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ABSTRACT

In this paper, we propose an empirical review of the conditions un-
der which the compressed sensing framework allows to achieve ex-
act image reconstruction. After a short presentation of the theoret-
ical results related to this subject, we investigate the relevance and
the limits of these theoretical results through several numerical re-
constructions of some benchmark images. In particular, we discuss
quantitative and qualitative artifacts that affect the reconstructed im-
age when reducing the number of measurements in the Fourier do-
main. Finally, we conclude our study by extending our results to
some real microscopic images.

Index Terms— Compressed sensing, image reconstruction,
sampling rate, total variation minimization, Fourier transform.

1. THEORETICAL APPROACH OF COMPRESSED
SENSING

1.1. Generalities on compressed sensing

The recent sampling theory of compressed sensing (CS) predicts that
sparse signals and images can be reconstructed from what was previ-
ously believed to be incomplete information. CS was introduced by
Candès et. al in [1] and Donoho in [2]. It relies on the fact that many
types of signals or images can be well-approximated by a sparse de-
composition on a suitable basis.

CS provides a formal reconstruction framework exploiting a
compressed version of the original signal by taking only a small
amount of linear and non-adaptive measurements. Now considering
the noiseless incomplete measurements y = Φx the recovery of a
signal x ∈ RN is achieved by solving the convex program:

x̂ = arg min
x∈RN

‖Ψx‖l1 s.t. Φx = y (1)

where Φ is a M by N sampling matrix selecting only M coeffi-
cients of x along a sampling basis, with typically M � N , and Ψ is
a basis transformation matrix chosen such that Ψx is a sparse repre-
sentation of the original signal. In (1), the term ‖Ψx‖l1 is a convex
surrogate to ‖Ψx‖l0 : it aims at enforcing the sparsity of Ψx during
the reconstruction process.

When CS is applied to image signals, it is quite common to use
to following recovery program instead of (1):

x̂ = arg min
x∈RN

‖x‖TV s.t. Φx = y (2)

where ‖·‖TV stands for the total variation semi-norm. When pro-
ceeding this way, the underlying hypothesis that is assumed on the

original signal is that it has a sparse gradient1.
In what follows, we will focus on the sparsity prior is enforced

through TV regularization, and where the measurement basis is the
Fourier basis. In this framework, the matrix Φ stands for a subsam-
pling version of the Fourier transform.

1.2. Sampling bound and sparsity

Suppose that ‖x‖TV is S-sparse or has S non-zero coefficients; in
[3], the authors proposed to compute the required number of mea-
surements in the following manner:

M ≥ C · µ2 · S · logN (3)

where C is a positive constant, and µ stands for the coherence be-
tween the sensing basis A and the representation basis ‖·‖TV, as
defined in [3]. Then the solution of (2) is exact with overwhelm-
ing probability and the success probability exceeds 1 − δ if M ≥
C · µ2 · S · logN/δ.

Following (3), there exists a sampling bound such that the recon-
struction is possible when sampling up to this value and fails when
sampling down to the value. Theoretically, the transition is sharp but
in practice the transition is smooth and there is an intermediate do-
main where reconstructions are not exact but do not fail completely.

However, for real signals the straightforward applicability of the
measure (3) is limited. The reason is that the sparsity S has a re-
stricted sense when dealing with real images which are not perfectly
sparse, and possibly noisy.

Here we show that the sharp transition is perfectly verified for
simulated piece-wise smooth images but only partially for real im-
ages with smooth edges and noise.

2. TOWARDS A NUMERIC EVALUATION OF AN
OPTIMAL BOUND FOR THE SAMPLING RATE

2.1. Measuring the sampling threshold

Our first experiment consists in reconstructing elementary images
composed of a single circular white object on a black background
(see fig. 1), for which we carried out several CS reconstructions with
various sampling rates. For each reconstruction, we sampled a few
Fourier coefficients and computed the corresponding solution to the
problem (2). The Fourier coefficients were selected with a uniform
random scheme: the probability of selecting each coefficient fol-
lowed an independent Bernoulli law whose parameter was tuned ac-

1However, this is not the only way to deal with image signals: one could
also use the usual recovery scheme (1), with for exemple a wavelet transform
for Ψ.



Fig. 1. Examples of three CS reconstructions of the same one-disk
image with radius ρ = 22, for three different sampling rates τ . On
the very left: original image (top) and the logarithmic amplitude of
its Fourier transform (bottom). Then, from left to right: sampling
mask in the Fourier space (top) and the corresponding reconstructed
images (bottom), with τ = 0.2%, τ = 0.7%, τ = 4%. The recon-
struction obtained with 4% of the Fourier samples is identical to the
original image.

cording to the targeted sampling rate2. We studied the evolution of
the reconstruction error between the CS reconstructed image x̂ and
the original image x0 as a function of the sampling rate τ ; the recon-
struction error was defined as:

RecErr =
‖x̂− x0‖l2
‖µ0 − x0‖l2

(4)

where µ0 is a constant signal, whose value is equal to the mean value
of x0

3. Results are presented on fig. 24.
For each curve, we observe three distinct domains:

• for small values of τ , the reconstruction error is constant at
a high level: in this domain, the number of Fourier samples
is too low to achieve a correct CS reconstruction, and the so-
lution computed from (2) is roughly unstructured; this case
corresponds to the first reconstruction presented in fig. 1;

• for high values of τ , the reconstruction error is also almost
constant at a value close to zero: in this domain, the sam-
pling rate is sufficient to perform an exact reconstruction of
the original image from the subset of Fourier coefficients that
are actually sampled5; this case corresponds to the third re-
construction presented in fig. 1;

• between these two constant domains, there is a narrow area
around a transition sampling rate τ? where the reconstruction
error decreases from high value to almost zero; this case cor-
responds to the second reconstruction presented in fig. 1.

2Except for the central Fourier coefficient, which was always selected in
order to ensure the uniqueness of the solution to the problem (2).

3With the normalization factor ‖µ0 − x0‖l2 , we ensure RecErr (τ) →
1 when τ → 0, as we always sample the DC component

4The value of the reconstruction error obtained for each simulation de-
pends on the sampling mask that is randomly generated at the beginning of
each reconstruction. To get rid of this dependency, each simulation was run
ten to twenty times, and median error values are reported. The variability
encountered among these aggregated values will be discussed further.

5The fact that there still remains a small gap between the image obtained
out of (2) and the original image might be due to the numerical algorithm
that is used to solve this optimization problem. This algorithm (NESTA) is
described in [4].
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Fig. 2. Normalized quadratic reconstruction error between the origi-
nal images and the CS reconstructions as a function of the sampling
rate τ , for four one-disk bench images with different radius ρ.

The value τ? of the sampling rate, as it somehow separates the
domain where reconstruction is possible from the domain where it
is not, is a measure of the sampling threshold that is defined in a
theoretical manner in (3). There are several ways to define the ac-
tual value τ? from the curve RecErr = f (τ) : one could define
τ? such that RecErr (τ?) = 0.56, or decide that τ? is the point
where the first derivative of the function takes its maximal absolute
value7; however, as long as the transition domain is sufficiently nar-
row, all these definitions are likely to be equivalent. For the sake
of simplicity, we have defined τ? such that RecErr (τ?) = 0.5 in
our simulations; this definition does not depend on the spread of the
transition area.

The fact that this threshold is drastically modified depending on
the input image reflects on the variation of the underlying sparsity
coefficient S.

2.2. Optimal sampling rate and sparsity

When performing a CS reconstruction using the optimization prob-
lem (2), we know that the underlying a priori hypothesis that is made
on the input image is that it has a sparse gradient. In the case of our
simple binary images, the number of non-zero gradient coefficients
is roughly equal to the perimeter of the object. Then, together with
(3), we can make the assumption that the transitional sampling rate
τ? is an increasing linear function of the perimeter of the object.
Therefore, in the case of our one-disk images, τ? may increase lin-
early with ρ.

In order to check this hypothesis, we computed the transition
sampling rate τ? for eight values of the disk radius ρ. Results il-
lustred in fig. 3, confirmed that τ? obeys a linear increasing with
respecto to ρ, hence somehow confirming empirically the theoretical
relation (3).

2.3. Optimal sampling rate and shape factor

We have also investigate the dependency of the transitional sampling
rate τ? with respect to the shape factor of the imaged object. Equa-
tion (3) suggests that τ? depends only on the number S of non-zero
gradient coefficients, that is related to the perimeter of the object,
but not to its the shape factor. Therefore, two objects with the same
perimeter should have the same transitional sampling rate, even if

60.5 being the mean value between the two constant domains of the curve
7as the function seems to have an inflexion point in the transition area
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Fig. 3. Transition sampling rate τ? for eight values of ρ. Linear re-
gression confirms that, for the single-disk images, τ? obeys a linear
increasing law with respect to ρ.
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Fig. 4. Reconstruction error between the original images and the
CS reconstructions as a function of the sampling rate τ , for the four
images presented above (from left to right: ellipses with ratio be-
tween the half minor axis and the half major axis γ = 1, γ = 0.4,
γ = 0.15, and γ = 0.06).

one is isotropic (for exemple: a disk) and one has a spatial dimen-
sion much larger that the others (for exemple: a flat ellipse).

To validate this hypothesis, we followed a similar approach than
for the single-disk bench images, but we replaced the disks with el-
lipses of constant perimeter and various eccentricities. By varying
the ratio γ between the half minor axis and the half major axis from
1 (circle) to almost 0 (flat shape), we tested shapes with different
spatial and frequency characteristics; on the other hand, by setting a
constant perimeter, we have maintained a constant TV-based spar-
sity measure for all the test images: then the observed τ? should be
the same for all the inputs. The results are presented on fig. 4.

Although the four curves do not perfectly overlap, the associ-
ated transitional sample rates are distributed in a narrow domain,
approximately

[
10−2, 2× 10−2]

. Moreover, the issue of the CS re-
construction process when operated with τ in the neighborhood of
τ? is highly dependent on the actual sampling mask that is randomly
generated: this induces some uncertainty about the actual value of
τ? measured from these curves.
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Fig. 5. Reconstruction error as a function of the sampling rate τ ,
for four one-disk test images with different radius ρ, and using a
Gaussian sampling strategy.

2.4. Sampling strategy

The notion of transitional sampling rate is also related to the Fourier
sampling strategy.

In all previous simulations, we used a random uniform sampling
strategy, which means that the probability of selecting the Fourier
coefficient corresponding to the spatial frequency ω is given by
p (ω) = τ , with τ the targeted sampling rate. In this case, no spatial
frequency is privileged as p (ω) does not actually depend on ω.
However, it could be profitable to get more measurements within
some sub-domains of the Fourier space, in order to take into account
any a priori knowledge about the input image. For instance, in order
to favor low frequencies, one can choose to allocate the random
measurement according to a Gaussian sampling strategy:

p (ω) = e
−
‖ω‖2

2
R2 (5)

where the parameter R is tuned according to the overall targeted
sampling rate.

This kind of Fourier sampling strategy modifies the profile of
the reconstruction error as a function of τ , as seen in fig. 5. For
these simulations, we tried to reconstruct the single-disk test images
for different sampling rates, using a Gaussian sampling strategy. As
such strategy induces somehow a low-pass filtering effect on the re-
constructed image, small objects become harder to retrieve than large
ones8, as the first have a broader Fourier spectra than the second. On
the contrary, when using a uniform sampling strategy, the small ob-
jects are retrieved first (see fig. 2).

Moreover, with the Gaussian sampling strategy, it becomes dif-
ficult to define what the critical sampling threshold τ? is, as the evo-
lution of the reconstruction error as a function of τ is far more com-
plex than with a uniform sampling strategy. Indeed, for the single-
disk images with ρ = 3 and ρ = 8, we can identify at least three
domains where the reconstruction error is quite stable, and two tran-
sitional domains in between. Fig. 6 illustrates the CS reconstructed
images typically obtained with sampling rates set in the three stable
domains.

2.5. Realistic image reconstructions

So far, simulations were carried out on simple test images, whose
structure is very poor compared to what is encountered in realis-

8meaning that a higher sampling rate is required to reconstruct the small-
disk images



Fig. 6. Examples of three CS reconstructions of the same image
(one disk with ρ = 8) using a Gaussian sampling strategy. From
left to right: original image, reconstruction using τ = 0.05%, using
τ = 1%, and using τ = 20% of the Fourier coefficients. With τ =
1%, the reconstructed image is very close to the original one, but the
sharp edges appear to be blurred due to the low-pass filtering effect
of the Gaussian sampling strategy. With τ = 20%, the reconstructed
image is identical to the original one.
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Fig. 7. Reconstruction error as a function of the sampling rate τ ,
for the three benchmark images presented above (from left to right:
Phantom, Phantom blurred, Shigella).

tic ones. For real images, the notion of sparsity might be difficult
to quantify, due either to the complexity of the textural content of
the image, or to the degradation (blur, noise) induce by the acquisi-
tion process. Therefore, the practical definition of a sharp sampling
threshold as defined in (3) might not be so obvious, even if we re-
strict ourselves to a uniform random sampling strategy, which does
not add any extra filtering effect that would complicate the analysis.

As an empirical study, we measured the evolution of the recon-
struction error as a function of τ using a uniform random sampling
strategy for three test images (see fig. 7):

1. the well-known Shepp-Logan phantom image, with strictly
piecewise constant regions and sharp edges;

2. the Shepp-Logan image degraded with a small Gaussian blur;

3. a true fluorescence microscopy image of Shigella bacteria.

For both Shepp-Logan images, the error curves look very similar
to the one obtained for the disks and the ellipses in figs. 2 and 4. This
means that, for these input signals, the notion of sampling thresh-
old as defined in (3) holds, and therefore that an underlying sparsity
level S can be defined. Going further, we can verify that blurring

the Phantom image has indeed induced an increase of its associated
sampling threshold.

However, in the case of the Shigella image, the reconstruction
error remains significantly high up until the sampling rate τ reaches
100%: for this image, it is not possible to define a critical sampling
threshold τ?. The underlying reason might be that the sparse model
does not hold for this image, as it is not piecewise constant9; a more
realistic assumption would be to consider this image as compressible
in some basis Ψ, meaning that the error between the image and its
approximation by at most S basis vectors of Ψ decreases proportion-
ally to S−α for some α > 0 when S increases. It has been proved in
[5] that CS can handle compressive signals through a relaxation of
the optimization problem (2) into:

x̂ = arg min
x∈RN

‖x‖TV s.t. ‖Φx− y‖2 ≤ ε (6)

where ε is a positive parameter. Unfortunately, with this minimiza-
tion scheme, we must give up the hope of achieving an exact recon-
struction of the input image.

3. CONCLUSION

In this paper, we have presented an experimental exploration of the
conditions under which the exact recovery theorems stated in [1, 3]
hold, in a context of image reconstruction through TV minimization
and Fourier undersampling. In the case of some simple test images,
we studied the evolution of CS reconstructed images when modify-
ing either the sampling pattern or the sampling rate of the Fourier co-
efficients. Finally, in the case of realistic images, we have discussed
the practical relevance of such exact recovery theorems relating crit-
ical sampling rate to sparsity measures.

4. REFERENCES

[1] Emmanuel Candès, Justin Romberg, and Terence Tao, “Robust
uncertainty principles: exact signal reconstruction from highly
incomplete frequency information,” IEEE Transactions on In-
formation Theory, vol. 52, pp. 489–509, 2006.

[2] David L. Donoho, “Compressed sensing,” IEEE Transactions
on Information Theory, vol. 52, pp. 1289–1306, 2006.

[3] Emmanuel Candès and J. Romberg, “Sparsity and incoherence
in compressive sampling,” Inverse Problems, vol. 23, pp. 969–
985, 2006.

[4] Stephen Becker, Jérôme Bobin, and Emmanuel Candès,
“NESTA: A fast and accurate first-order method for sparse re-
covery,” Tech. Rep., Caltech, 2009.

[5] Emmanuel Candès and Terence Tao, “Near-optimal signal re-
covery from random projections: universal encoding strate-
gies?,” IEEE Transactions on Information Theory, vol. 52, pp.
5406–5425, 2006.

9Changing the sparse gradient model for another sparse regularization
scheme (such as a sparse wavelet decomposition) would not drastically mod-
ify the result, as this real-world signal is not strictly sparse whatever the de-
composition basis is, assuming the basis is built in a reasonable way.


