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ABSTRACT

In this paper, we propose a short presentation of the compressed
sensing imaging framework, along with a review of recent appli-
cations in the biomedical imaging field. One of the critical issue that
used to hinder the application of compressed sensing in a bioimag-
ing context is the computational cost of the underlying image re-
construction process. However, some recently published algorithms
manage to overcome this difficulty, leading to acceptable reconstruc-
tion computational times. We illustrate with simulations on biolog-
ical images of fluorescence microscopy a comparison of three re-
construction algorithms, evaluating data fidelity and computational
efficiency.

Index Terms— Compressed sensing, sampling pattern, convex
optimization, Fourier transform.

1. COMPRESSED SENSING: A NEW SAMPLING THEORY

1.1. Generalities

Compressed sensing (CS) is a new sampling theory, introduced in
[4, 6]. According to this theory, structured signals (e.g. spatially
sparse signals) can be acquired with a sampling rate far smaller than
the Nyquist rate without any loss of quality. Instead of acquiring a
large amount of data and then compress it, the CS proposes to sample
the signal in a space with dense information and to reconstruct the
signal via an optimization process. The underlying hypothesis made
on the signal is that there exists a basis Ψ = (ψi)i (which has to be

known a priori) in which the signal of interest x ∈ R
N is sparse:

x =
N−1∑
i=0

αiψi with

N−1∑
i=0

‖αi‖l0
� N (1)

In practice, CS has generated a great interest since eq. (1) holds
for a large variety of signals. For instance, it is well known that
biomedical images are sparse in the wavelet domain or in the Heavi-
side basis (which is equivalent to say that their derivatives are sparse
in the canonical basis of RN ).

Under the assumption that eq. (1) holds for the signal of interest
x, it has been proved in [4] that, with a high probability, x can be
retrieved from a small number of samples y on a measurement ba-
sis Φ = (ϕi)i, assuming that Φ and Ψ are incoherent. The signal
is then recovered as the solution of the following convex minimiza-
tion problem (where the norm l1 replaces the norm l0 in the sparsity
constraint):

min
x∈RN

‖Ψx‖l1
s.t. Φx = y (2)

Another interest of the CS is that this sampling technique is
somehow intrinsically robust to noise. Indeed, since eq. (1) does not

hold for the noisy component of a signal, this component is filtered
out during the reconstruction process. It has been demonstrated in
[5] that such filtering could be enforced by relaxing the constraint
Φx = y with the following optimization problem:

min
x∈RN

‖Ψx‖l1
s.t. ‖Φx − y‖l2

≤ ε (3)

where ε is tuned according to the noise nevel in the measurements
y. Using eq. (3), we can see compressed sensing as a denoising
technique.

In the special case of piecewise smooth images, it can be advan-
tageous to substitute the l1 norm of the transformed signal ‖Ψx‖l1
in eq. (2) and (3) with the total variation TV semi-norm of the sig-

nal, expressed as ‖x‖TV =
∑

p,q

√
∂1x(p, q)2 + ∂2x(p, q)2 for a

2D image x. The TV semi-norm enforces sparsity for the image
gradient and is generally faster to compute than ‖Ψx‖l1

.

1.2. Sampling in the Fourier basis

For natural images (which have a sparse gradient or which are sparse
in a wavelet basis), a common choice is to use Fourier basis vectors
to design Φ with a particular sampling pattern in the Fourier domain
(e.g. random or star-shape sampling). For a given level of undersam-
pling, the patterns specified by Φ will greatly influence the quality
of the CS reconstruction, as illustrated in fig. 1. In this figure, we see
that the random-Gaussian sampling1 performs better (both in terms
of image quality and convergence speed2) than the random-uniform
sampling, although the lack of samples in the high frequencies leads
to some blurring near sharp edges.

The mathematical results presented in [4] suggests that the
Fourier sampling pattern should be chosen uniformly random.
However, a structured sampling pattern made of 22 radial lines
in the Fourier space was also used to illustrate the reconstruction
capabilities of CS. With such pattern, the low frequencies are over-
represented compared to the high frequencies, unlike the uniformly
random sampling hypothesis.

Recently, non-uniform Fourier sampling patterns was also stud-
ied in [19, 10, 8]), exploiting a higher sampling rate for low frequen-
cies. A careful study of the properties of such patterns in terms of
reconstruction quality and noise robustness remains open.

1By random-Gaussian sampling we mean that the probability of sampling
the coefficient corresponding to the spatial frequency k ∈ R

2 in the Fourier

space is given by exp
(

−
(

‖k‖2
ρ

)2
)

where the parameter ρ is tuned ac-

cording to the defined sampling rate.
2These simulations were performed with Matlab running on a Linux

workstation with a 2.5 GHz Core 2 Duo CPU and 6 GB of memory; all the
image pixels are valued between 0 and 1.
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Uniform (top) Gaussian (bottom)
RMS of the residue 8.3 × 10−2 3.0 × 10−2

#iterations 1240 432
Execution time 37 sec. 14 sec.

Fig. 1. Shepp-Logan image with an additive Gaussian noise with
standard deviation σ = 1.5×10−2 reconstructed using two different
random sampling patterns: from a uniform distribution and from a
Gaussian distribution. Reconstructions used the NESTA algorithm
and TV regularization, using only 7% of the Fourier coefficients.
Left: sampling pattern; middle: result; right: residue between the
result and the original image.

2. CS APPLICATIONS IN BIOMEDICAL IMAGING

Over the past few years, several works have been carried out to apply
the CS framework to various biomedical imaging techniques. Prac-
tical interest of CS imaging started in the context of magnetic reso-
nance imaging (MRI) which performs signal acquisition directly in
the Fourier domain, also called the k-space (see [10]). CS sampling
enables significant reduction of acquisition time, for both static (see
[14]) and dynamic (see [7]) screening. Image acquisition accelera-
tion factors between 3 and 6 were reported with CS-MRI and has
lead to the exploitation of novel imaging applications such as 3D
imaging of the vocal tract during sustained sound production in [8].
CS has also been combined with parallel imaging to further reduce
the acquisition time, as in [9].

Tomography-based imaging can also exploit CS sampling prior
to the reconstruction process. For example, in [16], the authors ex-
amined the possibility of reducing the number of acquisition angles
while preserving image resolution in the context of photo-acoustic
tomography. There are also some great similarities between the fam-
ily of maximum likelihood estimators for tomographic image recon-
struction studied in [17] and the optimization problems involved in
CS imaging.

For biological imaging, studies have been carried out in [12, 11]
to apply the CS framework on fluorescence optical microscopy, as a
denoising tool. In practice, optical Fourier measures could be used
with a CS sampling scheme to reduce the exposure time of the bio-
logical samples and the associated photobleaching effect, while pre-
serving a high signal-to-noise ratio. However, handling the missing
phase information remains a challenging issue, which was only ad-
dressed via the temporal interpolation of partial phase information
in [12].

Another application considers image reconstruction in digital
holographic imaging with signal recovered from very few random

measurements (see [13]).

Practical use of CS remains hindered by the computational cost
of the optimization process for the image reconstruction. Several op-
timization algorithms have been proposed for CS reconstruction, and
we review three important ones, used in biomedical CS applications.

3. CS RECONSTRUCTION ALGORITHMS

3.1. General overview

CS imaging relies on the ability to efficiently solve a convex mini-
mization problem, either pb. (2) or (3), usually with the TV semi-
norm rather than the l1 norm on wavelet coefficients. From a mathe-
matical point of view, these problems are quite challenging, for two
main reasons:

1. the objective function, either ‖·‖l1
or ‖·‖TV, is not smooth;

2. the dimension of the solution space RN is very large for imag-
ing applications (N can be greater than 106).

Former approaches for solving these problems consisted in re-
casting them as linear or second cone order programs (see [5, 3]),
and then solving them using general purposes iterative optimization
framework such as interior-point methods (see [2]). However, the
computation of a solution through these methods often requires to
invert a linear system of equations whose size is at least equal to N ,
which make them very time-consuming in high dimensions. More-
over, such general-purpose approach acts as a black-box solver, not
taking into consideration the algebraic properties of Φ and Ψ, such
as the fact that there often exists a fast algorithm (fast Fourier or
wavelet transform) to project the signal x. Therefore, new heuristics
that take advantage of these properties have emerged within the last
few years, making the CS optimization problems more tractable and
practical in clinical setting. We now review three popular optimiza-
tion algorithms, used in biomedical applications3. Our results are
presented in sec. 3.5.

3.2. NESTA

In [1], Becker et al. introduced the NESTA specialized algorithm
to efficiently solve CS reconstruction problems. This algorithm is
based on Nesterov’s work on minimizing non-smooth functions (see
[15]).

NESTA, which can solve both the l1 and TV problems, is an
iterative algorithm that produces a decreasing sequence of iterates
converging to the solution. At each step, the new guessed solution is
expressed as linear combination of two terms:

• first, a term that makes the iterate evolve in the opposite di-
rection to the objective function gradient at the current point,

• second, a term that somehow keeps track of the previous gra-
dient directions. It has been proved in [15] that this additional
term helps to improve the convergence properties of the algo-
rithm.

3Matlab implementations of those algorithms are provided by their au-
thors on the following websites:

• NESTA: http://www.acm.caltech.edu/~nesta/

• RecPF: http://www.caam.rice.edu/~optimization/L1/RecPF/

• SPGL1: http://www.cs.ubc.ca/labs/scl/spgl1/
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Both terms are defined as a solution of a quadratic optimization sub-
problem, whose solution can be expressed analytically. Moreover, if
the property ΦΦ∗ = Id holds (i.e. the rows of Φ form an orthonor-
mal family), all matrix inverts that appear in the analytical solutions
of the quadratic subproblems can be simplified, enabling very fast
computation of the solution. The algorithmic complexity of each
NESTA iteration is O (N + CΦ), where CΦ is the complexity of ap-
plying Φ or Φ∗. When Φ is a subset of the rows of the Fourier
transform matrix, ΦΦ∗ = Id holds, and CΦ = O (N log(N)), and
the computational cost of each NESTA step becomes reasonable.

3.3. RecPF

In [20], Yang et al. introduce the RecPF algorithm that is able to
solve the CS reconstruction problems (either l1 or TV) in the special
case where Φ is a subsample of the Fourier transform4.

More precisely, this algorithm solves the following problem:

min
x∈RN

‖x‖TV + λ

2 ‖Φx − y‖2
l2

(4)

Both (3) and (4) are equivalent, although the parameter ε in (3) can
be closely related to the noise level observed in the signal, while λ
is more abstract. The key idea of RecPF is to recast (4) into the
following minimization problem:

min
x,w

N−1∑
i=0

(
‖wi‖l2

+ β

2 ‖wi − Dix‖2
l2

)
+ λ

2 ‖Φx − y‖2
l2

s.t.

{
x ∈ R

N

∀i wi ∈ R
2

(5)

where each Di represents the 2 × N matrix that computes the two
spatial derivatives of x at pixel i. One can note that (4) and (5) are
equivalent when β → ∞. The algorithm consists then in minimizing
eq. (5) in w for a fixed x, then in x for the previous optimal w, and
so on:

• minimization in w can be performed in O(N) since (5) is
separable in w;

• minimization in x is a quadratic problem whose solution can
be computed in O(N log(N)) thanks to the special properties
of the Fourier transform towards the convolution product.

Overall, each RecPF iteration has an algorithmic complexity equal
to O(N log(N)).

3.4. SPGL1

In [18], Van den Berg et al. introduce the SPGL1 algorithm for
solving the following optimization problem:

min
x∈RN

‖x‖l1
s.t. ‖Φx − y‖l2

≤ ε (6)

This algorithm does not require any specific algebraic property on Φ,
provided that its product against a vector can be computed efficiently.
The adaption of SPGL1 to solve pb. (3) is straightforward when the
same property holds for Ψ. However, SPGL1 does not work for TV
minimization.

The key idea presented in [18] is to study the following opti-
mization problem:

min
x∈RN

‖Φx − y‖l2
s.t. ‖x‖l1

≤ τ (7)

4RecPF can also be adapted to be used with the discrete cosine transform

Fig. 2. Input images, with corresponding random-Gaussian sampled
masks. Left: shigella image (425 × 425 pixels); right: lymphocytes
T image (400 × 400 pixels).

TV minimization l1 minimization
NESTA RecPF NESTA SPGL1

RMS 7.3 × 10−3 6.9 × 10−3 9.5 × 10−3 9.8 × 10−3

#iter. 132 27 63 514
Time 19 sec. 2 sec. 20 sec. 89 sec.

Fig. 3. Simulation results for the Shigella image. Top: reconstructed
images; bottom: residue between the reconstructed and the input
images.

By solving several instances of this problem for different values of
the parameter τ , the solution of pb. (6) can be recovered. Pb. (7) is
then solved through an iterative gradient descent with backprojection
on the convex set of admissible solutions. SPGL1 is reported to be
particularly efficient for the following reasons:

• use of an efficient algorithm for computing the projection on
the convex set

{
x s.t. ‖x‖l1

≤ τ
}

;

• prediction of the evolution of successive values of τ via the
exploitation of the properties of the Pareto curve ε = φ(τ),
where φ(τ) is the solution of (7), to reduce the number of (7)
instances needed.

3.5. Comparison of reconstruction algorithms

We tested the three algorithms by simulations on two microscopic
images presented in fig. 2. Images were reconstructed by NESTA
and RecPF through TV minimization, and by NESTA and SPGL1
through l1 minimization (using Daubechies 4 wavelet as the spar-
sifying basis Ψ). For all experiments, we used the same random-
Gaussian sampling pattern measuring 15% of the coefficients. Re-
sults obtained with these four minimization schemes are presented
in figs. 3 and 4.

We can first notice that there are large differences between the
algorithm execution times: for the same input, RecPF can be roughly
10 times faster than NESTA, which is itself about 10 times faster
than SPGL1. This observation about SPGL1 is somehow coherent
with the comparison presented in [1], where the authors noticed that
this algorithm can perform very fast computations (even faster than
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TV minimization l1 minimization
NESTA RecPF NESTA SPGL1

RMS 2.5 × 10−2 2.5 × 10−2 2.6 × 10−2 2.6 × 10−2

#iter. 144 21 63 2382
Time 14 sec. 1 sec. 16 sec. 560 sec.

Fig. 4. Simulation results for the lymphocytes T image.

NESTA), but has varying computational times depending on the in-
put signal, whereas NESTA computation time seems to be very sta-
ble. This instability might make SPGL1 unsuitable for practical CS
imaging. The fact that RecPF is faster than NESTA is not sufficient
to disqualify this algorithm, at least for three reasons:

• NESTA is more general than RecPF, as RecPF is limited to
Fourier sampling;

• Value of the Lagrange parameter λ in RecPF can be difficult
to tune, whereas the ε parameter in NESTA can be related to
a priori knowledge on the noise level that affects the input
image (see [1]);

• the RecPF Matlab toolbox uses some C MEX functions,
whereas the NESTA toolbox does not, which can introduce a
bias in the computational time.

In terms of reconstruction quality, all the algorithms produce
overall similar results (see figs. 3 and 4). The denoising effect of the
CS can be observed on the residual images, which display Poisson
distributions, meaning that we observe higher residual values (i.e.
noise) in higher intensity areas. Looking more closely at the residual
patterns, we noticed that the NESTA algorithm with TV minimiza-
tion exhibits some unsuitable low-frequency textural artefacts (see
fig. 5). These artefacts correspond to the few low-frequency coef-
ficients not sampled by the CS, and which were not reconstructed
correctly in the image. The specific sensitivity of the NESTA-TV
reconstruction to this missing sampled information remains unclear.

4. CONCLUSION

In this paper, we have proposed a short review of recent CS imag-
ing applications for biomedical applications. In the special case of
Fourier-based sampling, our experiments confirmed that Gaussian
random sampling is recommended over uniform random sampling;
but this remains to be studied more thoroughly from a theoretical
point of view.

We also compared the NESTA, RecPF and SPGL1 optimization
algorithms for biomedical image reconstruction with Fourier-based
sampling. Experiments have illustrated the denoising capabilities
of the CS, while revealing highly variable computational times and
residue qualities: the TV semi-norm associated with RecPF seems
to lead to faster reconstructions and less artefacts in the residue, for
Fourier-based CS imaging.

Fig. 5. Residual images obtained for Shigella through TV mini-
mization with NESTA (top row) and RecPF (bottom row), and three
low-pass filtered versions of these images, with decreasing cut-off
frequency. Columns used the same colormap.
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