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Off-axis compressed holographic microscopy in low light conditions
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This article reports a demonstration of off-axis compressed holography in low light level imag-
ing conditions. An acquisition protocol relying on a single exposure of a randomly undersampled
diffraction map of the optical field, recorded in high heterodyne gain regime, is proposed. The image
acquisition scheme is based on compressed sensing, a theory establishing that near-exact recovery
of an unknown sparse signal is possible from a small number of non-structured measurements. Im-
age reconstruction is further enhanced by introducing an off-axis spatial support constraint to the
image estimation algorithm. We report accurate experimental recovering of holographic images of a
resolution target in low light conditions with a frame exposure of 5 µs, scaling down measurements
to 9% of random pixels within the array detector. OCIS : 070.0070, 180.3170

Off-axis holography is well-suited to dim light imag-
ing. Shot-noise sensitivity in high optical gain regime
can be achieved with few simple setup conditions [1].
Holographic measurements are made in dual domains,
where each pixel exhibits spatially dispersed (i.e. multi-
plexed) information from the object. The measurement
domain and the image domain are “incoherent”, which
is a requirement for using compressed sensing (CS)
sampling protocols [2]. In particular, CS approaches
using frequency-based measurements can be applied to
holography sampling the diffraction field in amplitude
and phase. In biological imaging, images are typically
compressible or sparse in some domain due to the ho-
mogeneity, compactness and regularity of the structures
of interest. Such property can be easily formulated as
mathematical constraints on specific image features. CS
can be viewed as a data acquisition theory for sampling
and reconstructing signals with very few measurements
[2–4]. Instead of sampling the entire data domain and
then compress it to take advantage of redundancies,
CS enables compressed data acquisition from randomly
distributed measurements. Image reconstruction relies
on an optimization scheme enforcing some specific
sparsity constraints on the image. CS was used recently
to improve image reconstruction in holography by
increasing the number of voxels one can infer from
a single hologram and canceling artifacts [5–7]. CS
was also used for image retrieval from undersampled
measurements in millimeter-wave holography [8] and
off-axis frequency-shifting holography [9].

In this work, we describe an original acquisition
protocol to achieve off-axis compressed holography in
low-light conditions, from undersampled measurements.
The main result presented in this article is an experi-
mental demonstration of accurate image reconstruction
from very few low-light holographic measurements. The

FIG. 1: Experimental image acquisition setup.

acquisition setup consists of a frame exposed with the
reference beam alone and subtracted to a frame exposed
with light in the object channel, beating against the
reference, to yield the holographic signal. This setup
prevents any object motion artifact that would poten-
tially occur with phase-shifting methods [9]. The CS
image reconstruction algorithm relies on a total variation
minimization constraint restricted to the actual support
of the output image, to enhance image quality.

We consider the holographic detection of an object field
E of small amplitude with a reference (or local oscilla-
tor) field ELO of much larger amplitude, to seek low-light
detection conditions, using the Mach-Zehnder interfer-
ometer sketched in fig. 1. The main optical radiation
comes from a single mode continuous laser at wavelength
λ = 532 nm. Lenses with short focal lengths are used
in both channels to create point sources. In the object
channel, a negative U.S. Air Force (USAF) resolution tar-
get is illuminated in transmission. The amount of optical
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power in the object channel is tuned with a set of neutral
densities. The interference pattern of E beating against
ELO corresponds to I = |E + ELO|

2
. It is measured

within the central region of a Sony ICX 285AL CCD ar-
ray detector (gainGCCD = 3.8 photo-electrons per digital
count, N = Nx × Ny elements, where Nx = Ny = 1024,
pixel size dx = dy = 6.7µm, quantum efficiency ∼ 0.6).
The frame rate is set to 12 Hz and the exposure time to
5 µs. A mechanical chopper is used to switch the ob-
ject illumination on-and-off from frame to frame. The
recorded interference pattern takes the form

I = |ELO|
2 + |E|2 + EE∗

LO + E∗ELO (1)

where ∗ denotes the complex conjugate. In our setup
we have |E|2 ≪ |ELO|

2. Let’s define n and nLO, the
number of photo-electrons released at each pixel, from
light in the object and LO channel respectively, imping-
ing on the detector. The reference beam intensity is ad-
justed so that the LO shines the detector to half satu-
ration of the pixels’ dynamic range, on average. This
amounts to 〈nLO〉/GCCD ∼ 2000 digital counts. The
brackets 〈·〉 denote the average over N pixels. Hence
〈nLO〉 = 7.6 × 104 e (photo-electrons) per pixel. In the
object channel, three optical densities D = 0, D = 0.5,
and D = 1, are set sequentially to reach very low 〈n〉 val-
ues. The average number of digital counts in 50 consec-
utive frames recorded in these conditions, while the LO
beam is blocked, are reported in figs. 3(a)-(c). The de-
tection benefits from a holographic (or heterodyne) gain
GH = 〈|EE∗

LO|〉/〈|E|2〉 = (〈nLO〉/〈n〉)
1/2, which ranges

from GH = 177 (D = 0) to GH = 563 (D = 1). The spa-
tial support of the signal term EE∗

LO is a compact region
R of P = 400 × 400 pixels. In such high gain regimes,
the object field self-beating contribution |E|2, spreading
over a region twice as large asR along each spatial dimen-
sion, can be neglected in comparison to the magnitude
of EE∗

LO and E∗ELO in eq. 1. In off-axis configuration,
the term of interest EE∗

LO is also shifted away from |E|2

and E∗ELO, which improves the detection sensitivity at
the expense of spatial bandwidth. For the current setup,
the ratio of available bandwidth between off-axis and on-
axis holography is equal to P/N ∼ 15%. To cancel-
out the LO flat-field fluctuations within the exposure
time, a frame acquired without the object I0 = |ELO|

2

is recorded. The difference of two consecutive frames
I − I0 ≃ EE∗

LO + E∗ELO yields a measure of the holo-
graphic signal F = EE∗

LO. F which is proportional to the
diffracted complex field E, will now be referred to as the
optical field itself. Each measurement point on the array
detector Fp,q, where p = 1, ..., Nx and q = 1, ..., Ny, corre-
sponds to a point in the Fresnel plane of the object. The
optical field F , measured in the detection plane yields
the field distribution in the object plane f via a discrete

Fresnel transform [10]

fk,l =
i

λ∆z
e
iπλ∆z( k2

N2
xd2x

+ l2

Nyd2y
)

×

Nx∑

p=1

Ny∑

q=1

Fp,q e
i π
λ∆z

(p2d2

x+q2d2

y) e
−2iπ( kp

Nx
+ lq

Ny
)

(2)

where i2 = −1, and (k, l), (p, q) denote pixel indexes.
The quadratic phase factor depends on a distance
parameter ∆z. Standard holographic reconstruction, as
reported in figs. 3(d-f), consists in forming the intensity
image of the object g = |f |2 from the measurements of
F over the whole detection array, with eq. 2.

We want to recover g from a small number of measure-
ments F |Γ = Φf in the detector plane, where F |Γ ⊂ F .
Φ is a (M×N) sensing matrix encoding the Fresnel trans-
form (eq. 2) and the sampling of a subset Γ of M pixels,
randomly distributed among the N pixels of the detec-
tion array. We want M to be as small as possible, to
benefit from the best compression ratio M/N with re-
spect to non-CS holography, and enhance the throughput
savings parameter 1−M/N . For a successful reconstruc-
tion, the sensing matrix Φ must be incoherent with the
sparsifying basis Ψ enforced on the reconstructed image
[3]. This is the case for measurements from the Fresnel
transform and a sparsity constraint minimizing the to-
tal variation (TV) measure of the reconstructed image g.
The TV is measured on the gradient map of the image
as: ‖ ∇g ‖ℓ1=

∑
k,l |∇gk,l|. Since the target is piecewise

constant with sharp edges (such as most microscopy im-
ages), its spatial gradient is sparse ‖ ∇g ‖ℓ0 < M ≪ N .
The existence of a sparse representation means that g
has at most ‖ ∇g ‖ℓ0 degrees of freedom. For a successful
reconstruction we must perform at least M > ‖ ∇g ‖ℓ0
measurements, but much less thanN . Given partial mea-
surements F |Γ, we seek an estimate ĝ with maximum
sparsity (i.e. with minimal norm ‖ ∇g ‖ℓ1) whose Fres-

nel coefficients F̂ |Γ match the observations F |Γ within
some error δ. For numerical reasons, the norm ‖‖ℓ0 was
approximated with the norm ‖‖ℓ1 in the formulation of
the reconstruction problem

ĝ = argmin
R

‖ ∇g ‖ℓ1 s.t. ‖ F̂ |Γ − F |Γ ‖ℓ2 ≤ δ (3)

δ is a constraint relaxation parameter introduced to bet-
ter fit noisy measurements. Contrary to our initial im-
plementation [9], in which the TV measure ‖ ∇ĝ ‖ℓ1 was
minimized over N reconstructed pixels in the spatial do-
main, it is now only minimized within the off-axis spatial
support R, which bounds are illustrated in Fig. 2d by
the white dashed square. This restriction on the spa-
tial support being constrained leads to a more accurate
estimate of ĝ, actually reducing the number of relevant
degrees of freedom to estimate, and hence the number of
samples M required. For comparison purposes, CS re-
constructions without and with support constraint from
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FIG. 2: Compressed holographic reconstruction of g without
support constraint (a). Reconstruction with TV minimization
over the region R (b). In both cases, 〈n〉 = 2.4 e (D = 0) and
M/N = 9%. Magnified views over 330× 330 pixels (c,d).

the same original frame are reported in fig.2. TV mini-
mization over N pixels leads to the hologram magnitude
map ĝ reported in fig.2(a), while the same regularization
constraint applied on R leads to the magnitude holo-
gram reported in fig.2(b). Magnified views in figs. 2(c)
and 2(d) show a clear increase in image sharpness with
bounded spatial regularization. Noise robustness of com-
pressed holography versus standard holography is illus-
trated in fig. 3, in conditions of low-light illumination of
the target. Standard Fresnel reconstruction from N pix-
els leads to the images reported in figs. 3 (d)-(f), recorded
at 〈n〉 = (2.4, 0.75, 0.24) for figs.3 (d,e,f). CS image re-
constructions of ĝ with bounded TV regularization from
the same data are reported in figs. 3 (g)-(i). Highly ac-
curate image reconstruction is achieved, at compression
rates of 9% in fig. 3(g), 13% in fig. 3(h), and 19% in fig.
3(i), i.e. from much less measurements than needed for
Fresnel reconstruction.

In conclusion, we have presented a detection scheme
for coherent light imaging in low-light conditions suc-
cessfully employing compressed sensing principles. It
combines a single-shot off-axis holographic scheme, to

perform random measurements of an optical field in a
diffraction plane, and an iterative image reconstruc-
tion enforcing sparsity on a bounded image support.
Compressed off-axis holography is a powerful method
to retrieve information from degraded measurements
at high noise levels. We demonstrated single-shot
imaging in high heterodyne gain regime at 5 µs frame
exposure around one photo-electron per pixel in the

FIG. 3: Amount of digital counts in the object channel aver-
aged over N pixels, for three different attenuations : D = 0
(a), D = 0.5 (b), D = 1 (c). The LO beam is turned off. The
optical field E impinges onto the detector (i) and is blocked
(ii) sequentially by the optical chopper, from one frame to
the next. The horizontal axis is the frame number, the ver-
tical axis is the average number of counts per pixels. Stan-
dard holographic reconstructions at D = 0 (d), D = 0.5 (e),
D = 1 (f). CS reconstructions at D = 0 with M/N = 9%
(g), at D = 0.5 with M/N = 13% (h), and at D = 1 with
M/N = 19% (i).

object channel. In these conditions, throughput savings
from 81% to 91% can be reached.
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