
“Operating Systems” Course

Final Examination – Fall 2007

February, 2008

Duration: 2h

ludovic.apvrille@telecom-paristech.fr

No document regarding Operating Systems (OS) or RTOS is allowed. Questions on
OS or RTOS do take into account the fact that you don't have any document on that topic.
The only documents allowed are the three slide sets and the paper that was given to you
during the two following lecture sessions: January 14th and 28th. Having other
documents (or communicating devices) with you shall be considered as a regular cheating
procedure.
Answers should be as concise as possible. Also, you are free to answer either in English
or in French, but please do not mix both!

I. Understanding of the course (7 points)

(a) What are the minimum hardware mechanisms on which an Operating System

must rely to ensure protection between user processes? Clearly explain those
mechanisms (just mentioning them is not enough) and which kind of protection
they provide. (2 points)

• Protection mode in the CPU. Some instructions need to be privileged instructions

i.e. instructions meant to be performed only by the OS. Examples of such
instructions are the one to configure interrupts, to configure the timer, and to
configure the MMU.

• Memory Management unit: a memory management unit offers the possibility to
forbid the access to unauthorized addresses (RAM, I/O devices).

(b) What are the actions taken by the Operating System when a user program makes a

call to the write() system call? We assume that this call is performed to write data
in a file. Provide an answer for the two following cases:

a. Files are not cached in main memory. (1.5 points)
b. Files are cached in main memory. (1.5 points)

• First case: files are not cached in main memory. In that case, the operating
system may first copy the provided data to an intermediate buffer. Then, a DMA
transfer is performed from that buffer (or from the initial buffer) to the disk.
During that transfer, the task is put on I/O wait. Then, once the transfer is
completed, the task is moved back to a “runnable” state.

• In the second case, data are just directly copied to a memory location that
corresponds to the cached file. Then, the task may continue its execution, it is not
necessary to put it on I/O wait. The file will be written back to disk when the file is
closed, or when the operating system needs more memory, or when the operating
system halts. Or also, simply when the system is not loaded, the operating system
may decide to write back the file to disk.

(c) What are the techniques used in Real-Time Operating Systems to reduce the time

between a timer’s expiration and the notification of that expiration to a user
program? (2 points)

The most important technique to reduce the time between a timer expiration and its
notification to related user programs is to speedup the preemption of other currently
running tasks, and also to reduce the computation performed in interrupt service routine,
and more precisely in the one handling the timer. To speedup preemption, a well-known
technique is to introduce preemptions points every n instructions in the kernel. That n is
commonly close to 1000 to 2000 instructions. Note that reducing that number may imply
a too important overhead on the kernel.

II. Kernel-level programming (8 points)

When programming at kernel level, you may have noticed that it is impossible to use the
malloc() C-library function, but only kmalloc(). Unfortunately, kmalloc() can only return
blocks of memory which size is a power of 2 (equal or greater than 16B, and less or equal
than 128kB). This means that when you allocate some memory with kmalloc(), you may
have unused blocks since kmalloc() allocates more memory than required when you
request sizes are not a power of 2. On the contrary, malloc() returns a block of memory of
the exact required size.

(a) Explain the main steps that happen on UNIX Operating Systems when you start a
program i.e. main actions that are executed (by the Shell from which the program
is started, by the Operating System) when you type the name of an executable file
in a shell until your first C instruction is executed. (2 points)

The shell first forks to create a new process (fork, vfork(), etc.). Then, the new process
environment is replaced by a new one corresponding to the program that the user wishes
to start: the code and data of the corresponding program file are loaded into memory, the
environment variables are loaded into the program, the heap and stack are initialized.
Then, the C execution environment is started (initialization routines, loading of
librairies). At last, the first instruction of the corresponding C file may be executed. Note

that dynamic libraries may also be loaded, either during the initialization of the program,
or at execution step.

(b) We now assume that kmalloc() is a system call. Suppose that the implementation
of malloc() C library can only rely on kmalloc() (remember: kmalloc can return
only blocks of memory that are power of 2, equal or greater than 16B, and less or
equal than 128kB). How could malloc() be implemented with limited waste of
memory? I definitely don’t ask you to provide the full C code of your malloc(), I
just ask you to provide main algorithms and data structures that you may need to
implement malloc() in a efficient way. (4 points)

Since kmalloc() may allocate only power-of-2 blocks of memory, malloc() has to do its
own memory management - relying only on kmalloc() for allocation purpose-. Malloc()
must keep track of allocated blocks. To do so, we may use a linked list of all memory
blocks – allocated or not – with a special tag saying for each block whether it is
allocated or not. Then, when a call to malloc() is performed, there are two cases. (We
assume that a memory request with malloc() cannot be more than 128KB):

• First, an algorithm is applied to search for a continuous block of the right size, in the

linked list of memory blocks. If such a block can be found, then, it is marked as
allocated and then returned to the user. A first fit policy may be applied on the linked
list to find that block.

• Second, if a block cannot be found, a 128KB block is allocated with kmalloc(), and
added to the linked list. The first fit algorithm may be applied again, and is sure to
return a memory block of the right size.

Note that we have to manage blocks – at malloc level - of a minimal size to avoid a too
big overhead (memory and computation overhead). There might be also other
optimizations: allocate with kmalloc a block close to the required one when no other
already allocated block is available, etc.

(c) Now, you want to program the free() C-library function. Propose a short
implementation of it that can work conjointly with your malloc() function. This
function is only allowed to make calls to kfree() (we assume that this is a system
call). (2 points)

When a call is made to free, the corresponding malloced-block is marked as free, and
may be merged with previous or next blocks of the linked list. Only blocks of the same
kmalloced 128KB blocks may be merged together. Then, if a kmalloced block is totally
free of any allocation (i.e. a 128KB block that was previously allocated with kmalloc()),
that block may be removed from the linked list, and a kfree() may be performed on that
block.

III. Synchronizing tasks (4 points)

Microsoft Windows Vista provides an EventPair object to help support fast
request/response message passing between client and server threads. EventPair
synchronizes a pair of client / server threads. The server thread waits for a request by
calling Event-Pair::Wait(). The client issues a request by first placing a request message
in a shared memory location, and then by calling EventPair::Handoff(). Handoff wakes
up the server thread and simultaneously blocks the client to wait for the reply. The server
thread eventually responds by placing the reply message in another shared memory
location and then it calls Handoff: this wakes up the client and simultaneously blocks the
server which waits for the next request. Then, the client may consult the response.

(a) Show how to implement EventPair using semaphores. (2 points)

We need two semaphores to do this, so as to make a signal between the client and the
server, and between the server and the client. Let’s call them S1 and S2, respectively. We
denote by share1 and share2 the two shared memory locations.
We note T(S1)the function to try to get S1(i.e. decrement S1) et R(S1) the function to
release S1 i.e. to increment S1.

Server Client
S1 = 0
S2 = 0

while(1) {

T(S1)

y = share1
…
share2 = z
R(S2)

}

share1 = x
R(S1)
T(S2)

y = share2
…

Thus,
Event-Pair::Wait().is:
Event-Pair::Wait(S) {
 T(S)
}

EventPair::Handoff(S, share, data) {
 share = data;

 R(S)
}

(b) Show how to implement EventPair using mutex and condition variables (2 points)

In that case, we use one mutex (called mut), and two condition variables: wisml1 (written
in memory location one) and wishl2.

Server Client

while(1) {

mutex_lock(m)
wait(&wisml1, &m)

y = share1
…
share2 = z
signal(&wisml2)
mutex_unlock(m)

}

mutex_lock(m)
share1 = x
signal(&wisml1)
wait(&wisml2, &m)

y = share2
…

We may deduce from that code the behavior of Event-Pair::Wait() and
EventPair::Handoff, as done in question (a).

