
BasicOS

Introduction

Ludovic Apvrille ludovic.apvrille@telecom-paris.fr
Eurecom, office 470

https://perso.telecom-paris.fr/apvrille/BasicOS/

https://perso.telecom-paris.fr/apvrille/BasicOS/

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Outline

Introduction to OS

The Basics of C

Advanced Concepts in C

Protection and System Calls

2/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

What is a Computer System?

In other words: what are the main components of a PC?

Applications
OS

CPU Memory
(RAM)

3/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Computer System: Simplified View

CPU Memory

Input/Output

….

4/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

What is an Operating System?

Definition

The most fundamental program of a computer system

Objectives

• Make computers convenient to use i.e. simplify programmers’ tasks
• Abstract hardware concerns

• e.g., simplify memory allocations

• Use hardware in an efficient manner
• Security

• Protect systems from wrong and malicious utilizations

5/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Layers of a Computer System

Hardware

Kernel

OS

Programming
Interface

System services

Terminal Compiler

User applications ...

Text editor

Devices

6/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Main Services

• Program execution

• Resource allocation and release

• I/O operations

• Files handling
• Communication

• Between programs running on the same computer
• Between programs running on different computers

• Error detection or handling
• Hardware failure, illegal memory access, illegal instruction, exception (divide by

zero)

• Accounting

• Security

While ensuring
. . .

• Ease of use

• Efficiency

• System
protection

7/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Operating Systems: a Chronology

1950 → 1960: transistors
• First OS written in assembly language

1970 → 1980: integrated circuits

• From millions of code of assembly language → C

• CPU and memory partitioning

• Genenis of UNIX

1980 → now: large scale integrated circuits

• Graphical user interfaces, networking

• GNU/Linux, Windows, macOS, Solaris, Android,
. . . Apple II, 1977-1988

(source = Wikipedia)8/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

UNIX: History

Idea originated in 1965

• Research lab of AT&T (Bell Labs)

• Idea of Ken Thompson: develop what no computer company was ready to
provide i.e. a multi-user and multiprocessing OS

• Multics created in cooperation with MIT and General Electric
• Less complex version of Multics: UNIX, operational at Bell Labs in 1971

• Fully written in assembly language

Diffusion in acamedia and companies

• Code is modified by graduate students to make UNIX more robust

• Rewritten in C

9/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

GNU/Linux (Free Software)

GNU/Linux (a.k.a. Linux) = GNU Operating
System + the Linux kernel

The GNU Operating System

• GNU’s Not Unix!

• Applications, libraries, and
developer tools

• Started in 1984

The Linux Kernel
• Created in 1991 by Linus
Torvalds

• See next slide

10/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

First Post by Linus Torvald

11/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

And a Recent Post by Linus Torvald. . .

12/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Outline

Introduction to OS

The Basics of C

Advanced Concepts in C

Protection and System Calls

13/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

C

C in a nutshell
• Developed by Dennis Ritchie, early 70s, for UNIX
• Low-level language

• Direct manipulation of memory addresses
• Incorporate assembly language

Why programming in C (and not in python, . . .)?

Partially covered

• Basic control structure (for, if, etc.)

• Macros

• Compilation, multi-file project

Covered
• Library functions and system
calls

• Pointers and memory allocations

• Characters and strings
14/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Helloworld in C

#inc l u d e <s t d i o . h>

i n t main () {
p r i n t f ("Hello World !\n") ;
r e t u r n 0 ;

}

• printf is a function of the C library (a.k.a. ”libC”)

• Use ”man” to have an information on a function:

$ man −s 3 p r i n t f
PRINTF(3) L inux Programmer s

NAME
p r i n t f , f p r i n t f , . . .

SYNOPSIS
#i n c l u d e <s t d i o . h>
. . . .

15/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Compilation and Execution

• Compilation transforms a C program into machine language

• Files is compiled for the host Operating System

$ gcc −o h e l l o h e l l o w o r l d . c

• Execution creates a process in the OS

$. / h e l l o
He l l o World !

16/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Enhanced Helloworld in C

• Taking as argument a first name

#inc l u d e <s t d i o . h>

i n t main (i n t argc , char ∗ a rgv []) {
i f (a rgc < 2) {

p r i n t f ("Usage: ./hello <First Name >\n") ;
r e t u r n 1 ;

}

p r i n t f ("Hello %s!\n" , a rgv [1]) ;
r e t u r n 0 ;

}

17/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Enhanced Helloworld in C (Cont.)

• Taking as argument ”Last First” names, and printing ”Hello First Last!”

#inc l u d e <s t d i o . h>
#inc l u d e < s t r i n g . h>

vo id usage () {
p r i n t f ("Usage: ./ HelloFirstLastName <Lastname_Firstname >. Maximum size

of input: 49 characters\n") ;
}

i n t main (i n t argc , char ∗ a rgv []) {
i f (a rgc < 2) {

usage () ;
r e t u r n 1 ;

}

i f (s t r l e n (a rgv [1]) >= 50) {
usage () ;
r e t u r n 1 ;

}

18/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Enhanced Helloworld in C (Cont.)

i n t i n d e x = 0 ;
char ∗ t o t a l = argv [1] ;
i n t max = s t r l e n (t o t a l) ;
i n t found = 0 ;

wh i l e (i nd ex < max) {
i f (t o t a l [i n d e x] == ’_’) {

found = 1 ; break ;
}
i n d e x ++;

}

i f (found == 0) {
usage () ;
r e t u r n −1;

}
}

19/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Enhanced Helloworld in C (Cont.)

char f i r s tName [5 0] , lastName [5 0] ;

memcpy(lastName , t o t a l , i n d e x) ;
lastName [i nd ex] = ’\0’ ;
memcpy(f i r s tName , &t o t a l [i n d e x +1] , max−i n d e x) ;
f i r s tName [max−i n d e x] = ’\0’ ;

p r i n t f ("Hello %s %s!\n" , f i r s tName , lastName) ;
r e t u r n 0 ;

}

20/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Outline

Introduction to OS

The Basics of C

Advanced Concepts in C

Protection and System Calls

21/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Process Data

• Data of processes are stored in memory

Various data of a process

• Program code = text section (static)
• Current Activity

• Program counter = Processor’s register
• Next instruction to execute

• Stack: function calls are stored in a LIFO manner
• Function parameters
• Return address
• Local variables

• Heap: Data section

22/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Memory Layout of a C Program

Environment data

Stack

Main()

foo1()

...

...

malloc1()

Heap

Uninitialized data

Uninitialized data

Text (=code)

High address

Low address

23/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Memory Allocation in C Programs

Allocation in the stack

Function calls, function parameters, local variables

myLove lyFunct ion (i n t y) {
char tab [5 0] ;
. . .

}

Allocation in the heap

Memory allocations with malloc(), disallocation with free()

char ∗ myLove lyFunct ion (i n t s i z e) {
char ∗ name = (char ∗) (ma l l o c (s i z e o f (char) ∗ s i z e)) ;
. . .
r e t u r n name ;

}
. . .
f r e e (name) ;

24/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Memory Allocation in C Programs: Example

i n t a ;

i n t f u n n yA l l o c a t i o n (char ∗buf , i n t b) {
a = 5 ;
b = b + 1 ;
s t r c p y (buf , "hello") ;
r e t u r n 7 ;

}

i n t main (i n t argc , char ∗ a rgv []) {
i n t b = 3 ;

char ∗ buf = (char ∗) (ma l l o c (s i z e o f (char) ∗ 20)) ;

i n t r e t u r n e d = f u n n yA l l o c a t i o n (buf , b) ;

p r i n t f ("The returned value is: %d\n" , r e t u r n e d) ;
p r i n t f ("The value of b is: %d\n" , b) ;
p r i n t f ("The content of buf is: %s\n" , bu f) ;
f r e e (buf) ;

}
25/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Memory Allocation in C Programs (Cont.)

$ gcc −Wall −o procmem procmem . c

$. / procmem
The r e t u r n e d v a l u e i s : 7
The va l u e o f b i s : 3
The con t en t o f buf i s : h e l l o

26/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Values (*) and Addresses (&)

vo id updateVa lue (i n t ∗p) {
∗p = 10 ;

}

i n t main () {
i n t x = 5 ;

p r i n t f ("Before. Value of x: %d\n" , x) ;
p r i n t f ("Before. Adress of x: %p\n" , &x) ;

updateVa lue (&x) ;

p r i n t f ("After. Value of x: %d\n" , x) ;
p r i n t f ("After. Address of x: %p\n" , &x) ;

r e t u r n 0 ;
}

27/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Values (*) and Addresses (&) (Cont.)

$. / p o i n t e r s
Be fo r e . Value o f x : 5
Be fo r e . Adre s s e o f x : 0 x7 f f 7be3193c8
A f t e r . Value o f x : 10
A f t e r . Address o f x : 0 x7 f f 7be3193c8

28/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Memory Allocation Error

vo id updateVa lue (i n t ∗p) { ∗p = 10 ; }

i n t main () {
i n t ∗x = (i n t ∗)1200000 ;

p r i n t f ("Before. Value of x: %d\n" , ∗x) ;
p r i n t f ("Before. Adresse of x: %p\n" , x) ;

updateVa lue (x) ;

p r i n t f ("After. Value of x: %d\n" , ∗x) ;
p r i n t f ("After. Address of x: %p\n" , x) ;

}

$. / p o i n t e r s
Segmentat ion f a u l t : 11

How to solve this problem?

29/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Structures

#inc l u d e <s t d i o . h>
#inc l u d e <math . h>

typede f s t r u c t {
double x ;
double y ;

} Po in t ;

// Funct i on to compute the d i s t a n c e between two p o i n t s
double d i s t a n c e (Po in t a , Po in t b) {

double dx = a . x − b . x ;
double dy = a . y − b . y ;
r e t u r n s q r t (dx ∗ dx + dy ∗ dy) ;

}

i n t main () {
Po in t p1 ; p1 . x = 0 . 0 ; p1 . y = 0 . 0 ;
Po in t p2 = {3 . 0 , 4 . 0 } ;
p r i n t f ("The distance between p1 and p2 is: %f\n" , d i s t a n c e (p1 , p2)) ;
r e t u r n 0 ;

}
30/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Structures and pointers

#inc l u d e <s t d i o . h>
#inc l u d e <math . h>
#inc l u d e < s t d l i b . h>

typede f s t r u c t {
double x ;
double y ;

} Po in t ;

// Funct i on to compute the d i s t a n c e between two p o i n t s
double d i s t a n c e (Po in t ∗a , Po in t ∗b) {

double dx = a−>x − b−>x ;
double dy = a−>y − b−>y ;
r e t u r n s q r t (dx ∗ dx + dy ∗ dy) ;

}

i n t main () {
Po in t ∗p1 = (Po in t ∗) ma l l o c (s i z e o f (Po in t)) ;
Po in t ∗p2 = (Po in t ∗) ma l l o c (s i z e o f (Po in t)) ;
. . .

}
31/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Structures and pointers (Cont.)

i f (p1 == NULL | | p2 == NULL) {
p r i n t f ("Memory not allocated .\n") ;
r e t u r n 1 ;

}
p1−>x = 0 . 0 ; p1−>y = 0 . 0 ; p2−>x = 3 . 0 ; p2−>y = 4 . 0 ;

p r i n t f ("The distance between p1 and p2 is: %f\n" , d i s t a n c e (p1 , p2)) ;
f r e e (p1) ; f r e e (p2) ;
r e t u r n 0 ;

}

$. / d i s t a n c e
The d i s t a n c e between p1 and p2 i s : 5 .000000

32/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Outline

Introduction to OS

The Basics of C

Advanced Concepts in C

Protection and System Calls

33/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Hardware Protection

Protection of what?
• Devices

• Prevent illegal use of devices

• Memory
• Prevent a process from accessing the memory of the OS and of another

processes

• CPU
• Prevent illegal instructions
• Prevent a process from jeopardizing processing resources

→ Dual Mode

One hardware protection is called Dual Mode

34/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Dual Mode of Processors

User mode

Privileged assembly
instructions cannot be
executed

• → If so, the
system raises an
interrupt

Monitor mode

= Supervisor mode, system mode,
privileged mode, kernel mode, etc.

• In this mode, privileged assembly
instructions can be executed

• Not related at all to the
administrator or root of a machine

Mode switching

• Monitor mode → user mode: a specific assembly instruction

• User mode → monitor mode: interrupt (a.k.a. ”trap”)

35/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Interrupts

36/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Protection: Use of Dual Mode

1. Hardware starts in monitor mode

2. OS boots in monitor mode

3. OS starts user processes in user mode
• So, user processes cannot execute privileged instructions

4. When an interrupt occurs:
• Hardware switches to monitor mode
• Routine pointed to by interrupt vector is called

• Vector was setup by the OS at boot time

⇒
The Operating System is in monitor mode whenever it gains control, i.e., when its
code is executed in the CPU

37/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Hardware Protection

Goals

Prevent instructions that shall not be executed

• Divide by zero, privileged instruction in user mode, access to a bad memory
access

Mechanisms
• Hardware detects illegal instructions and accordingly generates interrupts
• The control is transferred to the OS

• Faulty program is aborted
• Error message (popup window, message in console or terminal)
• Program’s memory may be dumped for debug purpose

• Under Unix, it is dumped to a file named core

• If faulty element = OS: blue screen, kernel panic, . . .

38/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Manual pages

Help on functions provided by the OS

• Section 1: shell functions

• Section 2 : system calls (see next slides)

• Section 3: functions of LibC (library for C programs)

Examples

$ man l s
LS (1) User Commands

l s − l i s t d i r e c t o r y c on t en t s
. . .
$ man s l e e p
SLEEP(1) User Commands

s l e e p − de l a y f o r a s p e c i f i e d amount o f t ime
. . .
$ man −s3 s l e e p
SLEEP(3) L inux Programmer s Manual

s l e e p − s l e e p f o r a s p e c i f i e d number o f s econds

39/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

System Calls (a.k.a. ”Syscalls”)

Definition
• Interface between user processes and the Operating System

• Executed in monitor mode → ability to execute privileged instructions

• Windows: systems calls are included in the Win32/Win64 API
• Solaris

$ man −s2 read
System C a l l s
NAME

read , readv , pread − r ead from f i l e
SYNOPSIS
#inc l u d e <un i s t d . h>
s s i z e t r ead (i n t f i l d e s , vo id ∗buf , s i z e t nbyte) ;
. . .

• macOS (Similar result in GNU/Linux)
$ man −s2 read
READ(2) BSD System C a l l s Manual READ(2)

NAME
pread , read , r eadv −− r ead i npu t

. . .40/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

System Calls: Implementation

41/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

Categories of System Calls

• Process control
• Create, allocate and free memory, exit, . . .

• File manipulation
• Create, open, close, read, write, attributes management, . . .

• Device manipulation
• Request, read, write, attributes management, . . .

• Getting and setting system related information
• Time management, process management, . . .

• Communications
• Send or receive messages, create communication links, . . .

42/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

System Calls: an Example

Objective: Making a program that takes as input a text and a path to a file and
that writes the text to the specified file
#inc l u d e <s t d l i b . h>
#inc l u d e <s t d i o . h>
#inc l u d e <f c n t l . h>
#inc l u d e <un i s t d . h>
#inc l u d e <s t r i n g . h>

i n t main (i n t argc , char∗ a rgv []) {

i n t ou t f d ;
i n t w r i t t e n ;

i f (a rgc < 3) {
p r i n t f ("usage: writeToFile <file > <text >\n") ;
e x i t (1) ; // i n bash , a non ze r o code means an e r r o r

}

char ∗ f i l e = argv [1] ;

i f ((o u t f d = open (f i l e , O WRONLY | O SYNC | O CREAT)) < 0) {
p r i n t f ("Could not open the file %s\n" , f i l e) ;
e x i t (1) ;

}

. . .43/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

System Calls: an Example (Cont.)

char ∗ toBeWr i t ten = argv [2] ;

w r i t t e n = w r i t e (ou t fd , toBeWritten , s t r l e n (toBeWr i t ten)) ;

i f (w r i t t e n < s t r l e n (toBeWr i t ten)) {
p r i n t f ("Write in file %s failed\n" , f i l e) ;
e x i t (1) ;

}

i f (c l o s e (o u t f d) < 0) {
p r i n t f ("Could not close the file %s\n" , f i l e) ;

}

p r i n t f ("Text %s successfully written to %s\n" , toBeWritten , f i l e) ;
e x i t (0) ;

}

44/45

Introduction to OS The Basics of C Advanced Concepts in C Protection and System Calls

System Calls: an Example (Cont.)

• Compilation, execution (in GNU/Linux)

$ gcc −Wall −o w r i t eToF i l e w r i t eToF i l e . c

$. / w r i t eToF i l e /tmp/ t e s t h e l l o w o r l d
Text h e l l ow o r l d s u c c e s s f u l l y w r i t t e n to /tmp/ t e s t

$ ca t /tmp/ t e s t
h e l l o w o r l d

• Another way to do (i.e., without our program):

$ echo h e l l o t h e r e > /tmp/ t e s t

$ ca t /tmp/ t e s t
h e l l o t h e r e

45/45

	Introduction to OS
	The Basics of C
	Advanced Concepts in C
	Protection and System Calls

