TELECOM

Paris

111

BasicOS

Introduction

Ludovic Apvrille ludovic.apvrille@telecom-paris.fr
Eurecom, office 470

https://perso.telecom-paris.fr/apvrille/Basic0S/

https://perso.telecom-paris.fr/apvrille/BasicOS/

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 000000000000 0000000000000

QOutline

Introduction to OS

2/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00

TELECOM

Paris H 7
Sy What is a Computer System?
,'@;wnms

In other words: what are the main components of a PC?

Applications
os

3/45

Introduction to OS The Basics of C Advanced Concepts in C
>00 00000000 000000000000

TELECOM . . e .

Sow Computer System: Simplified View

:@:;IPPARIS

CPU Memory

Input/Output

4/85

Protection and System Calls
0000000000000

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 000000000000 0000000000000

TELECOM
ik

Sawit What is an Operating System?

W% 1P PARIS
Y

Definition

The most fundamental program of a computer system

* Make computers convenient to use i.e. simplify programmers’ tasks
® Abstract hardware concerns

® e.g., simplify memory allocations
e Use hardware in an efficient manner
® Security

® Protect systems from wrong and malicious utilizations

5/45

Introduction to OS The Basics of C
>00

Advanced Concepts in C
00000000

Protection and System Calls
000000000000

0000000000000
TELECOM

smmut Layers of a Computer System

{é}lp PARIS

[User applications @& @ J

J

S

Devices

6/45

Introduction to OS The Basics of C Advanced Concepts in C
>00

TELEECIM
ris
o i |

V@ 1P PARIS

7/45

00000000 000000000000

Main Services

® Program execution

® Resource allocation and release
® |/O operations

® Files handling

e Communication

® Between programs running on the same computer
® Between programs running on different computers

® Error detection or handling

Protection and System Calls

While ensuring

0000000000000

® Ease of use
e Efficiency

® System
protection

® Hardware failure, illegal memory access, illegal instruction, exception (divide by

zero)
® Accounting

® Security

Introduction to OS The Basics of C Advanced Concepts in C
>00

TELECOM
ris
o i |

W% 1P PARIS
Y

8/45

00000000 000000000000

Operating Systems: a Chronology

1950 — 1960: transistors
® First OS written in assembly language

1970 — 1980: integrated circuits
® From millions of code of assembly language — C

e CPU and memory partitioning
® Genenis of UNIX

v

1980 — now: large scale integrated circuits

® Graphical user interfaces, networking
¢ GNU/Linux, Windows, macOS, Solaris, Android,

Apple 11, 1977-1988

Protection and System Calls
0000000000000

(source = Wikipedia)

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

1300 00000000 000000000000 0000000000000
TELECUM Osc 10040
& UNIX: Histor I {
A ' y L]
{@;lpnms

Idea originated in 1965

® Research lab of AT&T (Bell Labs)

® |dea of Ken Thompson: develop what no computer company was ready to
provide i.e. a multi-user and multiprocessing OS

® Multics created in cooperation with MIT and General Electric
® | ess complex version of Multics: UNIX, operational at Bell Labs in 1971
® Fully written in assembly language

Diffusion in acamedia and companies

® Code is modified by graduate students to make UNIX more robust

® Rewritten in C

9/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
00000000 000000000000 0000000000000

GNU/Linux (Free Software)
e GNU/Linux (a.k.a. Linux) = GNU Operating A
()

System + the Linux kernel

The GNU Operating System The Linux Kernel
® GNU'’s Not Unix! ® Created in 1991 by Linus
Torvalds

® Applications, libraries, and
developer tools ® See next slide

e Started in 1984

10/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 000000000000 0000000000000

TELECOM

oo First Post by Linus Torvald

comp.os.minix »
What would you like to see most in minix?
285 posts hy 262 authors (@ |G

B Linus Benedict Torvalds

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be hig and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. 1'd like any feedback on
things people like/dislike in minix, as my OS5 resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

Ive currently ported bash(1.08) and gcc(l.40), and things seem to work.
This implies that I'l get something practical within a few months, and

I'd like to know what features most people would want. Any suggestions
are welcome, but | won't promise [l implement them :-)

Linus (torv...@kruuna.helsinki fi)
PS. Yes - It's free of any minix code, and it has a multi-threaded fs.

Itis MOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that's all | have (.

11/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>oe 00000000 000000000000 0000000000000

TELEF‘CIM

omm And a Recent Post by Linus Torvald. ..

W% 1P PARIS * Linux 5.19 .
@ 2022-07-31 21:43 Linus Torvalds
2022-08-01 1. " Build regressions/improvements in v5.19 Geert Uytterhoeven

7
2022-08-01 16:52 * Linux 5.19 Tony Luck
0 siblings, 2 replies; 5+ messages in thread
From: Linus Torvalds @ 2022-07-31 21:43 UTC (permalink / raw)
To: Linux Kernel Mailing List

So here we are, one week late, and 5.19 is tagged and pushed out.

The full shortlog (just from rc8, obviously not all of 5.19) is below,
but I can happily report that there is nothing really interesting in
there. A lot of random small stuff.

In the diffstat, the loongarch updates stand out, as does another
batch of the networking sysctl READ_ONCE() annotations to make some of
the data race checker code happy.

Other than that it's really just a mixed bag of various odds and ends.

On a personal note, the most interesting part here is that I did the
release (and am writing this) on an arm64 laptop. It's something I've
been waiting for for a _loong_ time, and it's finally reality, thanks
to the Asahi team. We've had armé4 hardware around running Linux for a
long time, but none of it has really been usable as a development
platform until now.

It's the third time I'm using Apple hardware for Linux development - I
did it many years ago for powerpc development on a ppcd7@ machine.

And then a decade+ ago when the Macbook Air was the only real
thin-and-lite around. And now as an armé4 platform.

Not that I've used it for any real work, I literally have only been
doing test builds and boots and now the actual release tagging. But
I'm trying to make sure that the next time I travel, I can travel with
this as a laptop and finally dogfooding the armé4 side too.

Anyway, regardless of all that, this obviously means that the merge
window (*) will open tomorrow. But please give this a good test run
before you get all excited about a new development kernel.

Linus

12/45

Introduction to OS The Basics of C
oo ©0000000

— QOutline

Q IP PARIS

The Basics of C

13/45

Advanced Concepts in C
000000000000

Protection and System Calls
0000000000000

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 0®000000 000000000000 0000000000000

TELECOM
is
o i |

W% 1P PARIS
Y

® Developed by Dennis Ritchie, early 70s, for UNIX
® | ow-level language

® Direct manipulation of memory addresses
® |ncorporate assembly language

Partially covered Covered
® Basic control structure (for, if, etc.) ® Library functions and system
® Macros calls

e Compilation, multi-file project ® Pointers and memory allocations

® Characters and strings

14/45

Introduction to OS The Basics of C Advanced Concepts in C
>00 00@00000 000000000000
TELECOM
Paris H
- Helloworld in C
4 i |
W% 1P PARIS

15/45

#include <stdio.h>

int main() {
printf("Hello World!\n");
return O;

e printf is a function of the C library (a.k.a. "libC")
® Use "man” to have an information on a function:

$ man —s 3 printf
PRINTF(3)

NAME
printf , fprintf ,

SYNOPSIS
#include <stdio.h>

Protection and System Calls
0000000000000

Linux Programmer s

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00080000 000000000000 0000000000000

TELECOM

sk Compilation and Execution

W2 1P PARIS

® Compilation transforms a C program into machine language

® Files is compiled for the host Operating System

$ gcc —o hello helloworld.c

® Execution creates a process in the OS

$./hello
Hello World!

16/45

Introduction to OS The Basics of C Advanced Concepts in C
oo 00008000 000000000000
TELECOM
Paris -
- Enhanced Helloworld in C
4 i |
@ 1P PARIS

17/45

® Taking as argument a first name
#include <stdio.h>

int main(int argc, char xargv[]) {
if (arge < 2) {
printf("Usage: ./hello <First Name>\n");
return 1;

}

printf("Hello %s!\n", argv[1l]);
return 0;

Protection and System Calls
0000000000000

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000800 000000000000 0000000000000
TELECOM
Paris -
- Enhanced Helloworld in C (Cont.)
4 i |
@ 1P PARIS

® Taking as argument " Last_First” names, and printing "Hello First Last!”

#include <stdio.h>
#include <string.h>

void usage() {

printf(“Usage: ./HelloFirstLastName <Lastname_Firstname>. Maximum size
of input: 49 characters\n");

}

int main(int argc, char xargv([]) {
if (arge < 2) {
usage ();
return 1;

}

if (strlen(argv[1l]) >= 50) {
usage ();
return 1;

}

18/45

Introduction to OS
>00

TELEECIM

o i |

V@ 1P PARIS

19/45

The Basics of C Advanced Concepts in C
00000000 000000000000

Enhanced Helloworld in C (Cont.)

int index = 0;

char xtotal = argv|[1l];
int max = strlen(total);
int found = 0;

while (index < max) {
if (total[index] = *_") {
found = 1; break;
}

index ++;
}

if (found = 0) {

usage ();
return —1;

Protection and System Calls
0000000000000

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00

TELEC\CII‘? -

BME Enhanced Helloworld in C (Cont.)
PR

‘g;lppAkls

char firstName[50], lastName[50];

memcpy (lastName, total, index);
lastName[index] = ’\0’;

memcpy (firstName , &total[index+1], max—index);
firstName [max—index] = ’\0’;

printf("Hello %s %s!\n", firstName, lastName);
return 0;

20/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 ©00000000000 0000000000000

TELEECIM

— QOutline

Q IP PARIS

Advanced Concepts in C

21/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 0®0000000000 0000000000000

TELECOM
Pari

— Process Data

\.ﬂ)
:@wnms - =
® Data of processes are stored in memory —

Various data of a process

® Program code = text section (static)
e Current Activity
® Program counter = Processor’s register
® Next instruction to execute
® Stack: function calls are stored in a LIFO manner
® Function parameters
® Return address
® |ocal variables

® Heap: Data section

22/45

Introduction to OS
>00

TELEFCIM
aris
o i |

W2 1P PARIS

23/45

The Basics of C
00000000

Advanced Concepts in C

O0@000000000

Memory Layout of a C Program

High address

Low address

Environment data

Stack
Main()

fool()

malloc1()

Heap

Uninitialized data

Uninitialized data

Text (=code)

Protection and System Calls
0000000000000

Introduction to OS The Basics of C Advanced Concepts in C
>00

TELECOM
4 i |

PARIS

24/45

00000000 000@00000000

Memory Allocation in C Programs

Allocation in the stack

Function calls, function parameters, local variables

myLovelyFunction(int y) {
char tab[50];

Protection and System Calls
0000000000000

Allocation in the heap

-
\

Memory allocations with malloc(), disallocation with free()

char x mylLovelyFunction(int size) {
char % name = (char %) (malloc (sizeof(char) % size));

return name;

}

free (name);

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 0000@0000000 0000000000000

TELEFUM
ari

oot Memory Allocation in C Programs: Example

82 1P PARIS

int a;

int funnyAllocation(char xbuf, int b) {
a = b5;
b=b+ 1;
strepy (buf, "hello");
return 7;

}

int main(int argc, charxargv([]) {
int b = 3;

char xbuf = (char x) (malloc(sizeof(char) x 20));
int returned = funnyAllocation (buf, b);

printf("The returned value is: %d\n", returned);
printf("The value of b is: %d\n", b);
printf("The content of buf is: %s\n", buf);

free (buf);

25/45

Introduction to OS The Basics of C Advanced Concepts in C
>00 00000000 000008000000

TELECOM

il Memory Allocation in C Programs (Cont.)

1P PARIS

$ gcc —Wall —o procmem procmem.c

$./procmem

The returned value is: 7
The value of b is: 3

The content of buf is: hello

26/45

Protection and System Calls
0000000000000

Introduction to OS The Basics of C Advanced Concepts in C
oo 00000000 000000e00000

TELE‘C‘C‘IT *

Sl \/alues (*) and Addresses (&)

@-' IP PARIS

void updateValue(int *p) {
*p = 10;
}

int main() {
int x = 5;

printf("Before. Value of x: %d\n", x);
printf("Before. Adress of x: ’p\n", &x);

updateValue(&x);

printf("After. Value of x: %d\n", x);
printf("After. Address of x: Jp\n", &x);

return 0;

27/45

Protection and System Calls
0000000000000

Introduction to OS The Basics of C
>00

TELEECIM

o i |

V@ 1P PARIS

28/45

Advanced Concepts in C
00000000 000000080000

Values (*) and Addresses (&) (Cont.)

$./pointers

Before. Value of x: 5

Before. Adresse of x: Ox7ff7be3193c8
After. Value of x: 10

After. Address of x: 0x7ff7be3193c8

Protection and System Calls
0000000000000

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00

TELEECIM
i
o i |

82 1P PARIS

29/45

Memory Allocation Error

void updateValue(int *p) { *p = 10; }

int main() {
int xx = (int %)1200000;

printf("Before. Value of x: %d\n", *x);
printf("Before. Adresse of x: ’p\n", x);

updateValue(x);
printf("After. Value of x: %d\n", *x);

printf("After. Address of x: Y%p\n", x);

}

$./pointers
Segmentation fault: 11

How to solve this problem?

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 000000000800 0000000000000

TELEFUM
ari

e Structures

V@ 1P PARIS

#include <stdio.h>
#include <math.h>

typedef struct {
double x;
double vy;

} Point;

// Function to compute the distance between two points
double distance(Point a, Point b) {

double dx = a.x — b.x;

double dy = a.y — b.y;

return sqrt(dx * dx + dy * dy);

}

int main() {
Point pl; pl.x = 0.0; pl.y = 0.0;
Point p2 = {3.0, 4.0};
printf("The distance between pl and p2 is: %f\n", distance(pl, p2));
return 0;

30/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 000000000080 0000000000000

TELEFUM
ari

Swwth Structures and pointers

V@ 1P PARIS

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

typedef struct {
double x;
double y;

} Point;

// Function to compute the distance between two points
double distance(Point *a, Point xb) {

double dx = a—>x — b—x;

double dy = a—y — b—y;

return sqrt(dx x dx + dy * dy);

}

int main() {
Point #*pl = (Pointx) malloc(sizeof(Point));
Point #p2 = (Pointx) malloc(sizeof (Point));

31/45

Introduction to OS The Basics of C Advanced Concepts in C
>00

TELEFUM
aris
o i |

V@ 1P PARIS

32/45

00000000 00000000000 e 0000000000000

Structures and pointers (Cont.)

if (pl = NULL || p2 = NULL) {
printf("Memory not allocated.\n");
return 1;

}

pl—>x = 0.0; pl—>y = 0.0; p2—>x = 3.0; p2—>y = 4.0;

printf("The distance between pl and p2 is: %f\n", distance(pl, p2));
free(pl); free(p2);
return O;

}

$./distance
The distance between pl and p2 is: 5.000000

Protection and System Calls

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 000000000000 €000000000000

TELEECIM

— QOutline

Q IP PARIS

Protection and System Calls

33/45

Introduction to OS The Basics of C Advanced Concepts in C
>00

Protection and System Calls
00000000 000000000000

0@00000000000

TELECOM
ris
o i |

W% 1P PARIS
Y

Hardware Protection

Protection of what?

® Devices
® Prevent illegal use of devices
®* Memory
® Prevent a process from accessing the memory of the OS and of another
processes
e CPU
® Prevent illegal instructions
® Prevent a process from jeopardizing processing resources

— Dual Mode

One hardware protection is called Dual Mode

34/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 000000000000 00@0000000000

TELECOM
ris
o i |

W% 1P PARIS
Y

Dual Mode of Processors

Monitor mode

Privileged assembly = Supervisor mode, system mode,
instructions cannot be privileged mode, kernel mode, etc.
executed ® In this mode, privileged assembly
® — If so, the instructions can be executed
system raises an * Not related at all to the
interrupt) administrator or root of a machine |

Mode switching

® Monitor mode — user mode: a specific assembly instruction

® User mode — monitor mode: interrupt (a.k.a. "trap”)

35/45

Introduction to OS The Basics of C
>00 00000000

TELEECIM

Advanced Concepts in C

Protection and System Calls
000@000000000

Interrupt
handling
routine

oo Interrupts
e-' IP PARIS
CPU
Interrupt
request
>
IRQ Line
Interrupt
vector
%K_J
When starting,
the OS has
filled-up the
interrupt
vector

36/45

Memory

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00

TELEECIM
ris
o i |

82 1P PARIS

37/45

00000000 000000000000 0000@00000000

Protection: Use of Dual Mode

1. Hardware starts in monitor mode
2. OS boots in monitor mode
3. OS starts user processes in user mode
® So, user processes cannot execute privileged instructions
4. When an interrupt occurs:

® Hardware switches to monitor mode
® Routine pointed to by interrupt vector is called

® \ector was setup by the OS at boot time

The Operating System is in monitor mode whenever it gains control, i.e., when its
code is executed in the CPU

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 000000000000 00000@0000000

TELECOM
ari

ﬁﬁ!m

@‘, IP PARIS _
Goals

Prevent instructions that shall not be executed

Hardware Protection

® Divide by zero, privileged instruction in user mode, access to a bad memory
access

v

Mechanisms

® Hardware detects illegal instructions and accordingly generates interrupts
® The control is transferred to the OS
® Faulty program is aborted

® Error message (popup window, message in console or terminal)
® Program’s memory may be dumped for debug purpose

® Under Unix, it is dumped to a file named core

e |f faulty element = OS: blue screen, kernel panic, ...

38/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
oo 00000000 000000000000 000000@000000

TELECOM
ari

ﬁﬁ!m

@ reans Help on functions provided by the OS

® Section 1: shell functions

Manual pages

® Section 2 : system calls (see next slides)
® Section 3: functions of LibC (library for C programs)

| \

DENES

$ man Is

LS(1) User Commands
Is — list directory contents

$ man sleep
SLEEP (1) User Commands
sleep — delay for a specified amount of time

$ man —s3 sleep
SLEEP(3) Linux Programmer s Manual
sleep — sleep for a specified number of seconds

39/45

Introduction to OS
>00

TELECOM
Pari
o i |

N2 1P PARIS
%

40/45

The Basics of C Advanced Concepts in C Protection and System Calls
00000000 000000000000 0000000800000

System Calls (a.k.a. ”Syscalls”)

Definition

Interface between user processes and the Operating System

Executed in monitor mode — ability to execute privileged instructions

® Windows: systems calls are included in the Win32/Win64 API
® Solaris

$ man —s2 read
System Calls
NAME
read, readv, pread — read from file
SYNOPSIS
#include <unistd.h>
ssize_t read(int fildes, void *buf, size_t nbyte);

macOS (Similar result in GNU/Linux)

$ man —s2 read
READ(2) BSD System Calls Manual READ(2)

NAME
pread, read, readv — read input

Introduction to OS The Basics of C Advanced Concepts in C
200 00000000 000000000000
TELECOM
Paris - -
stk System Calls: Implementation
.2 IP PARIS
Process 1
System call Process 2
2 i —
g Return from system call
g with return parameters
.s< Trap
s
OS determines which
Junction to call
(ex.On Intel x86, the register eax
\ contains the syscall number)

41/45

Protection and System Calls
00000000e0000

Y
aoeds J9s)

'
3oeds PuIdy

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
>00 00000000 000000000000 0000000008000

E’E Categories of System Calls

W% 1P PARIS

® Process control
® Create, allocate and free memory, exit, ...
® File manipulation
® Create, open, close, read, write, attributes management, ...
® Device manipulation
® Request, read, write, attributes management, ...
® Getting and setting system related information

® Time management, process management, ...

e Communications
® Send or receive messages, create communication links, ...

42/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls
200 00000000 000000000000 0000000000800
TELECOM
Pari
- m Calls: an Exampl
e System Calls: a ample
1o rane Objective: Making a program that takes as input a text and a path to a file and

that writes the text to the specified file

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

int main(int argc, charxargv[]) {

int out_fd;
int written;

if (arge < 3) {
printf("usage: writeToFile <file> <text>\n");
exit(1l); // in bash, a non zero code means an error

char xfile = argv[1];

if ((out-fd = open(file, OWRONLY | OSYNC | O.CREAT)) < 0) {
printf("Could not open the file %s\n", file);
exit(1);

43/45

Introduction to OS
oo

TELEFUM
aris

o i |

V@ 1P PARIS

44/45

The Basics of C Advanced Concepts in C
00000000 000000000000

System Calls: an Example (Cont.)

char * toBeWritten = argv[2];
written = write(out_fd, toBeWritten, strlen(toBeWritten));

if (written < strlen(toBeWritten)) {
printf("Write in file Y%s failed\n", file);
exit(1);

if (close(out_fd) < 0) {
printf("Could not close the file %s\n", file);

}

printf("Text %s successfully written to %s\n", toBeWritten, file);

exit (0);

Protection and System Calls
0000000000080

Introduction to OS The Basics of C Advanced Concepts in C
>00 00000000 000000000000
TELECOM
Pari S -
- stem Calls: an Example (Cont.)
mgiil ©Y P
W% 1P PARIS

45/45

e Compilation, execution (in GNU/Linux)

$ gcc —Wall —o writeToFile writeToFile.c

$./writeToFile /tmp/test helloworld
Text helloworld successfully written to /tmp/test

$ cat /tmp/test

helloworld

® Another way to do (i.e., without our program):

$ echo hellothere > /tmp/test

$ cat /tmp/test
hellothere

Protection and System Calls
000000000000e

	Introduction to OS
	The Basics of C
	Advanced Concepts in C
	Protection and System Calls

