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ABSTRACT 

 

Iterative reconstruction with point spread function (PSF) 

modeling improves contrast recovery in positron emission 

tomography (PET) images, but also introduces ringing 

artifacts and over enhancement that is contrast and object 

size dependent. Mitigation of these artifacts is crucial for 

clinical and research purposes. In this work we introduce a 

new iterative regularized reconstruction method that 

incorporates locally-weighted total variation denoising 

designed to suppress artifacts induced by PSF modeling. 

The reconstruction method is evaluated on a simulated 

cylindrical phantom and preliminary results show that 

ringing artifacts are suppressed while contrast recovery is 

maintained. 

 

Index Terms— PET, image reconstruction, point spread 

function, MLEM, Total Variation 

 

1. INTRODUCTION 

Existing and commonly used iterative reconstruction 

techniques in positron emission tomography (PET) provide 

a flexible framework for modeling the physics and the 

scanner geometry, yielding greater image contrast, visual 

quality and noise robustness than analytical reconstruction 

methods. Modeling and accounting for the physics of the 

emissions (e.g. positron range) and the detection processes 

(e.g. crystal scattering or depth of interaction) is possible by 

measuring and incorporating the detector point spread 

function (PSF) into the reconstruction process. Such 

approach has been shown shown to improve spatial 

resolution and image contrast [1]. Unfortunately, it also 

introduces significant edge artifacts such as over 

enhancement and Gibbs type of ringing that are both 

contrast and size dependent (leading to up to 70% overshoot 

in a cylinder phantom) [2,3]. Mitigation of the above 

artifacts is crucial to ensure image quantification accuracy, 

especially since reconstruction with PSF modeling is now 

implemented and widely used in clinical PET/CT systems. 

Some work has been done to characterize and 

compensate for PSF modeling artifacts. Bai et al. showed 

that the overshoot depends on region sizes and contrast 

ratios [2]. Snyder et al. observed that the overshoot might be 

explained by the mismatch between the true and measured 

PSF [4]. Tong et al. reported that ringing frequency and 

amplitude are related to objects’ sizes [5]. A number of 

different mitigation strategies have been discussed, such as 

under sampling the PSF and post-filtering the reconstructed 

images [5]. While these approaches reduce artifacts, they 

also blur the PET images and undermine the benefits of PSF 

modeling [4]. Rapisarda et al. incorporated a new 

regularization prior into the reconstruction process that 

locally modifies the image estimate at each iteration in an 

attempt to locally control edge enhancement [6]. This 

method is promising but currently requires optimizing two 

parameters and while artifacts are suppressed there is loss of 

contrast recovery. 

Total variation (TV) denoising methods have been 

adapted for Bayesian iterative reconstruction algorithms 

suitable for use with PET, showing effective suppression of 

noise and reconstruction of homogenous regions with sharp 

edges [7]. Previous works assumed a uniform distribution of 

noise and therefore applied TV globally, which is not 

suitable for localized PSF modeling artifacts. In this work 

we develop a new locally-weighted TV strategy, where 

denoising weights are derived empirically from the data and 

are incorporated directly into the iterative reconstruction 

process. We evaluated the proposed reconstruction method 

on a simulated cylindrical phantom image, assessing 

contrast and resolution recovery. 

2. METHODS 

2.1 PET iterative image reconstruction: MLEM algorithm 

The maximum likelihood estimate of the PET images is 

computed using the maximum likelihood expectation 

maximization (MLEM) algorithm [5]. Following the 

notation from [6], the MLEM iterative update equation is 

given as follows: 
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k  represents the counts in a voxel b within the image 
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!  at iteration k, yd is the measured projection recorded as 

number of counts along the line of response (LOR) d, and 1 

is a unit matrix of the same size as yd. The forward 

Pd (i)b = [(i)]b pbd!  and backward 
 
BPb (i)d = [(i)]d pbd!  projectors 

contain a weight matrix pbd that links the voxel b and LOR 

d. The term BP
b
1 is called the geometric sensitivity, and can 

be pre-computed prior to reconstruction. Projection terms 

applied at iteration k can be combined into a multiplicative 

updating term u
b

k . 

2.2. PSF modeling 

Following the methodology introduced by Rapisardra et al., 

incorporating the PSF model into (1) is achieved by 

modifying the projectors as follows: 

                          Pd (i)b = [(i)!PSF]b pbd"                       (2) 

                         
 
BPb (i)d = PSF

T
! [(i)]d pbd"                       (3) 

where PSF represents the PSF kernel and !  is a discretized 

convolution operator as defined in Appendix of [6]. For a 

symmetric kernel, PSF = PSF
T
. MLEM reconstruction that 

utilizes Eq. (2)-(3) will be here referred to as PSF-MLEM. 

2.3 Reconstruction software and simulated data 

All reconstructions were performed using the STIR open 

source C++ software (v2.2) [9]. The modified projectors in 

Eq. (2) and (3) were written in C++ within STIR. A 200mm 

diameter cylindrical phantom object was simulated, with a 

background intensity equal to 10, three hot spots of diameter 

25mm, 16mm, 12mm with a 1.5:1 contrast ratio (CR), and 

three 8mm diameter hot spots with CR of 1.25:1, 1.5:1 and 

2:1, respectively. The phantom was blurred with a 

symmetrical 4.5mm FWHM Gaussian kernel [10] to 

simulate the resolution loss due to physics inherent in the 

ECAT HR+ scanner (Siemens/CTI) at use in our facility. 

Figure 1 illustrates the phantom image with resolution and 

contrast loss due to blurring.  

2.4 Total Variation denoising 

Following the notations above, at each iteration of Eq. (1) 

the total variation problem amounts to finding an estimate 

image ˆ!
k

 that satisfies the following optimization problem: 

                     ˆ! k
= min  
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where  i and 
 
 i   are the L1 and L2 norms, respectively 

and ! is the regularization weight. TV optimization was 

performed using the toolbox [7] implemented in Matlab
1
. 

2.5 Locally-weighted Total Variation denoising 

The classical framework given by Eq. (4) minimizes TV 

over the whole image, while PSF modeling introduces local 

artifacts. We therefore propose to locally integrate the TV 

filtered estimate ˆ!
k  into !

b

k , re-expressing ˆ!
k as:  
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where, 
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b
, represents the net change in each 

voxel b on the image estimation after TV denoising. Since 

TV filtering is only needed at specific voxel locations we 

propose to locally constrain TV enforcement by introducing 

a local weight on each TV filtered voxel, defining: 
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where 
 
!!
k

b
 is the locally weighted TV estimate and wb is a 

spatially-varying weight imposed on the net change of each 

voxel. Note that if wb = 1 then !!
b
=
ˆ!
b

, corresponding to the 

classical solution to Eq. (4). The PSF-MLEM with TV 

denoising (TV-PSF-MLEM) algorithm is thus given as 

follows:

                                                             
1 Tremoulheac, Benjamin (2012).  Split Bregman method for Total Variation 

Denoising (http://www.mathworks.com/matlabcentral/fileexchange/36278), 

MATLAB Central File Exchange. Retrieved September 29, 2012 
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Figure 1. Cylindrical phantom blurred with a 4.5 mm FWHM 

Gaussian kernel (left) and horizontal profile of pixel intensities 

through the midline (right) on: the actual phantom (blue line) and the 

ideal phantom (black line), shown for reference. 
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Figure 2. Illustration of how !
k  evolves and its relation with the 

image structure. Ideal phantom's horizontal midline profile (black 

line). Reconstructed (MLEM) profiles over several iterations of 

Eq. 1 (blue lines). Number of iterations to convergence (green line). 

Second derivative of the blurred phantom's profile (magenta line). 

Arrows show the dominant direction of evolution of reconstructed 

profiles over the iterations. Red circles highlight the localization of 

the inflection points of the reconstructed profiles, which take a 

relatively small number of iterations to converge. 
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