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ABSTRACT

This paper describes an original microscopy imaging framework
successfully employing Compressed Sensing for digital hologra-
phy. Our approach combines a sparsity minimization algorithm to
reconstruct the image and digital holography to perform quadrature-
resolved random measurements of an optical field in a diffraction
plane. Compressed Sensing is a recent theory establishing that
near-exact recovery of an unknown sparse signal is possible from
a small number of non-structured measurements. We demonstrate
with practical experiments on holographic microscopy images of
cerebral blood flow that our CS approach enables optimal recon-
struction from a very limited number of measurements while being
robust to high noise levels.

Index Terms— Compressed Sensing, digital holography, bio-
logical microscopy, signal reconstruction

1. INTRODUCTION

Digital holographic microscopy (DHM) provides quantitative phase
contrast imaging, high resolution, non-destructivity and multi-focus
representation of the specimen [1]. In biology, this technique is suit-
able for marker-free analysis of living cells. However, general high
resolution microscopy involves dense data acquisition. Reducing the
number of pixels to read out or simply increasing the throughput
is commonly targeted for improving image acquisition and analysis
rate. One intense field of research aims to reduce the amount of data
acquisition or sample illumination [2, 3]. In [2], the acquisition is
restricted to only those areas where relevant signal is present. In
[3] a method called controlled light-exposure microscopy (CLEM)
is introduced, supported by a nonuniform illumination of the field
of view. However, both methods suffer from being image-content
dependent for a successful implementation. Indeed, these methods
need a feedback loop inside the acquisition setup to make decisions
about the sampling rate or the illumination intensity, depending on
the objects characteristics.

This article attempts to address the sensing problem in DHM
by increasing the detection throughput via the concept and prelimi-
nary results of an actual Compressed Sensing (CS) implementation.
This method is independent of image-content and does not need any
feedback loop during the acquisition. CS was previously reported in
MRI acquisition [4] or digital imaging [5]. The main idea behind this

This work was funded by Institut Pasteur, DGA, Institut Langevin, ANR
and CNRS. The authors also acknowledge support from Fondation Pierre-
Gilles de Gennes. Corresponding authors:

Marcio Marim: marim@pasteur.fr
J-C Olivo-Marin: jcolivo@pasteur.fr, www.bioimageanalysis.org

work is to perform very few measurements with digital holography
and solve a direct optimization problem to reconstruct the image. In
microscopy, the observation of detailed target structures is also chal-
lenged by poor signal quality since smaller exposure times, required
for fast acquisition rates, provide low signal-to-noise ratio (SNR)
images.

2. METHODS

CS is a novel mathematical theory for sampling and reconstructing
signals in a efficient way, introduced by Candès and Donoho [6, 7].
It exploits the fact that most images are compressible or sparse in
some domain due to the homogeneity, compactness and regularity
of structures. Instead of sampling the entire data and then com-
press it to eliminate redundancy, CS performs a compressed data
acquisition. Some basic requirements to enable Compressed Sens-
ing are (i) to find a sparsifying transform able to shrink the data into
a small number of coefficients (ii) to acquire random projections of
the signal into orthogonal subspaces, such as the Fourier domain for
spatially-sparse images (iii) to use a sampling scheme that obeys the
Restricted Isometry Property (RIP) [8] and (iv) to use a sampling
domain and a sparsifying transform that span incoherent domains
[9].

Complying with these requirements, CS states that a signal g ∈
R

N having a S-sparse representation (i.e. it can be well represented
by a small number S of coefficients, where S � N ) on a basis Ψ,
can be reconstructed very accurately from a small number of pro-
jections of g onto randomly chosen subsets of vectors in the mea-
surement subspace (e.g. Fourier measurements for spatial sparsity).
More precisely, a signal g has a sparse representation if it can be
written as a linear combination of a small set of vectors taken from
some basis Ψ, such as g =

∑N
i ciΨi, with ‖ c ‖�1 ≈ S, where

‖ · ‖�1 denotes the �1 norm which corresponds to the sum of mag-
nitudes of all terms of the candidate signal g projected on Ψ. More
precisely, a more exact measure of sparsity of g is given by the �0
norm of g, which is not exactly a norm but the number of non-zero
coefficients of g. However, we use the �1 norm which in practice
gives a very accurate estimation of sparsity. In general, the �p norm
is defined as:

‖ c ‖�p := {
N∑

i=1

|ci|p}1/p (1)

As demonstrated in [10], if such a sparsifying transform Ψg ex-
ists in the spatial domain, it is possible to reconstruct an image g
from partial knowledge of its Fourier spectrum. In holographic mi-
croscopy, g will represent the local optical intensity in the object
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plane. We denote f ∈ C
N the associated complex optical field, sat-

isfying g = |f |2. The radiation field propagates from the object to
the detector plane in Fresnel diffraction conditions. Thus, the opti-
cal field in the object plane f is linked to the field F in the detection
plane by a Fresnel transform, expressed in the discrete case as:

F = F(f) : CN → C
N

Fp =
1

N

N∑

n=1

fn ei(αn2−2πnp/N) (2)

where n, p ∈ {1, . . . , N} denote pixel indexes, α ∈ R
+ is the pa-

rameter of the quadratic phase factor eiαn2

describing the curvature
in the detection plane of a wave emitted by a point source in the
object plane. In CS, the signal reconstruction consists in solving a
convex optimization problem that finds the candidate ĝ (̂· denotes
an estimator) of minimal complexity satisfying F̂ |Γ = F |Γ, where
F |Γ ⊆ F is a partial subset of measurements in the set Γ.

2.1. Digital Holography

The experimental setup is sketched in Fig. 1. It consists of an
off-axis, frequency-shifting digital holography scheme [11, 1]. The
monochromatic optical field from a near infrared diode laser illu-
minates the skull of an adult mouse, anesthetized with a mixture
of xylazine and ketamine (1 mg/kg IP, 10 mg/kg IP), positioned on a
stereotaxic frame. Cranial skin and subcutaneous tissue were excised
linearly over the sagittal suture and cortical bones were preserved.
The backscattered field beats against a separate local oscillator (LO)
field detuned by Δω/(2π) = 30Hz and creates a time-fluctuating
interference pattern measured with a N = 1024×1024 array detec-
tor. The diffracted object field map in the detector plane, resolved in
quadrature (in amplitude and phase) F ∈ C

N is calculated from a
four-phase measurement [11]. The frequency detuning Δω enables
rejection of non fluctuating light components reflected by the prepa-
ration as well as speckle reduction through signal accumulation.

F can be back-propagated numerically to the target plane with
the standard convolution method when all measurements F ∈ C

N

are available. In this case, the complex field in the object plane f
is retrieved from a discrete inverse Fresnel transform of F ; f =
F−1(F ) :

fp =
1

N

N∑

n=1

Fn e−i(αn2−2πnp/N) (3)

2.2. CS reconstruction

Now returning to the CS reconstruction problem, we want to recover
the intensity image of the object g = {|f |2 : f ∈ C

N} from a
small number of measurements F |Γ ∈ C

M where M � N . Partial
measurements in the detection plane can be written as F |Γ = Φf ,
where the sampling matrix Φ models a discrete Fresnel transform
described in (2) and random undersampling with flat distribution. To
find the best estimator ĝ, we solve the following convex optimization
problem [10]:

ĝ = arg min
g∈RN

‖ Ψg ‖�1 subject to F̂ |Γ = F |Γ (4)

Explicitly, given a partial knowledge of the Fresnel coefficients F |Γ,
we seek a solution ĝ with maximum sparsity (i.e. with minimal norm
‖ Ψg ‖�1 ), and whose Fresnel coefficients F̂ |Γ match the subset ob-
served F |Γ. Since our test image is piecewise constant with sharp
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Fig. 1: Sketch of the holographic microscopy experimental image
acquisition setup.

edges (such as most microscopy images), it can be sparsely repre-
sented computing its gradient. In this case, sparsity is expressed
with the Total Variation (TV) measure of the image:

‖ g ‖TV = ‖ ∇g ‖�1 (5)

=
∑

i,j

√
{gi+1,j − gi,j}2 + {gi,j+1 − gi,j}2

The incoherence property holds for the two basis adopted here,
which are the Fresnel spectrum and the TV [9]. Moreover, random
measurements in the spectral domain satisfy the RIP condition [10].
Hence for overwhelming percentage of Fresnel coefficients sets Γ
with cardinality obeying |Γ| = M ≥ K ·S logN , for some constant
K, ĝ is the unique solution to the problem :

ĝ = arg min
g∈RN

‖ ∇g ‖�1 s.t. F̂ |Γ = F |Γ (6)

However, holographic measurements are corrupted with noise
and the observed signal is not exactly sparse. More appropri-
ately, the observations can be described by noisy measurements
F |Γ = Φf + n, where n ∈ C

M is a noise component with bounded
energy ‖ n ‖�2 ≤ ε. In this particular case, a better reconstruction

can be achieved by relaxing the constraint F̂ |Γ = F |Γ and allowing
an error δ at most proportional to the noise energy ε [12, 13]. Finally,
solving the following problem performs the reconstruction of g with
robustness to noise:

ĝ = arg min
g∈RN

‖ ∇g ‖�1 s.t. ‖ F̂ |Γ − F |Γ ‖�2 ≤ δ (7)

for some δ ≤ Cε, which depends on the noise energy. The problem
(7) is recast as a second-order cone problem (SOCP) and the SOCP
is then solved with a generic log-barrier algorithm [7].

3. EXPERIMENTS AND RESULTS

3.1. Analysis of denoising capability

In this subsection we analyze the denoising capability of the method
described in (7). The robustness to noise relies on the efficiency of
the sparsity transform on representing well the signal of interest and
on representing inefficiently the noise distribution. In the context
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Fig. 2: Sparsifying transformation ‖ ∇f ‖�1 , (a) noisy microscopy
image, (b) noise-free image (compressible signal of interest), (c)
Poisson noise component and (d) Gaussian noise component.

of microscopic images, noise models usually combine Poisson and
Gaussian components. We performed here an analysis of the spar-
sity of each noise component by adding a mixture of Poisson and
Gaussian noise to a fluorescence microscopy image of drosophyla
cell and applying the sparsifying transform to noise components in-
dependently, results to this experience are illustrated in Fig. 2. Fig.
2(a) is the noisy microscopy image, 2(b) shows the magnitude of the
gradient of the noise-free image (compressible signal of interest).
2(c) shows the magnitude of the gradient of the Poisson noise com-
ponent and 2(d) shows the magnitude of the gradient of the Gaussian
noise component. The value ‖ ∇f ‖�1 correspond to the measure of
sparsity. In both cases, the coefficients provided by the transforma-
tion are not sparse or strongly less sparse than in Fig. 2 (for the signal
of interest). These results show clearly that the sparsifying transform
used does not encode efficiently the noise, which is strongly suited
for a denoising framework. Moreover we can observe that the signal
of interest is very efficiently encoded by the transformation.

3.2. Holographic microscopy image reconstruction

In Fig. 3 we illustrate some CS reconstruction results. A recon-
struction of an off-axis image with the standard convolution method
described in (3) is illustrated in Fig. 3(a). The image reconstructed
with holography uses all available measurements (4 phases × 20 ac-
cumulations ×10242 = 8.4 × 107 pixels). For the CS approach,
Fresnel coefficients are undersampled randomly. Fig. 3(b) shows
the CS exact recovery such as described in (6) and Fig. 3(c) shows
the CS recovery with the constraint relaxation such as described
in (7). For both CS reconstruction we use only 7% of the pixels
used in the standard approach (4 phases × 20 accumulations × 0.07
×10242 = 5.8×106 pixels). Figs. 3(d)-(f) display magnified views

from central region of images (a-c), illustrating the quality of the
reconstruction. Fig. 3(g) illustrates the gradient of the image ∇g,
corresponding to the sparse domain. Finally, Figs. 3(h) and 3(i)
illustrates the residual (Euclidean distance |ĝ − g|) from standard
holographic reconstruction (a) and CS reconstructions (b) and (c).
This error in Fig. 3(i) is essentially due to the relaxation of the con-
straint for a perfect match between measures and estimations in the
CS scheme, leading to some denoising effect, confirmed by the vi-
sual aspect of the residual image image Fig. 3(i) showing essentially
unstructured noise.

4. CONCLUSION

We have presented a novel microscopy imaging framework suc-
cessfully employing Compressed Sensing principles. It combines
an iterative image reconstruction and digital holography to perform
quadrature-resolved random measurements of an optical field in a
diffraction plane. The CS approach enables optimal image recon-
struction while being robust to high noise levels. The proposed
technique is expected to greatly improve many microscopy applica-
tions, allowing the acquisition of high dimensional data with reduced
acquisition time and opening the door to new acquisition protocols.

5. REFERENCES

[1] M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,”
Optics Letters, vol. 32, pp. 909–911, 2007.

[2] C. Jackson, R. Murphy, and J. Kovačević, “Intelligent acquisition and
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Fig. 3: Mouse cerebral blood flow (CBF) imaged by digital holography (a) Standard holographic reconstruction, as described in (2). (b)
CS exact recovery, using 7% of the Fresnel coefficients acquired with holography, as described in (6). (c) CS recovery with denoising, as
described in (7). (d-f) Magnified views from (a-c). (g) Gradient of (a). (h) Residual from |(a)-(b)|. (i) Residual from |(a)-(c)|.
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