𝑟𝑢𝑒)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ M2

Attr+ (𝑃𝐶2,𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐵𝑜𝑜𝑙𝑒𝑎𝑛)
−−−−−−−−−−−−−−−−−−−−−−−→ M3

Attr+ (𝑅𝑜𝑢𝑡𝑒𝑟,𝑏)
−−−−−−−−−−−−−→ M4

M4
Sign− (𝑃𝐶1,𝑃𝐶1_𝑡𝑜𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑇𝑜𝑆𝑒𝑛𝑑))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M5

M5
OutSign+ (𝑃𝐶1,𝑃𝐶1_𝑡𝑜𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑇𝑜𝑆𝑒𝑛𝑑,𝑏𝑜𝑜𝑙 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑇𝑜𝑆𝑒𝑛𝑑))
−−→ M6

M6
Sign− (𝑃𝐶2,𝑃𝐶2_𝑓 𝑟𝑜𝑚𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑛𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒))
−−→ M7

M7
InSign+ (𝑃𝐶2,𝑃𝐶2_𝑓 𝑟𝑜𝑚𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑛𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒,𝑏𝑜𝑜𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐵𝑜𝑜𝑙𝑒𝑎𝑛))
−−−→ M8

M8
Sign− (𝑅𝑜𝑢𝑡𝑒𝑟,𝑅𝑜𝑢𝑡𝑒𝑟_𝑓 𝑟𝑜𝑚𝑃𝐶1(𝑖𝑛𝑡 𝑛))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M9

InSign+ (𝑅𝑜𝑢𝑡𝑒𝑟,𝑅𝑜𝑢𝑡𝑒𝑟_𝑓 𝑟𝑜𝑚𝑃𝐶1(𝑖𝑛𝑡 𝑛,𝑏𝑜𝑜𝑙 𝑏))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M10

M10
Sign− (𝑅𝑜𝑢𝑡𝑒𝑟,𝑅𝑜𝑢𝑡𝑒𝑟_𝑡𝑜𝑃𝐶2(𝑖𝑛𝑡 𝑛))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M11

OutSign+ (𝑅𝑜𝑢𝑡𝑒𝑟,𝑅𝑜𝑢𝑡𝑒𝑟_𝑡𝑜𝑃𝐶2(𝑖𝑛𝑡 𝑛,𝑏𝑜𝑜𝑙 𝑏))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ M12

M12
Trans− (𝑃𝐶1,⟨𝑖𝑑𝑙𝑒,𝑃𝐶1_𝑡𝑜𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑇𝑜𝑆𝑒𝑛𝑑),𝑖𝑑𝑙𝑒 ⟩)
−−→ M13

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 21

block

PC1

- valueToSend = 42 : int;

- receivedValue : int;

~ out PC1_toRouter(int valueToSend)

~ in PC1_fromRouter(int receivedValue)

block

PC2

- valueToSend = 1337 : int;

- receivedValue : int;

~ in PC2_fromRouter(int receivedValue)

~ out PC2_toRouter(int valueToSend)

block

Router

- n : int;

- buffer : int;

~ in Router_fromPC1(int n)

~ in Router_fromPC2(int n)

~ out Router_toPC1(int n)

~ out Router_toPC2(int n)

block

PC1

- valueToSend = 42 : int;

- receivedValue : int;

~ out PC1_toRouter(int valueToSend)

~ in PC1_fromRouter(int receivedValue)

block

PC2

- valueToSend = 1337 : int;

- receivedValue : int;

~ in PC2_fromRouter(int receivedValue)

~ out PC2_toRouter(int valueToSend)

block

Router

- n : int;

- buffer : int;

~ in Router_fromPC1(int n)

~ in Router_fromPC2(int n)

~ out Router_toPC1(int n)

~ out Router_toPC2(int n)

(a) Block diagram

idle

PC1_toRouter(valueToSend)

PC1_fromRouter(receivedValue)

idle

PC1_toRouter(valueToSend)

PC1_fromRouter(receivedValue)

(b) PC1’s SMD

idle

Router_fromPC1(n)

Router_toPC2(n)

Router_fromPC2(n)

Router_toPC1(n)

idle

Router_fromPC1(n)

Router_toPC2(n)

Router_fromPC2(n)

Router_toPC1(n)

(c) Router’s SMD

idle

PC2_toRouter(valueToSend)

PC2_fromRouter(receivedValue)

idle

PC2_toRouter(valueToSend)

PC2_fromRouter(receivedValue)

(d) PC2’s SMD

Fig. 3. Initial AVATAR model

block

PC1

- valueToSend = 42 : int;

- receivedValue : int;

- booleanToSend = true : bool;

~ out PC1_toRouter(int valueToSend, bool bo...

~ in PC1_fromRouter(int receivedValue)

block

PC2

- valueToSend = 1337 : int;

- receivedValue : int;

- receivedBoolean : bool;

~ in PC2_fromRouter(int receivedValue, bool r...

~ out PC2_toRouter(int valueToSend)

block

Router

- n : int;

- buffer : int;

- b : bool;

~ in Router_fromPC1(int n, bool b)

~ in Router_fromPC2(int n)

~ out Router_toPC1(int n)

~ out Router_toPC2(int n, bool b)

block

PC1

- valueToSend = 42 : int;

- receivedValue : int;

- booleanToSend = true : bool;

~ out PC1_toRouter(int valueToSend, bool bo...

~ in PC1_fromRouter(int receivedValue)

block

PC2

- valueToSend = 1337 : int;

- receivedValue : int;

- receivedBoolean : bool;

~ in PC2_fromRouter(int receivedValue, bool r...

~ out PC2_toRouter(int valueToSend)

block

Router

- n : int;

- buffer : int;

- b : bool;

~ in Router_fromPC1(int n, bool b)

~ in Router_fromPC2(int n)

~ out Router_toPC1(int n)

~ out Router_toPC2(int n, bool b)

(a) Mutated block diagram

idle

PC1_toRouter(valueToSend, booleanToSend)

PC1_fromRouter(receivedValue)

idle

PC1_toRouter(valueToSend, booleanToSend)

PC1_fromRouter(receivedValue)

(b) Mutated PC1’s SMD

idle

Router_fromPC1(n, b)

Router_toPC2(n, b)

Router_fromPC2(n)

Router_toPC1(n)

idle

Router_fromPC1(n, b)

Router_toPC2(n, b)

Router_fromPC2(n)

Router_toPC1(n)

(c) Mutated Router’s SMD

idle

PC2_toRouter(valueToSend)

PC2_fromRouter(receivedValue, receivedBoolean)

idle

PC2_toRouter(valueToSend)

PC2_fromRouter(receivedValue, receivedBoolean)

(d) Mutated PC2’s SMD

Fig. 4. AVATAR model after refinement

M13
Trans+ (𝑃𝐶1,⟨𝑖𝑑𝑙𝑒,𝑃𝐶1_𝑡𝑜𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑇𝑜𝑆𝑒𝑛𝑑,𝑏𝑜𝑜𝑙 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑇𝑜𝑆𝑒𝑛𝑑),𝑖𝑑𝑙𝑒 ⟩)
−−→ M14

M14
Trans− (𝑃𝐶2,⟨𝑖𝑑𝑙𝑒,𝑃𝐶2_𝑓 𝑟𝑜𝑚𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑛𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒),𝑖𝑑𝑙𝑒 ⟩)
−−→ M15

M15
Trans+ (𝑃𝐶2,⟨𝑖𝑑𝑙𝑒,𝑃𝐶2_𝑓 𝑟𝑜𝑚𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑛𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑉𝑎𝑙𝑢𝑒,𝑏𝑜𝑜𝑙 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐵𝑜𝑜𝑙𝑒𝑎𝑛),𝑖𝑑𝑙𝑒 ⟩)
−−−→ M16

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

22 Sultan et al.

block

Router

- n : int;

- buffer : int;

~ in Router_fromPC1(int n)

~ in Router_fromPC2(int n)

~ out Router_toPC1(int n)

~ out Router_toPC2(int n)

block

PC1

- valueToSend = 42 : int;

- receivedValue : int;

~ out PC1_toRouter(int valueToSend)

~ in PC1_fromRouter(int receivedValue)

~ out PC1_toRogueRouter(int valueToSend)

~ in PC1_fromRogueRouter(int receivedValue)

block

PC2

- valueToSend = 1337 : int;

- receivedValue : int;

~ in PC2_fromRouter(int receivedValue)

~ out PC2_toRouter(int valueToSend)

~ in PC2_fromRogueRouter(int receivedValue)

~ out PC2_toRogueRouter(int valueToSend)

attackblock

RogueRouter

- n : int;

- buffer : int;

~ in RogueRouter_fromPC1(int n)

~ in RogueRouter_fromPC2(int n)

~ out RogueRouter_toPC1(int n)

~ out RogueRouter_toPC2(int n)

block

Router

- n : int;

- buffer : int;

~ in Router_fromPC1(int n)

~ in Router_fromPC2(int n)

~ out Router_toPC1(int n)

~ out Router_toPC2(int n)

block

PC1

- valueToSend = 42 : int;

- receivedValue : int;

~ out PC1_toRouter(int valueToSend)

~ in PC1_fromRouter(int receivedValue)

~ out PC1_toRogueRouter(int valueToSend)

~ in PC1_fromRogueRouter(int receivedValue)

block

PC2

- valueToSend = 1337 : int;

- receivedValue : int;

~ in PC2_fromRouter(int receivedValue)

~ out PC2_toRouter(int valueToSend)

~ in PC2_fromRogueRouter(int receivedValue)

~ out PC2_toRogueRouter(int valueToSend)

attackblock

RogueRouter

- n : int;

- buffer : int;

~ in RogueRouter_fromPC1(int n)

~ in RogueRouter_fromPC2(int n)

~ out RogueRouter_toPC1(int n)

~ out RogueRouter_toPC2(int n)

(a) Block diagram

idle

PC1_toRogueRouter(valueToSend)

PC1_fromRogueRouter(receivedValue)

idle

PC1_toRogueRouter(valueToSend)

PC1_fromRogueRouter(receivedValue)

(b) PC1’s SMD

idle

RogueRouter_fromPC1(n)

RogueRouter_toPC2(n)

RogueRouter_fromPC2(n)

RogueRouter_toPC1(n)

idle

RogueRouter_fromPC1(n)

RogueRouter_toPC2(n)

RogueRouter_fromPC2(n)

RogueRouter_toPC1(n)

(c) Malicious router’s SMD

idle

PC2_toRogueRouter(valueToSend)

PC2_fromRogueRouter(receivedValue)

idle

PC2_toRogueRouter(valueToSend)

PC2_fromRogueRouter(receivedValue)

(d) PC2’s SMD

Fig. 5. AVATAR model after attack scenario integration

M16
Trans− (𝑅𝑜𝑢𝑡𝑒𝑟,⟨𝑖𝑑𝑙𝑒,𝑅𝑜𝑢𝑡𝑒𝑟_𝑓 𝑟𝑜𝑚𝑃𝐶1(𝑖𝑛𝑡 𝑛) |𝑅𝑜𝑢𝑡𝑒𝑟_𝑡𝑜𝑃𝐶2(𝑖𝑛𝑡 𝑛),𝑖𝑑𝑙𝑒 ⟩)
−−−→ M17

M17
Trans+ (𝑅𝑜𝑢𝑡𝑒𝑟,⟨𝑖𝑑𝑙𝑒,𝑅𝑜𝑢𝑡𝑒𝑟_𝑓 𝑟𝑜𝑚𝑃𝐶1(𝑖𝑛𝑡 𝑛,𝑏𝑜𝑜𝑙 𝑏) |𝑅𝑜𝑢𝑡𝑒𝑟_𝑡𝑜𝑃𝐶2(𝑖𝑛𝑡 𝑛,𝑏𝑜𝑜𝑙 𝑏),𝑖𝑑𝑙𝑒 ⟩)
−−−→ M18

1 add attribute bool booleanToSend = t r u e in PC1
2 add attribute bool r e c e i v e dBoo l e an in PC2
3 add attribute bool b in Router
4 modify signal PC1_toRouter in PC1 to PC1_toRouter (i n t valueToSend , boo l booleanToSend)
5 modify signal PC2_fromRouter in PC2 to PC2_fromRouter (i n t r e c e i v edVa lu e , boo l r e c e i v e dBoo l e an)
6 modify signal Router_fromPC1 in Router to Router_fromPC1 (i n t n , boo l b)
7 modify signal Router_ toPC2 in Router to Router_ toPC2 (i n t n , boo l b)
8 modify action on signal with PC1_toRouter (va lueToSend) in PC1 to PC1_toRouter (valueToSend ,

booleanToSend)
9 modify action on signal with PC2_fromRouter (r e c e i v e dVa l u e) in PC2 to PC2_fromRouter (r e c e i v edVa lu e ,

r e c e i v e dBoo l e an)
10 modify action on signal with Router_fromPC1 (n) in Router to Router_fromPC1 (n , b)
11 modify action on signal with Router_ toPC2 (n) in Router to Router_ toPC2 (n , b)

Note that this script applies to the models of the system without the attack: a second script, that
differs from this one in 7 lines, has been written for refining the mutated models integrating the
attack.
5.1.3 Results.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 23

Table 5. Comparison metrics for the simple network case-study

Scenario 1 – Generic system evolution case: integration of functional scenarios and attack model
With AMULET By hand (optimized – naive approach)

Number of manual operations 40 AMULET lines written 39 – 176 modifications in TTool

Time needed for applying the mutations 7 min 29 4 min 21 – 11 min 52

Scenario 2 – Model refinement case: adding a parameter in the signals exchanged from PC1 to PC2
With AMULET By hand (optimized – naive approach)

Number of manual operations 18 AMULET lines written 43 – 145 modifications in TTool

Time needed for applying the mutations 5 min 14 5 min 27 – 19 min 15

Scenario 3 – “Digital twin” system evolution case: designing a cryptographic countermeasure
With AMULET By hand (optimized – naive approach)

Number of manual operations 33 AMULET lines written 52 – 180 modifications in TTool

Time needed for applying the mutations 6 min 47 6 min 57 – 26 min 45

For each evolution scenario, we have carried out two mutation approaches on the base models
in order to highlight the benefits of AMULET: a “by-hand” approach where we have modified the
models using TTool’s graphical interface, and an automated approach where we have written and
executed AMULET scripts using the AMULET compiler. We have quantified the number of manual
operations (performing a model modification using TTool GUI or writing an AMULET script line)
and the time it took to perform these operations for both approaches. For the manual approach,
the time measurement only includes the application of mutations using the GUI of TTool. For the
automated approach, the time measurement includes both the writing of the script (including the
time to identify and correct typing errors) and the execution of the script. In other words, both
measurements of time exclude the duration spent on conceptualizing the mutations. As explained
above, this case-study has mainly an illustrative aim. Nevertheless, Table 5 provides some key
metrics for discussing the benefits of AMULET even on this simple example. Note that in this
case-study, two “by-hand” mutation approaches actually exist. Indeed, given the models of the
five different functional scenarios we want to study only differs in an attribute initial value, the
optimized approach consists in (1) mutating a given block diagram and (2) using a TTool feature
enabling block diagram cloning for duplicating four times this block diagram and then modifying
in the four new models the relevant attribute. The naive approach consists in generating firstly
the five models and then integrating each of them with the modeled system evolution. While this
approach is suboptimal in this context, it has been included to simulate real-world scenarios where
engineers are required to apply the same mutation across a large set of models. For example, in [24]
each mutation modeling a countermeasure was manually applied on five models.
In Scenario 1, with the naive approach up to 176 modifications were needed in TTool while 40

lines of AMULET were needed in the AMULET approach (4.4 times less needed operations for the
model designer), and the relative execution times of the mutations were 11 min 52 vs 7 min 29 (37%
gain in needed time). However, in comparison with AMULET, the optimized approach leads to a
shorter modeling time and the same number of operations. In Scenario 2, AMULET has a benefit
whatever the “by-hand” mutation approach is chosen, with a reduction in the number of manual
operations ranging from 58% to 88% and a gain in needed time ranging from 4% to 73%. In the same
way, in Scenario 3 AMULET enables for a reduction in the number of manual operations ranging
from 37% to 82%, and a time gain from 2% to 75%.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

24 Sultan et al.

In Scenarios 2 and 3, the main benefit of AMULET lies in the reduction in the number of needed
operations for the model designer, thus lowering the risk of errors. Obviously, another benefit is the
reusability of the scripts that could apply to similar models with possibly only few modifications.

Finally, it is worth noting that the reduction in the number of manual operations does not directly
correspond to a proportional reduction in the required time. Indeed, some elementary mutations
are more efficiently executed using the GUI. For example, if we want to modify a parameter sent by
a signal in a state-machine diagram it is faster to double-click on the relevant send operator and
directly update the parameter name, as opposed to writing and executing the command modify
action on signal mySig(oldParameter) in myBlock to mySig(newParameter). However,
AMULET provides a time-saving advantage for these elementary mutations when their repeated
application across a large set of models is required, since the command is written only once and
can be applied to each model without the need to repeatedly locate and open the relevant panel
and the relevant operator in the GUI.

5.2 Second case-study: an automated packaging chain
5.2.1 System and evolution scenario.

Machine’s
Switch

Local
Console

IoT
Enclave

PLC

Sensors

Actuators

Configurable
Switch

Remote
Console

Gateway/
Firewall

External
Supervision

Other Subsystems

Fig. 6. Network architecture of the relevant factory’s subpart (adapted from [25])

This second case-study deals with a packaging chain which is part of IT’m Factory, a research
and training platform hosted in École des Mines de Saint-Étienne11. The packaging chain relies on
four distinct machines that:

• provides the chain with pots to fill (warehouse)
• fills the pots with granules (filling machine)
• closes and moves the pots from the filling machine’s conveyor belt to the packer’s conveyor
belt (collaborative arm)

• packs the pots in crates (packer).
The evaluation focuses on the filling machine. This machine is composed of six kinds of components:
a PLC12 and a set of sensors of actuators, a local control panel, an IoT enclave enabling for an
external supervision, and a network switch connecting together the PLC, the control panel, the IoT
enclave and the factory’s network (see Figure 6). Similarly to the simple network case-study, we
assume that the system has a vulnerability in its ARP protocol such as in [17] and we integrate
through model mutations an attacker model that (1) connects to the factory’s configurable switch,
(2) exploits this vulnerability, and finally (3) performs a man-in-the-middle attack by intercepting
and modifying the control messages sent by the remote console to the PLC.
11https://itm-factory.fr/index.php/objectif_et_visite_360/
12Programmable Logic Controller.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

https://itm-factory.fr/index.php/objectif_et_visite_360/

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 25

Table 6. Comparison metrics for the packaging chain case-study

With AMULET By hand

Number of manual operations 77 AMULET lines written 370 modifications in TTool

Time needed for applying the mutations 19 min 27 38 min 9

5.2.2 Models and mutations.
Five initial AVATAR models were designed to model the packaging chain with and without four

distinct countermeasures aiming at mitigating the man-in-the-middle attack:
(1) a model of the system without any security countermeasure. This model has 9 blocks with a

total of 91 attributes. State-machine diagrams have in total 33 states and 72 transitions.
(2) a model of the system with a plausibility check countermeasure verifying if the commands

received by the PLC are legitimate (9 blocks and state-machine diagrams totalizing 35 states,
75 transitions and 91 attributes)

(3) a model of the system with a cryptographic countermeasure (9 blocks and state-machine
diagrams totalizing 34 states, 75 transitions and 97 attributes)

(4) a model of the system with a countermeasure based on the use of a static ARP table on the
devices targeted by the attack (9 blocks and state-machine diagrams totalizing 33 states, 72
transitions and 91 attributes)

(5) a model of the system with a workaround consisting in disconnecting the configurable switch
from the system (9 blocks and state-machine diagrams totalizing 33 states, 72 transitions and
91 attributes).

Two series of mutations will be applied to this set of model. Firstly, mutations will integrate each
model with the attacker model. These mutations consist, for each model, in adding a new block to
their block diagram, creating new links between this block and two existing blocks, and slightly
modifying the signals and state-machine diagrams of the existing blocks. After these mutations
are applied, we have ten models: five initial models, and their mutated counterpart. Secondly, as
we want to evaluate the impact of the attack according to two different functional scenarios (a
scenario where the PLC is supervised from the remote console, and a scenario where the PLC is
supervised from the local console only), we will apply a new series of mutations to the ten models.
These mutations consist in modifying two transitions in a state-machine diagram.

In order to apply these mutations we have written five AMULET scripts: four scripts for inte-
grating the five initial models with the attacker model (75 AMULET lines written), and a script (2
AMULET lines written) for integrating the five initial models and the five mutated models with the
functional scenarios.
5.2.3 Results.
For this case-study, we also carried out two mutation approaches (“by-hand” with TTool GUI

and with AMULET) on the initial models. In comparison with the results provided for the simple
network case-study, Table 6 illustrates the benefits of AMULET on a “real-world” example: the
script-and-compilation approach spares the user from performing 293 additional manual operations
that are repetitive and error-prone (77 AMULET lines written vs 370 modifications in TTool, a
79% decrease in needed operations for the model designer). Here, the time needed for applying the
mutations on five models is also divided by two (38 min 9 by hand vs 19 min 27 with AMULET).
We believe here again that the most interesting benefit of AMULET is the reduction in the number
of manual operations (nearly 300 on these models) that should logically lead to a reduction of the
modeling errors (and, in addition, in the time spent on correcting them).

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

26 Sultan et al.

6 DISCUSSION AND CONCLUSIONS
Model mutations are widely used in model-based design and test methods. Yet, applying mutations
can be time consuming and error prone when done manually, and may require external tools
when automated. The contributions introduced in the paper address this issue for SysML models.
Indeed, AMULET is the first language targeting SysML mutations and relying on a set of predefined
SysML mutation operators. The compilation of AMULET source code is supported by TTool, an
open-source SysML modeling and verification toolkit: engineers can now use a unique toolkit for
design, automatically enrich and validate SysML models. AMULET and its compiler have been
evaluated against two case-studies including a model of a real industrial system. These evaluations
highlight the strength and the limitations of the language and its implementation.

6.1 Strengths
Applying mutations with AMULET helps in improving the model modification process in TTool
with respect to three key software quality criteria [16]:

User error protection (subcriterion of Usability): AMULET compiler provides an exception
handling feature based on the formal definitions of mutation operators. This feature prevents
incorrect atomic mutations (i.e., adding a transition between two states that does not exist
in the state-machine diagram). Thus, the AMULET-based approach ensures that the model
modification operations prevented by TTool’s GUI are also impossible to apply from a script.
Moreover, as noticed in almost every tested scenario (see Sect. 5) the AMULET-based mutation
approach substantially reduces the number of needed manual operations. We believe that
the conjunction of these two features leads to a decrease in the number of potential faulty
modifications.
Operability (subcriterion of Usability): AMULET users only need to use a text editor,
learn a syntax close to natural language and four simple commands. This avoids them
from performing numerous GUI interactions in several panels — which can be tedious when
modifying large models involving numerous blocks. Even if TTool mainly relies on a graphical
language for designing SysML models, we believe that a textual language for describing
mutations is the most efficient approach. Actually, the graphical support of mutations already
exists (it is the model editor) and our case-studies show that it is less efficient than AMULET.
Performance efficiency: as highlighted by the case-studies results, when applyingmutations
on large models or on numerous similar models AMLUET enables for a more efficient
modification process by reducing (sometimes substantially) the needed time.

6.2 Limitations and future works
Yet AMULET syntax and implementation can significantly be improved with respect to three
aims. Firstly, AMULET currently does not provide syntactic shortcuts for applying the same
mutation in several diagrams: for instance, adding a given state in every state-machine diagram
of a model requires writing one AMULET line per state-machine diagram instead writing, for
instance, a single add state s0 in all blocks. Therefore adding tokens enabling for multiple
diagrams modification as in Wodel [13] is an interesting improvement perspective. Secondly,
another implementation improvement we have identified is the integration of AMULET in TTool’s
GUI: currently, the compiler necessitates the use of an external text editor and the command-
line interface. Therefore adding to TTool a panel for writing AMULET commands, including
autocomplete features, and dedicated buttons for the am/amb, ap and ad commands should improve
the compiler’s operability. Integrating a pre-compilation feature that alerts the user if a mutation
he has written will lead to a syntactically incorrect model is another approach to improving the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

AMULET: a Mutation Language Enabling Automatic Enrichment of SysML Models 27

compiler. Finally, AMULET current implementation exclusively targets one of the two SysML
profiles supported by TTool: since several methods such as SysML-Sec [7] or W-Sec [24] rely on
the both profiles and involve model mutations, it should be relevant to extend AMULET in order to
cover the other SysML profile.
In addition, a limitation of our case-studies is that AMULET scripts and mutations in TTool

GUI have been written and performed by a single expert. Thus conducting additional testing of
AMULET with diverse case studies involving mutliple engineers of varying technical backgrounds
and expertise levels is likely to provide (1) more reliable comparison metrics and (2) help in
identifying additional strengths and limitations. Furthermore, conducting evaluations of AMULET
on more ambitious case studies would yield more insightful feedback regarding the productivity
gains within the context of model-driven engineering processes.
Finally, we believe that AMULET paves the way to several research directions relying on its

capabilities. Firstly, it could provide a TTool feature for displaying the models dynamically so that
the users can easily navigate between the successive versions of their models. This could easily be
done by saving a history of the mutations successively applied along the model lifecycle, and replay
them when needed. Secondly, a machine-learning algorithm integrated in TTool could be used to
suggest modeling improvements (such as security countermeasures or algorithm optimizations)
on the basis of the previously used modeling patterns: the output of this algorithm would be a
list of AMULET commands to apply to the model under design. Finally, like in mutation-based
testing approaches AMULET could be used to exhaustively explore the modeling alternatives for a
given system, and automatically select the most efficient ones with respect to the results of safety,
security and performance assessments embedded in TTool.

REFERENCES
[1] Bernhard K Aichernig, Jakob Auer, Elisabeth Jöbstl, Robert Korošec, Willibald Krenn, Rupert Schlick, and Birgit Vera

Schmidt. 2014. Model-based mutation testing of an industrial measurement device. In International Conference on Tests
and Proofs. Springer, 1–19.

[2] Bernhard K Aichernig, Klaus Hörmaier, and Florian Lorber. 2014. Debugging with timed automata mutations. In
International Conference on Computer Safety, Reliability, and Security. Springer, 49–64.

[3] Bernhard K Aichernig and Percy Antonio Pari Salas. 2005. Test case generation by OCL mutation and constraint
solving. In Fifth International Conference on Quality Software (QSIC’05). IEEE, 64–71.

[4] Mounifah Alenazi, Nan Niu, and Juha Savolainen. 2020. A novel approach to tracing safety requirements and state-based
design models. In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE, 848–860.

[5] Rabéa Ameur-Boulifa, Florian Lugou, and Ludovic Apvrille. 2019. SysML Model Transformation for Safety and Security
Analysis. In Security and Safety Interplay of Intelligent Software Systems, Brahim Hamid, Barbara Gallina, Asaf Shabtai,
Yuval Elovici, and Joaquin Garcia-Alfaro (Eds.). Springer International Publishing, Cham, 35–49.

[6] Ludovic Apvrille, Pierre de Saqui-Sannes, Hoana Hotescu, and Alessandro Tempia-Calvino. 2022. SysML Models
Verification Relying on Dependency Graphs. In MODELSWARD. 174–181.

[7] Ludovic Apvrille and Yves Roudier. 2013. SysML-Sec: A SysML Environment for the Design and Development of
Secure Embedded Systems. In APCOSEC 2013. Yokohama, Japan. https://hal.telecom-paris.fr/hal-02288385

[8] Ludovic Apvrille, Bastien Sultan, Oana Andreea Hotescu, Pierre de Saqui-Sannes, and Sophie Coudert. 2023. Mutation
of Formally Verified SysML Models. In Proceedings of the 11th International Conference on Model-Driven Engineering
and Software Development - MODELSWARD.

[9] Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule, Benoit Baudry, and Jean-Luc Dekeyser. 2015.
Towards an automation of the mutation analysis dedicated to model transformation. Software Testing, Verification and
Reliability 25, 5-7 (2015), 653–683.

[10] Luciano C Ascari and Silvia R Vergilio. 2010. Mutation testing based on ocl specifications and aspect oriented
programming. In 2010 XXIX International Conference of the Chilean Computer Science Society. IEEE, 43–50.

[11] Pierre de Saqui-Sannes, Ludovic Apvrille, and Rob Vingerhoeds. 2021. Checking SysML Models Against Safety and
Security Properties. Journal of Aerospace Information Systems (Nov. 2021), 1 – 13. https://doi.org/10.2514/1.i010950

[12] David P Gluch and Charles B Weinstock. 1998. Model-Based Verification: A Technology for Dependable System Upgrade.
Technical Report. CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

https://hal.telecom-paris.fr/hal-02288385
https://doi.org/10.2514/1.i010950

28 Sultan et al.

[13] Pablo Gómez-Abajo, Esther Guerra, and Juan de Lara. 2016. Wodel: a domain-specific language for model mutation. In
Proceedings of the 31st Annual ACM Symposium on Applied Computing. 1968–1973.

[14] Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G Merayo. 2021. Wodel-Test: a model-based framework
for language-independent mutation testing. Software and Systems Modeling 20, 3 (2021), 767–793.

[15] Kunxiang Jin and Kevin Lano. 2021. Mutation Operators for Object Constraint Language Specification.. In STAF
Workshops. 128–134.

[16] Attila Kovács and Kristóf Szabados. 2014. Test software quality issues and connections to international standards.
Acta Univ. Sapientiae, Informatica 5 (05 2014), 77–102. https://doi.org/10.2478/ausi-2014-0006

[17] Aditya P. Mathur and Nils Ole Tippenhauer. 2016. SWaT: a water treatment testbed for research and training on
ICS security. In 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater). 31–36.
https://doi.org/10.1109/CySWater.2016.7469060

[18] Lei Mi and Kerong Ben. 2011. A method of software specification mutation testing based on uml state diagram for
consistency checking. Procedia Engineering 15 (2011), 110–114.

[19] OMG. 2014. Object Constraint Language – Version 2.4. Technical Report.
[20] OMG. 2017. OMG Systems Modeling Language – Version 1.5. Technical Report.
[21] Gabriel Pedroza, Ludovic Apvrille, and Daniel Knorreck. 2011. AVATAR: A SysML environment for the formal

verification of safety and security properties. In 2011 11th Annual International Conference on New Technologies of
Distributed Systems. IEEE, 1–10.

[22] Percy Antonio Pari Salas and Bernhard K Aichernig. 2005. Automatic Test Case Generation for OCL: a Mutation
Approach. UNU-IIST Report 321 (2005).

[23] Bastien Sultan. 2020. Maîtrise des correctifs de sécurité pour les systèmes navals. Ph. D. Dissertation. Ecole nationale
supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire.

[24] Bastien Sultan, Ludovic Apvrille, and Philippe Jaillon. 2022. Safety, Security and Performance Assessment of Security
Countermeasures with SysML-Sec. In Proceedings of the 10th International Conference on Model-Driven Engineering and
Software Development - MODELSWARD. INSTICC, SciTePress, 48–60. https://doi.org/10.5220/0010832300003119

[25] Bastien Sultan, Ludovic Apvrille, Philippe Jaillon, and Sophie Coudert. 2023. W-Sec: A Model-Based Formal Method
for Assessing the Impacts of Security Countermeasures. In Model-Driven Engineering and Software Development,
Luís Ferreira Pires, Slimane Hammoudi, and Edwin Seidewitz (Eds.). Springer Nature Switzerland, Cham, 203–229.

[26] Bastien Sultan, Fabien Dagnat, and Caroline Fontaine. 2018. A Methodology to Assess Vulnerabilities and Counter-
measures Impact on the Missions of a Naval System. In Computer Security, Sokratis K. Katsikas, Frédéric Cuppens,
Nora Cuppens, Costas Lambrinoudakis, Christos Kalloniatis, John Mylopoulos, Annie Antón, and Stefanos Gritzalis
(Eds.). Springer International Publishing, Cham, 63–76.

[27] John von Neumann, Arthur W Burks, et al. 1966. Theory of self-reproducing automata. Vol. 1102024. University of
Illinois press Urbana.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article . Publication date: September 2023.

https://doi.org/10.2478/ausi-2014-0006
https://doi.org/10.1109/CySWater.2016.7469060
https://doi.org/10.5220/0010832300003119

	Abstract
	1 Introduction
	2 Related works
	2.1 Concerning model mutation-based methods
	2.2 Concerning mutation automation and mutation languages

	3 SysML mutations: the theoretical way
	3.1 SysML models: mathematical definitions
	3.2 SysML Mutations: operators summary
	3.3 SysML mutations: full mathematical definitions
	3.4 AMULET: a SysML mutation language

	4 SysML mutations: the practical way
	4.1 SysML and AVATAR: differences
	4.2 Implementation in TTool
	4.3 About the syntactic correctness of the mutated model

	5 Case-study: automatic enrichment of a model with an ARP spoofing attack scenario
	5.1 First case-study: a simple network
	5.2 Second case-study: an automated packaging chain

	6 Discussion and Conclusions
	6.1 Strengths
	6.2 Limitations and future works

	References

