TELECOM

Paris

ﬁggml Operating Systems

VII. Synchronization

1P PARIS
'U Ludovic Apvrille

'N’ ludovic.apvrille@telecom-paris.fr

Institut Mines-Télécom Eurecom, Ofﬁce 470

perso.telecom-paris.fr/apvrille/0S/

perso.telecom-paris.fr/apvrille/OS/

Synchronization issues Implementing critical sections Programming with synchronization constraints
©0000 00000 00000000000

Why is Synchronization Necessary?

m Know for a process / thread at which execution point is
another process / thread

B Ensure shared data consistency

— Where is my money?!

[Process A | | Bank account | | Process B |

1000 Value _= 1000
y = getValue()

1000

x = getValue()

1700 :
setValue(x) Value‘
setValue(y)
Valuei= 1500
TELE E [a T1

=54 i |

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 00000000000

Critical Sections

1. Mutual exclusion (or safety condition): At most one
process at a time is allowed to execute code inside a critical
section of code

2. Machine independence: No assumptions should be made
about speeds or the number of CPUs

3. Progress: Process running outside a critical section may not
block other processes

4. Bounded waiting (or liveness): Process should be
guaranteed to enter a critical section within a finite time

e
Supported by many programming mechanisms SR

PARIS

Synchronization issues Implementing critical sections Programming with synchronization constraints
00®00 00000 00000000000

Mutual Exclusion Using Critical Sections

Process A Process B

Executing Executing
Enters critical section B

¥
5 Attempts to enter critical section,
L]
Executing in o
critical ¢
c 4 Blocked
section .
L]
L] sy .
s LD Enters critical section ,
L]
. Executing in
. critical
. X o section
R Leaves critical section °

Execuﬁ_ng Executing

51 i |

4/22 Une école de I'lM

Synchronization issues Implementing critical sections Programming with synchronization constraints
000e0 00000 00000000000

Handling Deadlocks

B Use of shared resources: request, use, release

B Deadlock = situation in which a process waits for a resource
that will never be available

(i) Prevent the system to enter a deadlock state

B Deadlock prevention: Restraining how requests can be made

m Deadlock avoidance: More information from user on the use
of resources

TELECOM

5/22 Une école de I'lMT Operating Systems - Synchronization

Synchronization issues Implementing critical sections Programming with synchronization constraints
[elelelel] 00000 00000000000

Handling Deadlocks

(ii) Allow the system to enter a deadlock state and then

recover

® Process termination
® Resource preemption

(iii) Ignore the problem (i.e., assume deadlocks never occur in
the system)

® Most OS, including Linux

TELECOM

6/22 Une école de I'lMT Operating Systems - Synchronization

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 90000 00000000000

Software Approaches

Disabling Interrupts / Enabling interrupts

® Unwise to empower user processes to turn off interrupts!

Lock variables

B Procedure
e Reads the value of a shared variable
e If 0, sets it to 1 and enters the critical section
e If 1, waits until the variable equals to 0

B There is a major flaw related to scheduling
e Can you guess why?

TELECOM

7/22 Une école de I'lMT Operating Systems - Synchronization

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 0®000 00000000000

Software Approaches (Cont.)

m Busy waiting (waste of CPU)

B Violates the progress requirement of critical-sections
e Can you guess why?

Process 0 Process 1

While (TRUE){ While (TRUE){
while(turn != 0); while(turn != 1);
/*xbegin critical section x/ /*begin critical section x/
turn = 1; turn = 0;
/* end critical section x/ /* end critical section */
} }

TELEFDM
aris

51 i |

PARIS

Synchronization issues
00000 0000

Software Approaches (Cont.)

m 1965, 1981

m Alternation + lock variables

Implementing critical sections

Programming with synchronization constraints
00000000000

Process 0 Process 1

while (true) {

flag [0] = true;

turn = 0;

while(flag [1] && (turn==0)) {
// busy wait

/* Critical section x/
flag [0] = false;
/* End critical section x/

while (true) {

flag [1] = true;

turn = 1;

while (flag [0] && (turn==1)){
// busy wait

/* Critical section x/

flag[1] = false;

/* End critical section x/
} Paris

51 i |

PARIS

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 0000 00000000000

Hardware Approaches

m Special assembly instruction which is atomic
m TSL Rx, LOCK

® Reads the content of the memory at address lock, stores it in
register Rx, and sets the value at address lock to 1

Assembly code to enter / leave critical sections

Enter_critical_section:

TSL register , LOCK

CMP register , #0

JNE Enter_critical_section
RET

Copies lock to register and set lock to 1
Was lock equal to 07

If 1= 0 — lock was set —> loop

Enters critical section

Leave_critical_section:
MOVE LOCK, #0
RET

Stores 0 in lock

Quits critical section
TELEFDM
2aris

51 i |

10/22 Une école de I'l

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 [eYoloYe] } 00000000000

Limits of Peterson’s and TSL solutions

Busy waiting & Priority inversion problem

m If a lower priority process is in critical section and a higher
priority process busy waits to enter this critical section, the
lower priority process never gains CPU — Higher priority
processes can never enter critical section

Solution: sleep/wake-up

m Sleep(): Caller is blocked on a given address until another
process wakes it up

m Wakeup(): Caller wakes up all processes waiting on a given
address

TELECOM
i

11/22 Une école de I'lMT Operating Systems - Synchronization

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 ©0000000000

Semaphores

® A semaphore is a counter shared by multiple processes

B Processes can increment or decrement this counter in an
atomic way

® Mainly used to protect access to shared resources

m Different APls to use semaphores
¢ [PC System V
- semget(), semclt(), semop()

e POSIX

- semopen(), sempost(), semwait(), ...

TELEFDM
aris

EEET
12/22 Une école de I'lMT &%) 1P PARIS

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 0®000000000

Mutex N

® Mutual Exclusion
® A mutex has two states: locked, unlocked

® Only one thread / process at a time can lock a mutex

® When a mutex is locked, other processes / threads block
when they try to lock the same mutex:
e |ocking stops when the mutex is unlocked
¢ One of the waiting process / thread succeeds in locking the
mutex

TELEFDM
aris

51 i |

IP PARIS

13/22 Une école de I'IMT

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 00@00000000

Mutex: Main Functions (pthread Library)

Initialize a mutex

pthread_mutex_t myMutex;
pthread_mutex_init(&myMutex, NULL);

Lock the mutex
m Waits for the lock

pthread_mutex_lock(&mymutex);

B Returns immediately if mutex is locked

pthread_mutex_trylock(&mymutex);

Unlock the mutex

pthread_mutex_unlock(&mymutex);

14/22 Une école de I'lMT Operating Systems - Synchronization

Synchronization issues Implementing critical sections
00000 00000

Condition Variables

Programming with synchronization constraints
000®0000000

®m Used to signal a condition has changed

To wait on a condition

m Put lock on mutex

® Wait on that condition — Automatic release of the lock

To signal a change on a condition

m Put lock on mutex

m Signal that condition

TELECOM

Une école de I'lMT Operating Systems - Synchronization {é}lp PARIS

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 0000@000000

Use of Condition Variables

Process A Process B

Executing Executing
Enters critical section -

¥ > Attempts to enter critical sectio
L] —|| .
[] H
Executingin ¢ Checks for a given condition: if {...)
critical . {We assume the test returns false) Blocked
section ¢ Waits on cvi
. _Relgases mutex y/ _ Enterscritical section
Waiting | [11° N
/ Signals on cvi .
>4l vieal sect .
Blocked #ttempts to get mutex Leaves critical section .
Executingin ¢
critical : Executing
j ° L itical secti
section i eaves critical section
. wris
Executing

51 i |

16/22 Une école de I'l

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 00000®00000

Producer/Consumer Example (pthread lib.)

#include <stdlib.h>
#include <pthread.h>

#define N_THREADS_PROD 3
#define N_THREADS_CONS 4

void *produce(void *); void produceData(int id);
void xconsume(void x) ;void consumeData(int id);

int data = 0; int maxData = 5;
pthread_mutex_-t myMutex;
pthread_cond_t full , empty;

int main(void) {
int i;
pthread_t tid_p [N.THREADS_PROD];
pthread_t tid_c [N.-THREADS_CONS];

pthread_mutex_init(&myMutex, NULL);

for (i=0; i<N_.THREADS_PROD; i++) {pthread_create(&tid_p[i], NULL,

s produce, (void x*)i);
for(i=0; i<N_.THREADS.CONS; i++) {pthread_create(&tid_c[i],

NULL, consume, (void x)i);
for (
for (

i = 0; i < N.THREADS_PROD; i++) {pthread_join(tid_p[i], NULL); }
i = 0; i < N.THREADS_CONS; i++) {pthread_join(tid_c[i], NULL); }
}return (0); TELECOM

17/22 Une école de |

IP PARIS

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 000000@0000

Producer/Consumer Example (Cont.)

void xproduce(void *arg) {
int myld = (int)arg;
while (1) {
produceData(myld);
sleep (random() % 5);

}

void xconsume(void *arg) {
int myld = (int)arg;
while (1) {
consumeData(myld);
sleep (random() % 5);
}
}

51 i |

PARIS

18/22 Une école de I'l

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 00000008000

Producer/Consumer Example (Cont.)

void produceData(int id) {
pthread_mutex_lock(&myMutex);
if (data = maxData) {
printf("#%d is waiting for less data; data = %d\n", id, data);
pthread_cond_wait(&full , &myMutex);

data ++;

printf("#%d is producing data; data = %d\n", id, data);
pthread_cond_signal(&empty);
pthread_mutex_unlock(&myMutex);

}

void consumeData(int id){
pthread_mutex_lock(&myMutex);
if (data = 0)
printf("#%d is waiting for more data; data = %d\n", id, data);
pthread_cond_wait(&empty, &myMutex);

data——;

printf("#%d is consuming data; data = %d\n", id, data);
pthread_cond_signal(&full);
pthread_mutex_unlock(&myMutex);

TELEFDM
a

51 i |

IP PARIS

19/22 Une école de |

Synchronization issues

00000

Producer/Consumer Example:

Implementing critical sections
00000

$ gcc —Ipthread —o prod prodcons.c

Programming with synchronization constraints

00000000800

Execution

$./prod #2 is producing data; data =1

#1 is producing data; data =1 #3 is consuming data; data =0

#2 is consuming data; data = 0 #0 is producing data; data =1

#0 is waiting for more data; data = 0 #2 is consuming data; data =0

#0 is producing data; data =1 #0 is producing data; data =1

#0 is consuming data; data = 0 #0 is consuming data; data = 0

#3 is waiting for more data; data = 0 #1 is waiting for more data; data = 0
#2 is producing data; data =1 #3 is waiting for more data; data =0
#3 is consuming data; data = 0 #2 is producing data; data =1

#1 is waiting for more data; data = 0 #0 is consuming data; data = 0

#0 is waiting for more data; data = 0 #1 is consuming data; data = —1

#3 is waiting for more data; data = 0 #2 is producing data; data =0

#2 is waiting for more data; data = 0 #3 is consuming data; data = —1

#0 is producing data; data =1 #0 is producing data; data =0

#1 is consuming data; data = 0 #0 is waiting for more data; data =0
#1 is producing data; data =1

#0 is consuming data; data = 0

Where??7?

the code is wrong!

Une école de I'lM

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 00000000080

Producer/Consumer Example (Updated)

void produceData(int id) {
pthread_mutex_lock(&myMutex);
while (data = maxData) {
printf("#%d is waiting for less data; data = %d\n", id, data);
pthread_cond_wait(&full , &myMutex);

data ++;

printf("#%d is producing data; data = %d\n", id, data);
pthread_cond_signal(&empty);
pthread_mutex_unlock(&myMutex);

}

void consumeData(int id){
pthread_mutex_lock(&myMutex);
while (data = 0)
printf("#%d is waiting for more data; data = %d\n", id, data);
pthread_cond_wait(&empty, &myMutex);

data——;

printf("#%d is consuming data; data = %d\n", id, data);
pthread_cond_signal(&full);
pthread_mutex_unlock(&myMutex);

TELEFDM
a

51 i |

IP PARIS

21/22 Une école de |

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 00000000000

Producer/Consumer Example: Execution (Updated)

$gcc —Ipthread —o prod prodcons.c
$prod

#3 is waiting for more data; data
#1 is waiting for more data; data
#2 is producing data; data =1 . . ! —
#2 is producing data; data = 2 ﬁg :: p:ggﬂz::g g:::: g::z —
#0 is consuming data; data =1 W2 s SOnsuming data: data _
#2 is consuming data; data = 0 #2 is producing data: data —
#2 is waiting for more data; data =0 #2 is producin data: data —
#3 is waiting for more data; data #1 is producing data: data —
#0 is producing data; data =1 #0 is consuming data: data =
#1 is consuming data; data = 0 . . ! _
#2 is producing data: data = #1 is consuming data; data =

1 . .

#2 is consuming data; data = 0 #3 is consuming data; data =
1
0

#3 is consuming data; data =
#2 is producing data; data =
#2 is producing data; data =
#1 is consuming data; data =

I
oo

Il
o

#1 is producing data; data = 71 !S produc!ng data; data —
#3 is consuming data; data = #1 is producing data; data =
#0 is waiting for more data; data = zg :z \F:vraoi(:iuncmgfofaisvsdzziaf
#2 is waiting for more data; data = 0 4 is consumgin data: data _
#0 is producing data; data =1 40 s roducing datat data —
#0 is consuming data; data = 0 s P \né dat ! dat _
#0 is waiting for more data; 5 'S conzumlmg datat data _
#3 is waiting for more data; data =0 #2 is producing data; data =

#1 is waiting for more data; data #0 !s consuming data; data =
#2 is producing data; data =1 #1 is producing data; data =5

. . ! _ #0 is waiting for less data; data =
ﬁg :z E;z::‘;::i ::t:z :::: - #2 is waiting for less data; data =5

2

1 . e
#0 is consuming data; data — 0 #3 is consuming data; data = 4 TELECOM
#1 is producing data; data =1 Pari

=57 fiid |
22/22 Une école de I'|M

PARIS

o

a
o
-+
Y
Il
o
By
=
PUROPRAURWNWAORWNWNRNREO

Il
o
o

	Synchronization issues
	Definition

	Implementing critical sections
	Several solutions

	Programming with synchronization constraints
	Objects for ensuring mutual exclusion
	Example: using mutexes and condition variables

