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An Unbiased Risk Estimator for Image Denoising
in the Presence of Mixed Poisson–Gaussian Noise

Yoann Le Montagner, Student Member, IEEE, Elsa D. Angelini, Senior Member, IEEE,
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Abstract— The behavior and performance of denoising algo-
rithms are governed by one or several parameters, whose optimal
settings depend on the content of the processed image and
the characteristics of the noise, and are generally designed to
minimize the mean squared error (MSE) between the denoised
image returned by the algorithm and a virtual ground truth.
In this paper, we introduce a new Poisson–Gaussian unbiased
risk estimator (PG-URE) of the MSE applicable to a mixed
Poisson–Gaussian noise model that unifies the widely used
Gaussian and Poisson noise models in fluorescence bioimaging
applications. We propose a stochastic methodology to evalu-
ate this estimator in the case when little is known about
the internal machinery of the considered denoising algorithm,
and we analyze both theoretically and empirically the char-
acteristics of the PG-URE estimator. Finally, we evaluate the
PG-URE-driven parametrization for three standard denoising
algorithms, with and without variance stabilizing transforms, and
different characteristics of the Poisson–Gaussian noise mixture.

Index Terms— Denoising, Stein’s unbiased risk estimate
(SURE), MSE estimation, mixed Poisson–Gaussian noise, Monte
Carlo methods, fluorescence microscopy, bioimaging, PG-URE.

I. INTRODUCTION

A. Denoising Background

Image denoising is one of the most studied problem in
image processing. Many algorithms have been developed to
tackle this issue, with various characteristics in terms of
denoising efficiency, applicability to different types of images
and noise models, and running time. Among this large col-
lection of available methods, we can single out the very
classical ones: wavelet soft-thresholding [1], which has a low
algorithmic complexity and can be applied quickly even on
large 2D or 3D signals; total-variation (TV) based methods
[2], which are very efficient in removing noise while pre-
serving sharp edges in cartoon-like images; non-local means
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Fig. 1. Common notations used in the paper. Bold font is used to denote
images and image-valued functions.

(NLM) [3], which exploits patch similarities that exist in
natural images and is very powerful in presence of textured
content. Most of the state-of-the-art denoising algorithms
[4], [5] consist in refinements of and crossings between these
classical ones: for instance, BM3D [5] consists in looking
for image patches that present similarities (as in [3]), and
then applying a thresholding operation on group of similar
patches (in the manner of [1]). One can refer to [6] for a
more comprehensive overview of filtering methods applied to
the denoising problem.

All these algorithms have one or several parameters, whose
optimal values are almost always dependent on the data being
processed. More precisely, if y is the noisy image being
observed, f θ a denoising algorithm depending on a set of
parameters θ , and x̂ = f θ (y) the denoised image returned
by the algorithm, it is often desirable to select θ such that it
optimizes a similarity criteria between x̂ and a ground truth
noise-free image x. In this paper, we will focus on the mean
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squared error (MSE) criteria:1

MSE = 1

N

∥
∥ f θ (y)− x

∥
∥2

2 (1)

where ‖·‖2 is the l2-norm applied on vectorized images (see
Fig. 1 for details on notations).

However, except in special contexts such as simulation when
the ground truth x is known, the MSE (1) is impossible to
evaluate directly and cannot be used as an objective criteria to
optimize the parameters θ of the f θ algorithm. The unbiased
risk estimator tools, among which SURE [8], [9] is a well-
known representative, aim at tackling this issue.

B. SURE and Parameter Estimation

Stein’s unbiased risk estimator (SURE) [8] is a well-
known tool in the statistics field, that has recently received
a growing interest from the image processing community (see
for instance [9], [10], and [11]).

The SURE estimator is built upon the hypothesis that the
ground truth x is corrupted by a white additive Gaussian
noise b:

y = x + b with b ∼ N (0, σ 2 Id
)

(2)

where y is the observed noisy image, and where the standard
deviation parameter σ is assumed to be known. From this
noise model, and given a denoising function2 f , a similarity
criteria SURE is defined as:

SURE = 1

N
‖ f (y)− y‖2

2 − σ 2 + 2σ 2

N
Div f (y) (3)

where Div f (y) = ∑

k
∂ fk
∂yk
(y) stands for the divergence of

the function f .
In [8], the author showed that, up to some technical points,3

MSE and SURE have equal expected values over all the
realizations of the random variable b: E {MSE} = E {SURE}.
This means that, in practice, SURE is an estimator of the
MSE similarity criteria, and can be taken as a surrogate.
The empirical equality SURE ≈ MSE has been confirmed
in various particular situations: see for instance [12] and [11].

A significant difference between MSE and SURE is that
the latter does not depend on the ground truth x. As x is
generally not available in real-life problems, this property
dramatically increases the interest of SURE over MSE in prac-
tical applications. For instance, if θ1, . . . , θK are K admissible
parameter values for a denoising algorithm f θ , it is possible to
select a “best-performing” value θk� as the one that minimizes
SURE (θk). Such selection is data-adaptive (it depends on y),

1Several image similarity criteria exist (see for instance [7]), but an
exhaustive comparison and discussion of their respective qualities is beyond
the scope of this paper. The MSE is not the best one in terms of correlation
to the human perception system, but its mathematical tractability makes it a
valuable tool in image processing.

2From now on, we will drop the subscript θ from f θ for the sake of
readability, when no ambiguity is possible.

3For the following result to hold, f must be weakly differentiable, and
its partial derivatives must fulfil E

{
∑

k

∣
∣
∣
∂ fk
∂yk

( y)
∣
∣
∣

}

< +∞. These technical
conditions will always be assumed to be true, as well as all other requirements
on the regularity of f that could be encountered in the paper. Please note
however that some realistic denoising functions f may not be even weak-
differentiable: for instance, wavelet hard-thresholding is not.

and objective (it does not rely on human expert evaluation),
opening the way to automated parameter estimation.

C. Paper Outline

The paper is built around the resolution of two issues that
restrict in practice the use of SURE for automatic parameter
tuning. First, SURE relies on the hypothesis of additive white
Gaussian noise (2), which may not account for situations
encountered in bio-imaging applications: for example, in this
case, noise intensity may not be uniform in the whole image as
assumed in (2), but rather depend on the presence of biological
objects, and more generally on the value on the underlying
signal (see [13] and [14]). The extension of SURE to a more
realistic mixed Poisson-Gaussian noise model is thus proposed
in Sec. II, extending the work in [15].

The second limitation comes from the divergence term that
appears in the expression of the SURE estimator (3). More
precisely, the evaluation of the partial derivatives ∂ fk

∂yk
(y) is not

a trivial task when the denoising algorithm f is not defined by
a closed-form expression: such situations include variational-
based algorithms (e.g. total variation minimization [2]) and
diffusion methods (e.g. anisotropic diffusion [16]). To tackle
this issue, a methodology based on the introduction of small
stochastic perturbations to y (similar to the one introduced
by [12]) is proposed in Sec. III.

A numerical validation of the proposed framework is pre-
sented in Sec. IV, along with several practical examples of
parameter estimation.

II. MIXED POISSON–GAUSSIAN NOISE MODEL

A. Generalized Unbiased Risk Estimators

The original SURE estimator [8] (3) was designed around
the Gaussian noise hypothesis (2). Other types of unbiased risk
estimators have been derived since to handle different noise
models. It is worth noting that unbiased risk estimators can be
refined to account for several phenomena that affect the image
formation, beyond simple noise: see for instance [17]–[20] and
references therein for applications of SURE-like estimators to
deconvolution problems. An exhaustive review of the existing
unbiased risk estimators applied to image restoration problems
is beyond the scope of this paper, and we focus in this
work just on pure denoising problems involving noise models
encountered in microscopy imaging applications.

B. Poisson Noise and Associated PURE Estimator

A usual noise model in bioimaging is the Poisson model,
which is quite common in low-light fluorescence microscopy
imaging, and more generally in imaging modalities that oper-
ate in low-signal conditions (see for instance [13] and [14]). In
this model, each observed pixel value yk is assumed to be the
result of a Poisson random process of intensity xk , independent
of the other pixels yl . Formally:

y ∼ P (x) (4)

A qualitative property of Poisson images is that the noise
variance is signal dependent, and increases with the underlying
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intensity of the signal. This behavior is fundamentally different
from what is modeled with the additive white Gaussian noise
hypothesis (2), for which the noise intensity is uniform and
independent of the value of the ground truth signal.

A Poisson unbiased risk estimator (PURE) of the MSE
similarity criteria has been derived in [21] for the Poisson
noise model (4):

PURE= 1

N

(

‖ f (y)‖2
2+‖y‖2

2−2
〈

y
∣
∣
∣ f [−1] (y)

〉

−〈1|y〉
)

(5)

where 〈·|·〉 stands for the usual inner product between vector-
ized images, and where the image-valued function f [−1] (y) is
defined in Fig. 1. For smooth functions f , a first-order Taylor
approximation f [−1] (y) ≈ f (y)− ∂ f (y) can be considered
to simplify (5) into:

PURE = 1

N

(

‖ f (y)− y‖2
2 + 2 〈y|∂ f (y)〉 − 〈1| y〉

)

(6)

The terms
〈

y
∣
∣ f [−1] (y)

〉

in (5) and 〈 y|∂ f (y)〉 in (6) play
roles similar to the divergence term in SURE (3), in that they
probe how small modifications of the observed image y impact
the output of the denoising algorithm f . Their evaluation are
subject to technical difficulties similar to those mentioned in
Sec. I-C for SURE.

C. Mixed Poisson–Gaussian Noise

The Gaussian and Poisson noise models (2) and (4) do not
individually account for the various phenomena involved with
real image acquisition processes in fluorescence microscopy.
Therefore, in the following, we consider a mixed Poisson-
Gaussian (MPG) noise model, similar to the ones proposed
in [13] and [22], [23], [24]:

y = ζ z + b with

⎧

⎪⎨

⎪⎩

z ∼ P
(

x
ζ

)

b ∼ N
(

0, σ 2 Id
) (7)

where z and b are two independent random variables, follow-
ing respectively a Poisson and a Gaussian distribution. This
noise model introduces two numerical parameters:

• σ ≥ 0 is the standard deviation of b; the higher this
parameter, the more the model (7) behaves like a pure
Gaussian noise model.

• ζ ≥ 0 is the gain of the acquisition process;4 the higher
this parameter, the more Poisson-like is the behavior of
the noise in (7).

It can be noted that the proposed MPG noise model (7)
encompasses the classical Gaussian and Poisson noise models:
setting ζ = 0 and σ > 0 corresponds to the Gaussian noise
model (2), while ζ = 1 and σ = 0 leads to the Poisson noise
model (4).

In what follows, we will always assume that the values
of the noise parameters σ and ζ are known. However, it is
worth noting that estimating these parameters from a given

4By convention, when ζ = 0, the MPG model must be understood as
y = x + b (i.e. pure Gaussian noise (2)). This extension is motivated by
the fact that the random variable ζ z with z ∼ P

(
x
ζ

)

converges in law to x
(deterministic value) when ζ → 0.

Fig. 2. Example of Shepp-Logan images y corrupted with the mixed
Poisson-Gaussian noise model (7), for different values of the two parameters
σ and ζ . For σ = 0 and ζ = 0 (upper left), the image is identical to the the
ground truth x (i.e. the original Shepp-Logan image).

noisy observation y is not trivial. In particular, as noticed in
[24] and [25], the cumulant based approach advised in [26]
leads to unreliable estimates of the gain parameter ζ . This is
due to the fact that this approach makes use of high-order
empirical moments (order ≥ 3) evaluated on the noisy signal,
which leads to numerical instability. As an alternative, [24]
proposes an expectation-maximization approach to address this
parameter estimation issue, which provides more stable and
reliable estimates.

D. Unbiased Risk Estimator for the MPG Model

Extending the pioneer work in [15], we derive the Poisson-
Gaussian unbiased risk estimator (PG-URE) of the MSE for
the MPG model (7):

PG-URE = 1

N

(

‖ f (y)‖2
2 + ‖ y‖2

2 − 2
〈

y
∣
∣ f [−ζ ] (y)

〉

+2σ 2 Div f [−ζ ] (y)− ζ 〈1| y〉
)

− σ 2 (8)

where the notation f [−ζ ] (y) is defined in Fig. 1. The deriva-
tion of (8) and the proof that E {PG-URE} = E {MSE} are
given in appendix A, along with the technical conditions
required on f for this result to hold. As for the Poisson model,
if f [−ζ ] (y) is replaced by its first-order Taylor expansion
f [−ζ ] (y) ≈ f (y) − ζ∂ f (y), this leads to the following
simplified expression of the PG-URE estimator:

PG-URE = 1

N

(

‖ f (y)− y‖2
2 + 2

〈

ζ y + σ 21
∣
∣
∣∂ f (y)

〉

−2σ 2ζ
〈

1
∣
∣
∣∂

2 f (y)
〉

− ζ 〈1| y〉
)

− σ 2 (9)

It should be noted that this simplified expression (9) of
PG-URE may significantly deviate from (8) in the case of
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large values of the gain parameter ζ , due to the Taylor
approximation f [−ζ ] (y) ≈ f (y) − ζ∂ f (y). However, the
numerical results presented in Sec. IV show that this deviation
has no consequence in the range of gain values encountered
in practice.

It can be verified that the expressions (8)-(9) of the PG-URE
estimator are consistent with SURE (3) and PURE (5)-(6) for
the special values of the parameters σ and ζ mentioned in
Sec. II-C. They are also consistent with the unbiased risk
estimator derived in [15] for a simpler mixed Poisson-Gaussian
noise model that does not integrate a gain parameter ζ .

Again, evaluation of the terms involving f [−ζ ], ∂ f or ∂2 f
in (8)-(9) raises some technical difficulties: in the next section,
we propose a non-deterministic method to handle them.

III. STOCHASTIC EVALUATION OF THE

POISSON–GAUSSIAN UNBIASED RISK ESTIMATOR

A. Why is a Deterministic Evaluation of PG-URE Impossible?

The expressions (8) and (9) define unbiased risk esti-
mator of the MSE (1) under a mixed Poisson-Gaussian
noise model hypothesis (7). These expressions do not involve
non-accessible entities such as the ground truth x, making
their numerical evaluation conceivable in practical settings.
However, the terms involving f [−ζ ], ∂ f or ∂2 f may not be
directly computable, as explained below.

For instance, let us assume that the denoising algorithm
f is modeled as a black-box process, meaning that we do
not make any assumption on how f works internally, and
therefore that the only available “action” with f is to submit
an input y and to retrieve an output f (y). Then, due to its
definition, a direct evaluation of f [−ζ ] (y) would require to
run f on N perturbed versions of the input y: (y − ζ ek) for
k = 1 to N . As N represents the number of pixels in the
input image, such direct evaluation would be computationally
irrealistic even with images of reasonable size. The same
argument holds for the terms ∂ f and ∂2 f , that could be
approximated through finite differences: for instance, the first
order difference 1

ε

(

fk (y + εek) − fk (y)
)

for some small
scalar parameter ε would provide a good approximation of the
kth component of ∂ f (y), but computing all the components
of this term through this scheme would require to evaluate
f (y + εek) for k = 1 to N , which is again irrealistic.

The method developed in the following sections bypasses
these problems, thanks to a stochastic scheme to evaluate
the Taylor-expanded PG-URE estimator (9) in the context
of the black-box denoising process mentioned above. One
key advantage of this method is that the required number
of evaluations of f – i.e. the significant factor in terms of
computation time – is small and does not depend on N .

B. Evaluation of the First-Order Derivative Term

We first focus on the term involving the first-order partial
derivatives of f in (9), namely

〈

ζ y + σ 21
∣
∣∂ f (y)

〉

. The idea
of the proposed method, which is a direct extension of the
Monte-Carlo SURE approach proposed in [12], is to probe
the behavior of f when applied on slightly modified versions

of y, which are obtained by adding some well-chosen random
perturbations to y.

Let us introduce a few notations: in what follows, ε > 0 is
a scalar parameter whose value is ideally as small as possible,
δ is a random perturbation vector generated according to a
probability distribution to be specified, and 〈u|∂ f (y)〉 is the
quantity to evaluate.5 Then, assuming that f is continuously
differentiable, we have:

f (y + εδ) = f (y)+ ε
∑

l

δl
∂ f
∂yl

(y)+ εr (ε) (10)

where r (ε) is some remainder that tends to 0 when ε → 0.
From this Taylor expansion, it results that:

lim
ε→0

〈

δ × u

∣
∣
∣
∣

f (y + εδ)− f (y)
ε

〉

=
∑

k,l

ukδkδl
∂ fk

∂yl
(y) (11)

where each summation index k and l visits every components
of the involved vectors.

Now, let us assume the following properties on the proba-
bility distribution of the random perturbation δ:

• the components δk of δ are independent,
• each δk has an expected value of 0 and a variance equal

to 1.

Then, by considering the expected value6 over the random
variable δ on both sides of the equality (11), we obtain:

Eδ

{

lim
ε→0

〈

δ × u

∣
∣
∣
∣

f (y+εδ)− f (y)
ε

〉}

=
∑

k

uk
∂ fk

∂yk
(y) (12)

Finally, up to some technical hypothesis (see [12] for more
details) which are also important to derive the empirical
formula (14), the expectation and the limit in (12) can be
switched, leading to the final expression:

lim
ε→0

Eδ

{〈

δ × u

∣
∣
∣
∣

f (y + εδ)− f (y)
ε

〉}

= 〈u|∂ f (y)〉 (13)

Equation (13) shows that, by taking a parameter ε
sufficiently small, the value 〈u|∂ f (y)〉 can be approx-
imated by the expected value of the random variable
1
ε 〈δ × u| f (y + εδ)− f (y)〉. Moreover, as observed in [12],
one realization of this random variable is likely to be sufficient
to reach a reliable estimate of the expected value in the case
of image processing applications (this point will be detailed
in Sec. III-E). Therefore, we obtain the following empirical
estimation formula for 〈u|∂ f (y)〉:

〈u|∂ f (y)〉 = 1

ε

〈

δ × u
∣
∣ f (y + εδ)− f (y)

〉

(14)

5Here, u = ζ y + σ 21, but the method does not depend on the actual
definition of the image u. In [12], the method is presented with u = 1, which
corresponds to 〈u|∂ f ( y)〉 = Div f ( y).

6In this section, we temporarily assume that y is deterministic. However, to
be fully rigorous, what is considered here is not the expectation, but rather the
conditional expectation given y. To avoid confusion, the latter is denoted with
an additional subscript (Eδ), indicating the remaining source of randomness.
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C. Evaluation of the Second-Order Derivative Term

A similar method can be proposed to evaluate the term
involving the second-order partial derivatives of f in (9),
namely

〈

v
∣
∣∂2 f (y)

〉

with7 v = 1.
We use here notations similar to those introduced in

Sec. III-B. Then, assuming that f is continuously twice differ-
entiable, a second-order Taylor expansion can be written as:

f (y + εδ) = f (y)+ ε
∑

l

δl
∂ f
∂yl

(y)

+ε
2

2

∑

l,m

δlδm
∂2 f
∂yl∂ym

(y)+ ε2r (ε) (15)

and similarly for f (y − εδ). By summing these two expan-
sions, we obtain:

lim
ε→0

〈

δ × v

∣
∣
∣
∣

f (y + εδ)− 2 f (y)+ f (y − εδ)

ε2

〉

=
∑

k,l,m

vkδkδlδm
∂2 fk

∂yl∂ym
(y) (16)

In addition to the hypothesis made in Sec. III-B for δ, we
impose here the additional requirement that the third moment κ
of the random variables δk is non-zero. Then, the independence
of the δk and their zero mean ensure that Eδ {δkδlδm} is always
zero except when k = l = m, while Eδ

{

δ3
k

} = κ 
= 0.
Therefore, taking the expected value in (16) and switching
it with the limit in the left-hand side leads to the following
result:

lim
ε→0

Eδ

{〈

δ × v

∣
∣
∣
∣

f (y + εδ)− 2 f (y)+ f (y − εδ)

ε2

〉}

= κ
〈

v

∣
∣
∣∂

2 f (y)
〉

(17)

Finally, assuming that one realization of the random vari-
able δ is sufficient to estimate the expected value in (17)
(see Sec. III-E), we obtain the following empirical estimation
formula for

〈

v
∣
∣∂2 f (y)

〉

:

〈

v

∣
∣
∣∂

2 f (y)
〉

= 1

ε2κ

〈

δ × v
∣
∣ f (y + εδ)− 2 f (y)

+ f (y − εδ)
〉

(18)

D. Empirical PG-URE Estimator

Using the results obtained in Sec. III-B and III-C, we are
now able to re-write the PG-URE estimator (9) without partial
derivatives of f :

PG-URE = 1

N
‖ f (y)− y‖2

2 − ζ

N
〈1| y〉 − σ 2

+ 2

N ε̇

〈

δ̇×
(

ζ y + σ 21
)∣
∣
∣ f
(

y + ε̇δ̇
)

− f (y)
〉

−2σ 2ζ

N ε̈2κ

〈

δ̈

∣
∣
∣ f
(

y+ε̈δ̈
)

−2 f (y)+ f
(

y−ε̈δ̈
)〉

(19)

7Again, the method does not take advantage of the fact that v = 1, which
motivates the use of a generic notation v.

This expression uses four parameters that are not related to
the noise model, but that are introduced for computational
purposes:

• δ̇ is the random perturbation vector used to evaluate
the term involving the first-order partial derivatives of
f in (9). To fulfil the assumptions made in Sec. III-B,
its components δ̇k must be independent and identically
distributed (i.i.d.) random variables with expected value
0 and variance 1. Several probability distributions with
these properties can be used to generate the δ̇k , and we
demonstrate that a binary distribution taking values −1
and 1 with probability 1

2 each is optimal, in the sense that
it minimizes the variance of the PG-URE estimator with
respect to the random variable δ̇ (see Sec. III-E).

• δ̈ is the random perturbation vector used to evaluate the
second-order derivative term. δ̈ is a random vector of
i.i.d. components such that8 E

{

δ̈k
} = 0, E

{

δ̈2
k

} = 1
and E

{

δ̈3
k

} = κ 
= 0. Again, an optimum with respect
to the variance of PG-URE (see Sec. III-E for details)
is reached if the δ̈ are generated according to a binary
distribution π , defined as:

π

(

δ̈k = −
√

q

p

)

= p π

(

δ̈k =
√

p

q

)

= q

with p = 1

2
+ κ

2

(

κ2 + 4
)− 1

2
and q = 1 − p

(20)

where κ is the third moment of the distribution π . The
optimal value of κ may not be available in practical set-
tings, and we set it to 1 in our experiments (we motivate
this choice in appendix B).

• ε̇ and ε̈ are the amplitudes of the perturbations intro-
duced to probe the partial derivatives of f . The values
of these scalar parameters result from a compromise
between 1) the fact that ε̇ and ε̈ must be chosen as
small as possible to limit the approximation errors in
the initial Taylor expansions (10) and (15), and 2) the
finite precision of floating point calculators, which causes
significant rounding errors when these parameters are
too small. How these values should actually be set is
discussed in Sec. IV.

Finally, the computational complexity of evaluating the
PG-URE estimator through the empirical formula (19) is
4 C f + O (N), where C f is the computational complexity of
applying the denoising algorithm f .

E. Variance of the Empirical PG-URE Estimator With
Respect to the Random Perturbations

In the expression (19) of the PG-URE estimator, the
equality is mathematically proved in terms of expected value
over the probability distribution of the two random vectors
δ̇ and δ̈. In practice and similarly to what is proposed in [12],
we evaluate the right-hand side of this expression with a
single realization of each of these random variables, as we
can assume that such evaluation is close to the expected

8The constraint on the second moment of δ̈k is not compulsory with respect
to the methodology developed in Sec. III-C, but is rather a normalization
convention.
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value. Formally, the underlying assumption is that the standard
deviation Var

δ̇,δ̈
{PG-URE} 1

2 of the estimator (19) over the

probability distribution of δ̇ and δ̈ is small with respect to its
expected value.

Thanks to the independence of δ̇ and δ̈, the variance of
PG-URE can be decomposed as:

Var
δ̇,δ̈

{PG-URE} = 1

N2 Var
δ̇

⎧

⎨

⎩

∑

k,l

ak,l δ̇k δ̇l

⎫

⎬

⎭

+ 1

N2κ2 Var
δ̈

⎧

⎨

⎩

∑

k,l,m

bk,l,m δ̈k δ̈l δ̈m

⎫

⎬

⎭
(21)

where the notations ak,l and bk,l,m stand for:

ak,l =2
(

ζ yk +σ 2
) ∂ fk

∂yl
(y) bk,l,m =2σ 2ζ

∂2 fk

∂yl∂ym
(y) (22)

Let us focus on the term V
δ̇

= 1
N2 Var

δ̇
{· · · } in (21), which

corresponds to the contribution of the perturbation δ̇ to the
overall variance of the estimator. In what follows, the pth

moment of the probability distribution associated to δ̇ will
be denoted as ṁp = E

{

δ̇
p
k

}

. Then, using the independence of
the δ̇k and the properties ṁ1 = 0 and ṁ2 = 1 introduced in
Sec. III-B, V

δ̇
can be rewritten as:

V
δ̇

= ṁ4 − 1

N2

∑

k

a2
k,k + 1

2N2

∑

k 
=l

(

ak,l + al,k
)2 (23)

This expression (23) calls for two remarks:

1) As V
δ̇

should be made as small as possible to limit the
variance of the PG-URE estimator, the probability distri-
bution used to generate the δ̇k should be chosen so that
ṁ4 is as small as possible. Yet, with the requirements
ṁ1 = 0 and ṁ2 = 1, it can be shown that ṁ4 ≥ 1
(see for instance [27]); the optimal value ṁ4 = 1 is
obtained with a symmetric binary distribution taking
values −1 and 1 with probability 1

2 each. This justifies
our proposition to use this probability distribution in
Sec. III-D.

2) The second summation group (the one with two sum-
mation indices k and l) involves N(N − 1) terms (all
the pairs k, l = 1 to N , except those with k = l),
but most of the

(

ak,l + al,k
)2

terms are likely to be 0.
Indeed, ak,l is proportional to ∂ fk

∂yl
(y), and the value

of this partial derivative is likely to be insignificant
when the indices k and l refer to pixels that are distant
from each others: in particular, this is certainly true
if f is a local denoising method. Furthermore, if we
assume that the number of input pixels yl that have a
significant influence on the kth output pixel fk (y) is
constant – or equivalently that the number of indices
k such that ak,l 
= 0 is bounded independently of
N , then the number of non-zero

(

ak,l + al,k
)2

terms is
proportional to N , making V

δ̇
proportional to 1

N . As N
is quite large in the case of images, V

δ̇
, which represents

the variance of the PG-URE estimator with respect to the
perturbation δ̇, is likely to be very small: this justifies the

Fig. 3. Test images used for the simulations (intensity range normalized to
the interval [0, 1]).

assumption made in Sec. III-B that only one realization
of this perturbation is sufficient to estimate the first-order
partial derivatives of f involved in the computation of
PG-URE.

The term corresponding to the contribution of the pertur-
bation δ̈ in (21), namely V

δ̈
= 1

N2κ2 Var
δ̈
{· · · }, can also be

expressed as a function of the coefficients bk,l,m and the
moments m̈p = E

{

δ̈
p
k

}

, similarly to (23) (see appendix B).
The obtained expression leads to conclusions similar to those
drawn for V

δ̇
, namely that V

δ̈
is proportional to 1

N for reason-
able denoising functions f , and that V

δ̈
is minimal when δ̈ is

generated according to the binary probability distribution (20),
for a particular value κ� of the parameter κ . Unfortunately,
the optimal value κ� depends on the coefficients bk,l,m and
consequently on the partial derivatives of f , whose values
are by definition not available. Still, we noticed that the
arbitrary setting κ = 1 leads to stable results (see Sec. IV
and appendix B).

IV. NUMERICAL VALIDATION AND APPLICATION

A. Simulation Goals and Process

The expression (19) defines an unbiased risk estimator of the
MSE under the mixed Poisson-Gaussian noise hypothesis (7).
Sections III-D and III-E describe how the random perturbation
δ̇ and δ̈ involved in this PG-URE estimator are generated.
However, we have not discussed yet on the values that should
be attributed to the scalar parameters ε̇ and ε̈. We propose to
determine how these values should be set through numerical
simulations; we will also make the most of these simulations
to verify the empirical equality PG-URE = MSE.

For the numerical simulations, we selected four test images
(see Fig. 3):

1) the well-known Shepp-Logan phantom, sized
256 × 256 pixels;

2) a synthetic test image (referred as Disks), also sized
256×256 pixels, representing several disks with random
gray levels, sizes and boundary sharpness, over a non-
uniform dark background,

3) the gray-scale version of the standard Lena test image,
sized 512 × 512 pixels,

4) a microscopy image of a multicellular tumor spheroid
culture (referred as MCTS), sized 512 × 512 pixels.

All these images were normalized so that they are valued
between 0 and 1, and assumed to be noise-free: in particular,
the MCTS microscopy image was acquired such that it presents
a low level of “natural” noise compared to what we added
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numerically afterward. Indeed, from each of these four noise-
free images x, we generated four noisy images y following
the MPG model (7), with the following noise parameters:

• σ = 10−1.5, ζ = 10−2 (this case is denoted as “low
noise” in the following results);

• σ = 10−1, ζ = 10−2 (denoted as “mostly Gaussian”);
• σ = 10−1.5, ζ = 10−1 (denoted as “mostly Poisson”);
• σ = 10−1, ζ = 10−1 (denoted as “high noise”).

We selected six classical denoising algorithms,9 all depen-
dent of a scalar parameter θ :

• Wavelet soft-thresholding [1]:

f WSo
θ (y) = W−1 · T θ (W · y) (24)

where W is a 2D un-decimated wavelet transform
(we used the Daubechies-4 orthogonal wavelet with 4
levels of decomposition), and T θ is a component-wise
soft-thresholding function, mapping each input wavelet
coefficient w to sign (w)max (0, |w| − θ).

• TV minimization [2]:

f TV
θ (y) = arg min

x
‖x‖TV s.t. ‖y − x‖2 ≤ θ (25)

where ‖·‖TV is the usual discrete 2D total variation semi-
norm.

• Non-local means [3]: f NLM
θ (y) is defined

component-wise as:

f NLM
k,θ (y) = 1

Zk (y, θ)

∑

l

Kk,l (y, θ) yl (26)

where the positive coefficient Kk,l (y, θ) measures the
similarity between the neighborhoods of pixels k and l
in the image y, and Zk (y, θ) = ∑

l Kk,l (y, θ) is a
normalization factor. We used the similarity measure
originally proposed in [3]:

Kk,l (y, θ) = exp

(

−‖�k (y)−�l (y)‖2
2

θ2

)

(27)

where �k (y) represents a restriction of the observation
y to a square patch centered on the pixel k; the patch
width was set to 5 pixels.

• We derived three “stabilized” versions of these three
denoising algorithms, for which we first applied a vari-
ance stabilization transform on the input image, to make
the variance of the noisy pixel yk independent of the
ground truth value xk , and therefore uniform over the
whole image (see [13] and [14]). Formally:

f S-WSo
θ (y) = S−1 ◦ f WSo

θ ◦ S (y) (28)

and similarly for f S-TV
θ and f S-NLM

θ . The variance stabi-
lization transform S (y) is defined as:

Sk(y)= 2

ζ
sign (t)

√|t| with t =ζ yk + 3

8
ζ 2+σ 2 (29)

9We intentionally do not select the state-of-the-art denoising algorithms such
as BM3D [5], as the goal here is not to compare the performances of the
existing denoising methods, but rather verify that PG-URE can be used as an
empirical estimator of the MSE with various families of denoising algorithms.
We therefore focused on the simplest and most classical methods.

In [13], it is shown that, under the MPG hypothesis (7),
Sk(y) has a variance approximately equal to 1 (except for
very low values of xk , which correspond to an extremely
low-light regime).

Finally, for each pair of tested noisy image and algorithm,
and for several values of the corresponding parameter θ , we
computed the denoised estimate f θ (y) and the MSE (as we
are using phantom test images, the ground truth is available),
and we evaluated the PG-URE estimator (19) with different
values of the amplitude parameters ε̇ and ε̈. All simulations
were performed with Matlab®, using double precision floating
point arithmetic. The influence of ε̇ and ε̈ on the PG-URE
estimator is studied in the next sections.

B. Influence of the Amplitude Parameters ε̇ and ε̈

To study how the parameters ε̇ and ε̈ affect the PG-URE
estimator (19), we decompose the latter into three terms, as
PG-URE = T0 + T1 (ε̇)+ T2 (ε̈), where:

T0 = 1

N
‖ f (y)− y‖2

2 − ζ

N
〈1| y〉 − σ 2

T1 (ε̇) = 2

N ε̇

〈

δ̇×
(

ζ y + σ 21
)∣
∣
∣ f
(

y + ε̇δ̇
)

− f (y)
〉

T2 (ε̈) = − 2σ 2ζ

N ε̈2κ

〈

δ̈

∣
∣
∣ f
(

y + ε̈δ̈
)

− 2 f (y)+ f
(

y − ε̈δ̈
)〉

(30)

In this decomposition, T0 includes the contributions to
PG-URE that do not depend on ε̇ and ε̈, while T1 (ε̇) and
T2 (ε̈) represent respectively the contributions due to the first
and second order partial derivatives of f . Figs. 4 and 5 present
two examples of the evolution of T0, T1 (ε̇) and T2 (ε̈) as
functions of the denoising parameter θ , for different values
of ε̇ and ε̈.

1) Parameter ε̇: Both graphs presented in Figs. 4 and 5
show that, although T1 (ε̇ = 0.1) and T1 (ε̇ = 1) have singular
behaviors (the latter curve does not fall in displayed range of
the graph in Fig. 5), T1 (ε̇) seems to converge to an asymptotic
curve for smaller values of ε̇: indeed, for ε̇ ≤ 10−3, we can
assume that T1 (ε̇) becomes almost independent of ε̇, with a
value close to the ideal one that would be obtained for ε̇ → 0.

To confirm this assumption, we measured the term T1 (ε̇)
for ε̇ = 10−7, 10−6.98, . . . , 10−0.04, 10−0.02, 1, and for all the
combinations of denoising algorithms, test images and noise
parameter mentioned in Sec. IV-A, with the denoising para-
meter θ set such that the MSE is minimal; the corresponding
minimal value of the MSE is denoted as MSE�. We then
measured the variability among the T1 (ε̇) values through the
indicator �T1, defined as:

�T1 = 1

MSE�
StdDev

ε̇
T1 (ε̇) (31)

where StdDev
ε̇

T1 (ε̇) measures the empirical standard deviation

of T1 (ε̇) for ε̇ varying within a sub-range [ε̇min, ε̇max] of the
probed interval

[

10−7, 1
]

. The values obtained for �T1 with
[ε̇min, ε̇max] = [

10−6, 10−3
]

are presented in Fig. 6. Theses
results show that the variability of T1 (ε̇) induced by the choice
of ε̇ is very small compared to the MSE (the quantity to
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Fig. 4. Denoising of Disks + “low noise”, using the f S-TV
θ algorithm

(TV minimization together with variance stabilization transform). MSE and
PG-URE values are plotted as functions of the denoising parameter θ , together
with the individual PG-URE terms T0, T1 (ε̇) and T2 (ε̈) for several values of
the parameters ε̇ and ε̈. Only the PG-URE curve corresponding to ε̇ = 10−4

and ε̈ = 10−2 is plotted.

estimate): indeed, whatever the value chosen for ε̇ in the range
[

10−6, 10−3
]

, the value obtained for T1 (ε̇) (and therefore for
PG-URE) is constant. We therefore used in practice ε̇ = 10−4

in what follows.
It is important to note that this value depends on the

normalization used for the intensity of the processed images:
here, our images are valued between 0 and 1, but different nor-
malizations would lead to different compromises. For instance,
in case of intensity normalized between 0 and 255, a correct
setting is ε̇ = 255 × 10−4. The floating point precision used
for the computations may also have an influence, although this
aspect is less critical for T1 (ε̇) than for the second order term,
as discussed in the next paragraph.

2) Parameter ε̈: We proceeded similarly to determine a
satisfactory value for ε̈: we measured the term T2 (ε̈) for
ε̈ = 10−4, 10−3.99, . . . , 10−0.02, 10−0.01, 1, and for all the
combinations of denoising algorithms, test images and noise
parameters, with the denoising parameter θ set such that the
MSE is minimal. The values obtained for T2 (ε̈) as functions
of ε̈ in six of these configurations are presented in Fig. 7.

Contrary to what happens with the first order term, we did
not observe a clear convergence of T2 (ε̈) to an asymptotic
value when ε̈ → 0: the curves T2 (ε̈) showed chaotic behav-
iors, with large and unpredicable oscillations when ε̈ ≤ 10−3.
We interpret these behaviors as the consequence of rounding
errors introduced by floating point operations involved when

Fig. 5. Denoising of Disks + “mostly Poisson” noise, using the f S-NLM
θ

algorithm (non-local means together with variance stabilization transform).
Same representation and legend as in Fig. 4.

computing the term T2 (ε̈). More precisely, the latter involves
a second-order finite difference f

(

y + ε̈δ̈
)

− 2 f (y) +
f
(

y − ε̈δ̈
)

whose order of magnitude might be significantly

smaller than the ones of the individual terms f
(

y ± ε̈δ̈
)

and f (y): then, due to cancellation events (see [28]), the error
made when performing this operation is likely to be significant.
A solution to avoid this problem could have been to increase
the parameter ε̈, but in this case the assumption that T2 (ε̈)
is close to its theoretical limit obtained for ε̈ → 0 becomes
erroneous: it appears that the trade-off between the need for
ε̈ to be small enough for the mathematical analysis derived in
Sec. III to be valid, and the need for ε̈ to be large enough to
avoid numerical rounding errors is much more tight for ε̈ than
for ε̇.

However, the curves on Fig. 7 show that there seems to exist
a narrow window around ε̈ = 10−2 where both requirements
hold, leading to functions T2 (ε̈) approximately constant. To
validate this hypothesis, we introduce an indicator �T2 as
follows:

�T2 = 1

MSE�
StdDev

ε̈
T2 (ε̈) (32)

where the empirical standard deviation is computed for ε̈
varying in a sub-range [ε̈min, ε̈max] of the probed inter-
val. The values obtained for �T2 with [ε̈min, ε̈max] =
[

5 × 10−3, 2 × 10−2
]

are presented in Fig. 8. These values
show that the variability of T2 (ε̈) (and therefore the variability
of PG-URE) induced by the choice of ε̈ represents less than
1% of the MSE to be estimated in more than half of the tested
situations. This variability seems to be mainly determined by
the denoising algorithm: indeed, the value of T2 (ε̈) is very
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Fig. 6. �T1 obtained for ε̇ = 10−6, 10−5.98, . . . , 10−3.02, 10−3 (151 samples), given as percentages. The two values greater than 1% are highlighted in
yellow.

Fig. 7. Term T2 (ε̈) as a function of ε̈ for six of the tested combinations of test
image, noise level and denoising algorithm (with in each case the parameter
θ set such that the MSE is minimal). Each curve T2 (ε̈) was normalized by
the actual MSE measured for the corresponding tested combination.

stable in the case of f NLM
θ , and on the contrary extremely

dependent on ε̈ in the case of f S-TV
θ . However, as other choices

of intervals [ε̈min, ε̈max] lead to poorer results for �T2, we
propose ε̈ = 10−2 as a reasonable compromise value for this
parameter. Results presented in the next section show that this
choice leads to an estimator PG-URE that can be successfully
used to adaptively set the value of the parameter θ for each
denoising algorithm.

Similarly to the case of the first order term, the setting for
ε̈ depends on the normalization used for the intensity of the
processed images, and also on the floating point precision used
for the computations.

C. Optimization of the Denoising Parameters θ Driven
by the PG-URE Estimator

Finally, to evaluate the performance of the PG-URE esti-
mator when used to optimize the parameter θ of the denois-
ing algorithms, we performed the following simulations: for
each combination of tested image, set of noise parameters,
and denoising algorithm f θ , we ran the denoising algorithm
for several values of θ , and computed the resulting MSE
and PG-URE values;10 we then retained in each case the
parameters θ�MSE and θ�PG-URE that minimize respectively the
MSE and the PG-URE. The corresponding image x̂PG-URE =
f θ�PG-URE

(y) represents the denoising result obtained by tuning
the denoising parameter such that the PG-URE estimator is
minimal – hence without using the ground truth – while
x̂MSE = f θ�MSE

(y) corresponds to the denoised image obtained
by selecting the best denoising parameter according to the
MSE, following an oracle-based approach (hence not applica-
ble for real denoising problems). We finally compared the
differences between the two denoised images by measuring
the following indicator:

�Estim =
∥
∥x̂PG-URE − x̂MSE

∥
∥

2
2

∥
∥x − x̂MSE

∥
∥

2
2

(33)

Here, �Estim relates the l2 distance between the two denoised
images to the l2 distance between the ground truth x and
the “best” denoised image, i.e. the one obtained by fol-
lowing the oracle based approach. The values measured
for �Estim are presented in Fig. 9, along with the peak
signal-to-noise measure reached with x̂MSE – defined as
PSNR = −10 log10

(
1
N

∥
∥x − x̂MSE

∥
∥2

2

)

– which assesses the
“best” denoising quality achievable following the oracle-based
parameter estimation approach. Four examples of pairs of
denoised images x̂MSE and x̂PG-URE are also presented in
Fig. 10.

Although the best performing denoising parameters θ�MSE
and θ�PG-URE selected by the MSE and the PG-URE are not
always the same, Fig. 9 shows that the distance between

10We selected ε̇ = 10−4 and ε̈ = 10−2 to evaluate PG-URE, as advised in
Sec. IV-B.
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Fig. 8. �T2 given as percentages obtained for 5 × 10−3 ≤ ε̈ ≤ 2 × 10−2 with geometric increments of 100.01 (61 samples). Yellow cells contain values
greater than 1%, while orange cells contain values greater than 10%.

Fig. 9. �Estim (33) given as percentages. Yellow cells contain values greater than than 5%, while orange cells contain values greater that 20%. PSNR values
(in dB) obtained for x̂MSE are reported, as a measure of the “best” denoising quality achievable using an oracle-based parametrization.

Fig. 10. Comparison between the denoised images x̂MSE and x̂PG-URE
obtained for the original image Disks, with four different noise levels and
denoising methods. PSNR values are also reported in the bottom right corner
of each image.

the corresponding denoised images is, in most cases, very
small compared to the distance between the oracle-denoised
image and the ground truth: the indicator �Estim is indeed
smaller than 5% in 83 of the 96 tested configurations, which

corresponds to differences between the denoised images that
are visually unnoticeable. The visual similarity between the
denoised images x̂MSE and x̂PG-URE obtained with these
parameters is illustrated on four examples in Fig. 10: in each of
the three left-most columns – which correspond to situations
with �Estim ≤ 20% (either white or yellow cells in Fig. 9)–
the images x̂MSE and x̂PG-URE are indeed very similar. For
all these cases, the PG-URE estimator therefore performed
very well as a surrogate for the MSE value, while still being
actually computable in real denoising problems, for which a
ground truth is not available.

However, for the Disks image in the “high-noise” con-
figuration processed by the f S-TV

θ algorithm, and for the
MCTS image in the “Poisson noise” configuration processed
by either f S-WSo

θ or f S-TV
θ (orange cells in Fig. 9 and right-

most column in Fig. 10), we can clearly observe that the
denoising task failed and did not return a reliable image,
due to an inappropriate selection of the parameter θ value,
itself derived from an erroneous estimation of the MSE with
the empirical PG-URE estimate. Two scenarios can explain
these erroneous estimations: drawing of a “bad” sample of the
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parameter ε̈ (Fig. 8 shows that two of these configurations
correspond to the least favorable cases with respect to the
indicator �T2), and/or a realization of one of the random
variables δ̇ or δ̈ that makes the PG-URE estimator significantly
deviate from its expected value. These scenarios correspond to
the inherent risk taken with any stochastic Monte-Carlo type of
method. One way to reduce this risk would be to draw several
realizations of δ̇ or δ̈ and average the corresponding values of
T1 (ε̇) and T2 (ε̈), at the cost however of a higher computation
time. Post-processing could also be proposed to detect failure
of the denoising, or multiple runs could be performed to gauge
the range of values obtained for the parameter being optimized,
with detection of outliers.

V. CONCLUSION

In this paper, we presented a new unbiased risk estimator
(PG-URE) for general image denoising applications, in a
context where the processed images are degraded following
a mixed Poisson-Gaussian noise model. This model unifies
the widely used Gaussian and Poisson noise models and is
relevant to describe the degradations observed in bioimaging
applications, in particular low-light fluorescence microscopy.
We showed that the PG-URE estimator can be used as a
surrogate for the usual mean squared error measure, although
its evaluation does not require any knowledge about the noise-
free version (i.e. the ground truth) of the image to denoise.
We also proposed a practical formula (19) to evaluate the
PG-URE estimator when no specific knowledge on the partial
derivatives of the denoising function f is available, making
this framework usable “out of the box” with almost any
available denoising algorithm.

Finally, we validated our approach through numerical sim-
ulations involving standard denoising algorithms and phantom
test images. Relying on theses simulations, we discussed how
to set the numerical parameters involved in PG-URE. We
compared the results obtained when tuning the parameters
θ of these standard denoising algorithms by minimizing the
PG-URE estimator and the mean squared error, and showed
that these two approaches lead to similar denoised images in
most of the tested scenarios. This demonstrates the interest
of the PG-URE estimator for practical applications, as MSE
driven optimization is not applicable for real denoising prob-
lems.

APPENDIX A

DERIVATION OF THE PG-URE ESTIMATOR

This appendix describes how the first definition (8) of
the PG-URE estimator is obtained, and proves the equality
E {PG-URE} = E {MSE}. This result could be derived quite
directly from the work in [15], but we propose here a more
intrinsic proof, relying on the two basic properties of the
Gaussian and Poisson distributions that are mentioned below.
Proofs of these lemmas can be found respectively in [8], [29],
and [30].

Lemma 1.1(Stein’s lemma): Let y = x + b where x ∈ R
N

is deterministic and b ∼ N (

0, σ 2 Id
)

. Let φ : R
N → R

N be a

weakly differentiable function such that E

{∣
∣
∣
∂φk
∂yk

(y)
∣
∣
∣

}

< +∞
for all k. Then:

E
{〈b|φ (y)〉} = σ 2

E
{

Divφ (y)
}

Lemma 1.2: Let z ∈ R
N such that z ∼ P (x) (i.e. the

components zk are independent random variables following
Poisson distributions of parameters xk). Let ψ : R

N → R
N

such that E {|ψk (z)|} < +∞ for all k. Then:

E
{〈x|ψ (z)〉} = E

{〈

z
∣
∣
∣ψ

[−1] (z)
〉}

Thanks to these results, we can state the following theorem:
Theorem 1.1: Let y = ζ z + b where b ∼ N (

0, σ 2 Id
)

and

z ∼ P
(

x
ζ

)

(b and z independent). Let φ : R
N → R

N a
weakly differentiable function such that E {|φk (y)|} < +∞
and E

{∣
∣
∣
∂φk
∂yk

(y − ζ ek)
∣
∣
∣

}

< +∞ for all k. Then:

E
{〈x|φ (y)〉} = E

{〈

y
∣
∣φ[−ζ ] (y)

〉− σ 2 Divφ[−ζ ] (y)
}

Proof: We introduce the family of functions
ψb : R

N → R
N , defined by ψ b (z) = φ (ζ z + b). Then:

E
{〈x|φ (y)〉} = . . .

= E

{

ζEz

{〈
x
ζ

∣
∣
∣
∣
ψb (z)

〉}}

(a)= E

{

ζEz

{〈

z
∣
∣
∣ψ b

[−1] (z)
〉}}

= E
{〈

y − b
∣
∣φ[−ζ ] (ζ z + b)

〉}

= E
{〈

y
∣
∣φ[−ζ ] (y)

〉}− E
{

Eb
{〈

b
∣
∣φ[−ζ ] (y)

〉}}

(b)= E
{〈

y
∣
∣φ[−ζ ] (y)

〉}− E

{

σ 2
Eb
{

Divφ[−ζ ] (y)
}}

= E

{〈

y
∣
∣φ[−ζ ] (y)

〉− σ 2 Divφ[−ζ ] (y)
}

Steps (a) and (b) make use respectively of lemmas 1.2
and 1.1.

Finally, from the definition of the MSE (1), it can be noticed
that:

E {MSE} = 1

N
E
{‖ f (y)‖2

2 − 2 〈x| f (y)〉 + 〈x| y〉} (34)

Theorem 1.3 applied twice on this expression with φ = f and
φ = Id (the identity function) leads to the expected expression
of PG-URE. As previously mentioned, we assume that the
regularity and expectation conditions of theorem 1.3 hold
for f .

APPENDIX B

CONTRIBUTION OF THE PERTURBATION δ̈ TO THE

VARIANCE OF THE PG-URE ESTIMATOR

In this appendix, we derive an algebraic expression for the
contribution V

δ̈
of the perturbation δ̈ to the variance (21) of the

PG-URE estimator. This expression uses only the coefficients
bk,l,m defined by (22), and the moments m̈p = E

{

δ̈
p
k

}

of the
probability distribution used to generate the components of δ̈.
We finally derive the optimal conditions on these moments m̈p

for V
δ̈

to be minimal.
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A. Expression of V
δ̈

First, we introduce a few notations:

• ck = bk,k,k for all pixel index k,
• dk,l = bk,k,l + bk,l,k + bl,k,k , for all k 
= l,
• Dl = ∑

k,k 
=l dk,l for all l,
• ek,l,m = bk,l,m + bk,m,l + bl,k,m + bm,k,l + bl,m,k + bm,l,k

for all 3-tuple (k, l,m) with k 
= l, k 
= m and l 
= m.

We also recall that m̈1 = 0, m̈2 = 1, m̈3 = κ . Then, starting
from the definition of V

δ̈
, we have:

N2κ2V
δ̈

= Var
δ̈

⎧

⎨

⎩

∑

k,l,m

bk,l,m δ̈k δ̈l δ̈m

⎫

⎬

⎭

=
∑

i, j,k,l,m,n

bi, j,kbl,m,nE
δ̈

{

δ̈i δ̈ j δ̈k δ̈l δ̈m δ̈n
}

−
⎛

⎝
∑

k,l,m

bk,l,mE
δ̈

{

δ̈k δ̈l δ̈m
}

⎞

⎠

2

As explained in Sec. III-C, E
δ̈

{

δ̈k δ̈l δ̈m
} = 0 except when

k = l = m: this is due to the independence of the components
of δ̈ and to the property m̈1 = 0. This leads to the immediate
simplification of the expression above:

N2κ2V
δ̈
=
∑

i, j,k
l,m,n

bi, j,kbl,m,nE
δ̈

{

δ̈i δ̈ j δ̈k δ̈l δ̈m δ̈n
}

︸ ︷︷ ︸

S6

−κ2
∑

k,l

ckcl (35)

The same arguments can be used to simplify the sixfold sum
S6, as E

δ̈

{

δ̈i δ̈ j δ̈k δ̈l δ̈m δ̈n
} = 0 as soon as one of the six indices

is different from the others. Then, S6 can be divided according
to the four situations where E

δ̈

{

δ̈i δ̈ j δ̈k δ̈l δ̈m δ̈n
}

is non-zero:

S6 = m̈6T6 + m̈4T4,2 + κ2T3,3 + T2,2,2 (36)

• T6 includes the terms involved in S6 for which all the
six summation indexes are equal: obviously, we have
T6 = ∑

k c2
k ;

• T4,2 groups together all the terms such that, among the
six summation indices, there is one group of four equal
indices on the one hand, and another group of two equal
indices on the other hand (for instance: i = j = l = n 
=
k = m);

• in the same way, T3,3 includes all the terms such that the
indices form two groups of three.

• finally, T2,2,2 covers the situation where there are three
pairs of equal indices.

A careful enumeration of the terms involved in these situations
leads to the following expressions:

T4,2 =
∑

k 
=l

d2
k,l + 2

∑

k

ck Dk

T3,3 =
∑

k 
=l

ckcl +
∑

k 
=l

dk,ldl,k

T2,2,2 =
∑

k

D2
k −

∑

k 
=l

d2
k,l + 1

6

∑

k 
=l 
=m

e2
k,l,m (37)

By putting all things together, we finally obtain:

N2V
δ̈

= m̈6 − m̈2
4 − κ2

κ2

∑

k

c2
k + m̈4 − κ2 − 1

κ2

∑

k 
=l

d2
k,l

+ 1

κ2

∑

k

(m̈4ck + Dk)
2 + 1

2

∑

k 
=l

(

dk,l + dl,k
)2

+ 1

6κ2

∑

k 
=l 
=m

e2
k,l,m (38)

It can be verified that this expression (38) is indeed positive,
as for any probability distribution with moments mp, the
following Hankel matrix Hp is positive (see [27]):

Hp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 m1 m2 · · · mp

m1 m2 . .
. ...

m2 . .
. ...

... . .
. ...

mp · · · · · · · · · m2p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(39)

In our case, this implies:

m̈6 − m̈2
4 − κ2 ≥ 0 and m̈4 − κ2 − 1 ≥ 0 (40)

As in the case of V
δ̇
, we can analyze the order of mag-

nitude of the contribution V
δ̈

to the variance of the PG-URE
estimator. As explained in Sec. III-E, for reasonable denoising
operators f , the second order derivative ∂2 fk

∂yl∂ym
(y) is likely to

be zero, except when the pixels corresponding to the indexes
k, l and m share some spatial proximity. As the bk,l,m are
proportional to these second order derivatives, and due to their
definition, we deduce that the number of non-zero coefficients
dk,l and ek,l,m is proportional to N ; the order of magnitude of
V
δ̈

is therefore proportional to 1
N , as claimed in Sec. III-E.

B. Optimal Probability Distribution

Selection of the probability distribution of δ̈ can be formu-
lated as an optimization problem consisting in minimizing the
right-hand side of (38) seen as a function of m̈6, m̈4 and κ ,
subject to the feasibility constraints (40).

As a first remark, it can be observed that for fixed values of
the variables m̈4 and κ , the minimal value of V

δ̈
is reached with

m̈6 = m̈2
4 +κ2. Then, by re-injecting this optimal condition in

(40), and by removing the constant terms, the problem can be
restated as minimizing the following function �:

�(m̈4, κ) = αm̈2
4 + βm̈4 + γ

κ2 subject to m̈4 ≥ κ2 + 1

with α =
∑

k

c2
k β = 2

∑

k

ck Dk +
∑

k 
=l

d2
k,l

γ =
∑

k

D2
k −

∑

k 
=l

d2
k,l + 1

6

∑

k 
=l 
=m

e2
k,l,m (41)

From the definition of the coefficients α, β and γ , it can
be checked that αm̈2

4 + βm̈4 + γ ≥ 0 when m̈4 ≥ 1 (which
is the case in the constraint domain). This implies that, for
a fixed value of m̈4, the function �(m̈4, κ) decreases when
κ2 increases: the minimal value is therefore obtained on the
boundary of the feasibility domain, i.e. m̈4 = κ2 + 1. Finally,
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a basic function analysis shows that �
(

κ2 + 1, κ
)

reaches a
minimum value when κ4 = (α + β + γ ) /α.

To summarize, the contribution V
δ̈

to the variance of the
PG-URE estimator is minimal under the following conditions:

m̈6 = κ4 + 3κ2 + 1 m̈4 = κ2 + 1 κ = ±κ�

with κ� =
(∑

k (ck + Dk)
2 + 1

6

∑

k 
=l 
=m e2
k,l,m

∑

k c2
k

) 1
4

(42)

The probability distribution π (20) defined in Sec. III-D for δ̈
do verify the conditions on m̈6 and m̈4. However, in practice,
the optimal value κ� of the third moment cannot be evaluated,
as we do not know the values of the partial derivatives involved
in the definition of the coefficients ck , Dk and ek,l,m .

In Sec. III-D, we propose to use κ = 1: although this
choice is certainly not optimal in all cases, we can propose
a sketch of proof from the expression of κ� (42). Indeed,
the coefficients ck are proportional to ∂2 fk

∂y2
k
(y), while the Dk

and ek,l,m depend only on second-order partial derivatives
∂2 fk
∂yl∂ym

(y) for which at least k 
= l or k 
= m: then, under
the hypothesis that, for a reasonable denoising operator f , the
kth output pixel depends mostly on the kth input pixel, we
can assume that ∂

2 fk

∂y2
k
(y) have higher order of magnitude than

∂2 fk
∂yl∂ym

(y). We deduce that |ck | � |Dk | and |ck | � ∣
∣ek,l,m

∣
∣,

and therefore that κ� ≈ 1. However, several approximation
and hypothesis are made here: a quantitative analysis of
the statistical distribution of the second-order partial deriv-
ative values would certainly be desirable to achieve better
approximations.

ACKNOWLEDGMENT

The authors would like to thank Corinne Lorenzo, from
Institut des Technologies Avancées en Sciences du Vivant
(Toulouse, France), and Jordi Andilla and Pablo Loza-
Alvarez, from the Institute of Photonic Sciences (Barcelona,
Spain), for providing the MCTS test image. We are also
grateful to the anonymous reviewers, for their valuable
remarks.

REFERENCES

[1] D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf.
Theory, vol. 41, no. 3, pp. 613–627, May 1995.

[2] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60,
no. 1, pp. 259–268, 1992.

[3] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2,
pp. 490–530, 2005.

[4] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
denoising by sparse 3D transform-domain collaborative filtering,”
IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095,
Aug. 2007.

[6] P. Milanfar, “A tour of modern image filtering,” Signal Process. Mag.,
vol. 30, no. 1, pp. 106–128, 2013.

[7] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “A comprehensive eval-
uation of full reference image quality assessment algorithms,” in Proc.
Int. Conf. Image Process., 2012, pp. 1477–1480.

[8] C. M. Stein, “Estimation of the mean of a multivariate normal distrib-
ution,” Ann. Statist., vol. 9, no. 6, pp. 1135–1151, 1981.

[9] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness
via wavelet shrinkage,” J. Amer. Statist. Assoc., vol. 90, no. 432,
pp. 1200–1224, 1995.

[10] A. Benazza-Benyahia and J.-C. Pesquet, “Building robust wavelet
estimators for multicomponent images using Stein’s principle,”
IEEE Trans. Image Process., vol. 14, no. 11, pp. 1814–1830,
Nov. 2005.

[11] D. Van De Ville and M. Kocher, “SURE-based non-local means,”
IEEE Signal Process. Lett., vol. 16, no. 11, pp. 973–976,
Nov. 2009.

[12] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE: A black-
box optimization of regularization parameters for general denoising
algorithms,” IEEE Trans. Image Process., vol. 17, no. 9, pp. 1540–1554,
Sep. 2008.

[13] J.-L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data
Analysis. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[14] B. Zhang, J. M. Fadili, and J.-L. Starck, “Wavelets, ridgelets, and
curvelets for Poisson noise removal,” IEEE Trans. Image Process.,
vol. 17, no. 7, pp. 1093–1108, Jul. 2008.

[15] F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed
Poisson-Gaussian noise,” IEEE Trans. Image Process., vol. 20, no. 3,
pp. 696–708, Mar. 2011.

[16] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12,
no. 7, pp. 629–639, Jul. 1990.

[17] C. Vonesch, S. Ramani, and M. Unser, “Recursive risk estima-
tion for non-linear image deconvolution with a wavelet-domain spar-
sity constraint,” in Proc. 15th Int. Conf. Image Process., 2008,
pp. 665–668.

[18] J.-C. Pesquet, A. Benazza-Benyahia, and C. Chaux, “A SURE
approach for digital signal/image deconvolution problems,”
IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4616–4632,
Dec. 2009.

[19] Y. C. Eldar, “Generalized SURE for exponential families: Applica-
tions to regularization,” IEEE Trans. Signal Process., vol. 57, no. 2,
pp. 471–481, Feb. 2009.

[20] R. Giryes, M. Elad, and Y. C. Eldar, “The projected GSURE for auto-
matic parameter tuning in iterative shrinkage methods,” Appl. Comput.
Harmon. Anal., vol. 30, no. 3, pp. 407–422, 2011.

[21] F. Luisier, C. Vonesch, T. Blu, and M. Unser, “Fast interscale wavelet
denoising of Poisson-corrupted images,” Signal Process., vol. 90, no. 2,
pp. 415–427, Feb. 2010.

[22] B. Zhang, J. M. Fadili, J.-L. Starck, and J.-C. Olivo-Marin, “Multiscale
variance-stabilizing transform for mixed Poisson-Gaussian processes and
its applications in bioimaging,” in Proc. Int. Conf. Image Process., 2007,
pp. 233–236.

[23] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical
Poissonian-Gaussian noise modeling and fitting for single-image raw-
data,” IEEE Trans. Image Process., vol. 17, no. 10, pp. 1737–1754,
Oct. 2008.

[24] A. Jezierska, C. Chaux, J.-C. Pesquet, and H. Talbot, “An EM approach
for Poisson-Gaussian noise modeling,” in Proc. Eur. Signal Process.
Conf., 2011, pp. 2244–2248.

[25] A. Jezierska, H. Talbot, C. Chaux, J.-C. Pesquet, and G. Engler,
“Poisson-Gaussian noise parameter estimation in fluorescence
microscopy,” in Proc. 9th Int. Symp. Biomed. Imag., 2012,
pp. 1663–1666.

[26] B. Zhang, “Contributions à la microscopie à fluorescence en imagerie
biologique: Modélisation de la PSF, restauration d’images et détection
super-résolutive,” Ph.D. dissertation, Dépt. traitement du Signal et des
Images, Telecom ParisTech, Paris, France, 2007.

[27] N. I. Akhiezer, The Classical Moment Problem and Some Related
Questions in Analysis. London, U.K.: Oliver & Boyd, 1965.

[28] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Comput. Surveys, vol. 23, no. 1,
pp. 5–48, 1991.

[29] J. C.-M. Peng. (1975). Simultaneous Estimation of the Parameters
of Independent Poisson Distribution. Dept. Statist., Stanford Univer-
sity, Stanford, CA, USA. Tech. Rep. 78 [Online]. Available: https://
statistics.stanford.edu/sites/default/files/EFS%2520NSF%252078.pdf

[30] K.-W. Tsui and S. J. Press, “Simultaneous estimation of several Poisson
parameters under K-normalized squared error loss,” Ann. Statist., vol. 10,
no. 1, pp. 93–100, 1982.



1268 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 3, MARCH 2014

Yoann Le Montagner received the M.Sc. degree
in applied mathematics from École Polytechnique,
Palaiseau, France, in 2010, and the Ph.D. degree in
signal and image processing from Télécom Paris-
Tech, Paris, France, in 2013. From 2010 to 2013, he
was with the Signal and Image Processing Depart-
ment, Télécom ParisTech, Institut Mines-Télécom,
Paris, and with the Quantitative Image Analysis
Unit, Institut Pasteur, France. His research inter-
ests include compressed sensing, phase retrieval,
statistical signal processing, denoising, and inverse

problems.

Elsa D. Angelini (M’98–SM’12) received the B.Sc.
degree from Ecole Centrale de Nantes, Nantes,
France, in 1996, and the M.Sc. and Ph.D. degrees in
biomedical engineering from Columbia University,
New York, NY, USA, in 1998 and 2003, respectively.
She currently holds a dual position as an Asso-
ciate Professor of computer science with Institut
Mines-Télécom, Télécom ParisTech, Paris, France,
and a Senior Research Scientist with the Department
of Biomedical Engineering, Columbia University,
USA. Her research focuses on image processing for

multidimensional biomedical imaging, including applications such as denois-
ing, enhancement, segmentation, and modeling. She was an Associate Editor
for the IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING from 2008 to
2012, and she is currently the Chair of the EMBS TC on Biomedical Imaging
and Image Processing, and a member of the IEEE EMBS Administrative
Committee.

Jean-Christophe Olivo-Marin received the Ph.D.
and H.D.R. degrees in optics and signal processing
from Institut d’Optique Théorique et Appliquée,
University of Paris-Orsay, France. He is the Head
of the Quantitative Image Analysis Unit, Institut
Pasteur, and the Chair of the Cell Biology and
Infection Department. He was a cofounder of the
Institut Pasteur Korea, Seoul, where he held a joint
appointment as a Chief Technology Officer from
2004 to 2005. He was a Staff Scientist with the
European Molecular Biology Laboratory, Heidel-

berg, from 1990 to 1998. His research interests are in image analysis of
multidimensional microscopy images, computer vision and motion analysis for
cellular dynamics, and in multidisciplinary approaches for biological imaging.
He is a Past Chair of the IEEE SPS Bio Imaging and Signal Processing
Technical Committee, Senior Area Editor of the IEEE SIGNAL PROCESSING

LETTERS, and member of the editorial board of the journals Medical Image
Analysis and BMC Bioinformatics. He was the General Chair of the IEEE
International Symposium on Biomedical Imaging in 2008.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


