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ABSTRACT 
 
Quantitative analysis of cardiac motion is of great clinical 
interest in assessing ventricular function. Real-time 3-D 
(RT3D) ultrasound transducers provide valuable four-
dimensional information, from which quantitative 
measures of cardiac function can be extracted. Previously, 
we presented a method based on four-dimensional optical 
flow motion estimation for anatomical tracking of 
myocardium in RT3D ultrasound, from which myocardial 
displacement fields and dynamic cardiac metrics were 
computed. In this paper, in order to quantitatively validate 
our method, we build a truly 3D mathematical phantom of 
cardiac tissue and blood. Distinguished from previous 
studies, our work further decomposes tissue impedance 
into cell kernels and processes all functions in 3D. Instead 
of simply modeling the myocardium, a “quasi-LV” 
phantom is built including myocardium and blood. Also 
all ultrasound probe parameters used in this work are 
directly estimated from clinical RT3D data instead of 
using common parameters from 2D transducers. Based on 
this phantom, simulated RT3D ultrasound data sets are 
generated for validation to assess the performance of an 
optical flow based method in tracking myocardial tissues.  

  
1. 

2. 

INTRODUCTION 
Ultrasound is the cardiac screening modality with the 
highest temporal resolution, but remains limited to two-
dimensional technology in most hospitals and clinical 
centers. Development of 3D echocardiography started in 
the 1990s [1], with real-time 3D (RT3D) ultrasound based 
on matrix phased arrays. A new generation of RT3D 
transducers was introduced by Duke University [2, 3] and 
more recently by Philips Medical Systems (Best, The 
Netherlands) with the SONOS 7500 transducer followed 
by the iE33 model that acquires a fully sampled cardiac 
volume within four cardiac cycles. This technical advance 
increased the spatial resolution and image quality, which 
makes 3D ultrasound techniques increasingly attractive 
for routine cardiac clinical diagnosis on cardiac patients. 
Since RT3D ultrasound acquires volumetric ultrasound 
sequences with fairly high temporal resolution using a 
fixed-positioned transducer, it can very well capture 
cardiac function [4, 5] as well as complex 3D cardiac 
motion.  

In a previous study [6], we developed a framework to 
derive several dynamic cardiac measures based on four-
dimensional optical flow using RT3D ultrasound temporal 
sequences. This framework was applied to a clinical data 
set from a heart transplant patient and dynamic 
measurements agreed with findings in related cardiac 
biomechanics studies [7, 8]. In this paper, in order to 
quantitatively validate our method, we first build a 
mathematical phantom to mimic acoustic impedance of 
cardiac tissue and blood. Based on this phantom, 
simulated real-time four-dimensional ultrasound data sets 
are generated, using transducer parameters similar to 
those of the RT3D ultrasound machine from Volumetrics 
[2, 3]. Performance of our optical flow based method in 
tracking myocardial tissues are explored by simulating 
consecutive RT3D ultrasound frames of the beating heart 
under controlled motion fields, including translation, 
rotation, and thickening deformations. 

 
METHODOLOGY 

2.1 Ultrasound Simulation Methods 

Simulating ultrasonic B-scanning images can be dated 
back to 1980 [9]. In their paper, Bamber et al. modeled 
the ultrasonic image formation process in the far field as a 
convolution of the point spread function (PSF) from the 
transducer and the scattered distribution of underlining 
tissues defined by local density and compressibility. 
Several studies have been performed since then, with 
more or less elaborate models. In [10], Narayanan et al. 
used a very simple simulation framework for transmitted 
pulses and received echo signals to study the influence of 
the scatter cross-section and the number of scatterers per 
cells on envelope signal statistics. Their model was 
derived from the extensive review of first and second 
order statistics of complex random signals from Wagner 
et al. [11]. Specific to cardiac applications, a study in [12] 
demonstrated that the K-distribution is generally more 
appropriate than the Rayleigh distribution to simulate 
backscatters from myocardial tissue in the frequency 
range of 5-15 MHz. On the other hand, Meunier et al. 
published three papers in 1994 [13] and 1995 [14, 15] to 
study speckle motion artifacts under tissue dynamics in 
2D B-mode images, using a Rayleigh distribution model. 
The K-distribution is generated by a sparse density of 
Poisson scatterers (average number of scatterers per 
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resolution cell was between 9 and 12), whereas the 
Rayleigh distribution is generated by a dense distribution 
of  Poisson scatterers (above 12) [12, 16]. A 3D 
extension of Meunier’s model, to generate ultrasound 
image volumes was proposed in [17] and in [18] for a 
uniform medium scanned on a rectilinear grid geometry.  

In a different context, Jensen [19] developed an 
extensive ultrasound simulation software package called 
FIELD in 1996 based on Tupholme-Stepanishen’s method, 
which allowed arbitrary transducer design. For this reason, 
the current version, FIELD II, is widely used in 
transducer design.  

2.2 Image Formation Model 

In this work, we used Meunier’s simulation framework. 
Assuming a linear and position-independent point spread 
function (PSF) of the transducer in the far field, the 3D 
radio-frequency (RF) echographic signal  can 
be modeled by a 3D convolution product ( ) between 
the system PSF 

( , , )RF x y z

( , , )H x y z  and the impulse response of 
the tissue [9, 14, 15]: ( , , )T x y z
 . (1) ( , , ) ( , , ) ( , , )zRF x y z H x y z T x y

For the situation of a far-field plane-wave that 
propagates in the x-direction in a weakly inhomogeneous 
continuum, a function describing the tissue echogeneity, 

, was derived by Bamber and Dickinson in [9]  ( , , )T x y z

 
2

2
0 0

1 ( , , ) ( , , )( , , )
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x y z x y z
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x
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where  and  are the density and compressibility 
functions deviating from the reference value 0  and 

0 . As shown in [15], the function  can be 
reformulated through acoustic impedance 

( , , )T x y z
( , , )Z x y z  

leading to : 

 
2 2

2 2

Z H
RF H Z

x x
 (3) 

The final 3D ultrasound image is formed by envelope 
detection, modeled as an analytical demodulation: 
 ( , , ) ( , , ) ( ( , , ))I x y z RF x y z j RF x y zH  (4) 
where ( , , )I x y z  is the 3D ultrasound image, H() is the 
Hilbert transform that provides the quadrature component 
of the signal, and j is the square root of -1. 

2.3 Point Spread Function 

Meunier propose to model the far-field PSF with a cosine 
function combined with a 3-D Gaussian envelope: 

 
2 2 2

2 2 2

1( , , ) exp cos(2 )
2 x y z

x y z
H x y z fx

s s s
 (5) 

where ( , , )x y zs s s  defines the size of the PSF in axial, 
lateral, and transverse directions, respectively; and f is the 
spatial frequency. In most ultrasound systems, ( , , )H x y z  

is a narrowband signal, which allows to discard the 
second order derivative operator in Equation(3). This 
assumption is also used to simplify the model in other 
studies, explicitly in [13] or implicitly in [14, 15, 17, 18]. 

2.4 Tissue Model 

The tissue continuum can be modeled as a collection of 
cells that behave as scatterers. Assuming that at the scale 
of image resolution, the cells are effectively identical in 
shape and orientation, a cell kernel function  is 
defined at cell location 

( , , )C x y z
( , , )n n nx y z . We can even assume 

that the image pixel is large enough so that  
can be approximated by a symmetric function. Thus for 
each cell, the corresponding acoustic impedance is  

( , , )C x y z

 ( , , ) ( , , )n n n n nZ x y z a C x x y y z z . (6) 
And the total acoustic impedance of the tissue for each 

image pixel ( , , )x y z  is:  
 ( , , ) ( , , )n n n n

n n
nZ x y z Z a C x x y y z z . (7) 

This can be decomposed as a convolution product as:  
 ( , , ) ( , , ) ( , , )Z x y z C x y z N x y z , (8) 
where: 
 ( , , ) ( , , )n n n

n

N x y z a x x y y z zn  (9) 

and ( , , )x y z  is the Dirac or impulse function. Based on 
narrowband PSF assumption as in [15], the process 
function  can be approximated by the 
following equation within each image pixel: 

( , , )N x y z

  (10) 
1

( , , )
m

n
n

N x y z a

with m is the total number of cells overlaid with one pixel, 
which can be modeled as a random variable with Poisson 
distribution. As pointed out in [14, 15], if the beam 
thickness is large enough to include at least five cells, 

 can be modeled as an image with Gaussian 
histogram whose variance is equal to its mean. Note that 
under this assumption, the symmetric assumption on 

 can be loosened.  

( , , )N x y z

( , , )C x y z
Overall, the 3D image formation model that we use is 

expressed as: 
 ( , , ) ( , , ) ( , , ) ( , , )RF x y z H x y z C x y z N x y z  (11) 

Compared to previous models used in 3D simulation, as 
in [17] and [18], this approach further divides the tissue 
impedance property into a process function and cell 
kernel functions in order to incorporate tissue properties 
for the blood and the myocardium. 

2.5 Myocardium and Blood Parameters 

We did not use typical 2D transducer parameters to 
extrapolate acquisition parameters for 3D transducer, as 
done in previous studies. Instead, we use the available 
parameters from a commercial Volumetrics machine and 
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estimate the unknown parameters from the actual RT3D 
ultrasound data.  
2.5.1 PSF Parameters Setting 

To approximate the actual image resolution of 
commercial real-time 3D ultrasound, we set the PSF 
parameters to (0.5, 1, 2) mm Full Width Half Maximum 
(FWHM) in axial, lateral, and transverse directions. The 
corresponding ( , , )x y zs s s  can be derived using the 
relationship 2.35FWHM std  as given in [15]. The 
transducer frequency is set to 3MHz (2.5-3.5 MHz for 
Volumetrics), as with typical RT3D transducers. The 
velocity of the acoustic wave in the human body is set to 
the standard 1540 m/s average value. 
2.5.2 Cell Kernels Parameters Setting 

We choose a 3D Gaussian to model the impedance 
inhomogeneities as in [15]. Thus, the general cell kernel 
function is expressed as: 

 
2 2 2

2 2 2

1( , , ) exp
2 x y z

x y zC x y z . (12) 

Similar to [15], we model the elongated myocardial 
cells with corresponding standard deviations ( , , )x y z  
= (10,10,35) m  given the fact that myocardial cells are 
elongated with dimensions around (20, 20,70) m . Since 
myocardial cells are tightly connected and the myocardial 
fibers are parallel to each other at 100 m  scale or even 
1mm scale, the 1:1:3.5 ratio can be observed at the image 
pixel scale. Recent studies on 2D or 3D ultrasound 
simulations only included modeling of the myocardium 
tissue. Since in actual clinical RT3D echocardiography, 
both myocardium and blood are imaged, we also build a 
tissue model for the blood. The average size of the blood 
cells is about (10,10, 2) m  [20]. However, since blood 
cells are not tightly connected to each others and pixel 
volumes are much larger than individual blood cell 
volumes, the echogeneity within each blood pixel is 
mainly determined by the number of cells within each 
pixel, a random variable with Poisson distribution. If the 
number of blood cells within each voxel is large enough 
(>5), the anisotropic property in the cell dimension can be 
ignored. In this context, the standard deviation can be 
simply set to the pixel size.  
2.5.3 Echogeneities Parameters Setting 

The final parameter to be determined is the echogeneity 
for each tissue in order to fully determine the process 
function N. Although it is a very important parameter, 
previous studies tended to ignore this. None of them 
reported which value they used or how to determine it. In 
order to simulate 3D echocardiographic images, we 
determined this parameter on clinical RT3D ultrasound 
images. Several clinical RT3D ultrasound volumes were 
acquired. The myocardium and blood pool were manually 
segmented, from which average echogeneity values for 

each tissue was estimated as 100 for myocardium and 30 
for blood. 
2.5.4 Imaging Parameters and Tissue Dynamics 

The left ventricle model has a volume size of 
(150x150x150) and pixel dimension of (1,1,1) mm3, 
corresponding to (150x150x150) mm3 of tissue volume. 
Given that the average volume of a myocardium cell is 
15,000 3m  [15] and the average volume of blood cell 
is 90 3m , there are about 66667 myocardial cells and 
11.11 million blood cells per voxel. Considering the 
extracellular medium, these numbers are reduced to 
46667 myocardial cells 4.44 million blood cells per voxel. 
Since both numbers are much larger than the reference 
threshold of 5 cells per voxel, the process function N can 
be safely approximated by a Gaussian distribution.  
Regarding the geometry of the heart, a piece of 
myocardium with geometry similar to a healthy human 
left ventricle is placed at the center of the image volume 
and filled with blood. Tissue dynamics including 
translation, rotation, and thickening are simulated using 
the same model as in [15] and [18]. Next, a previously 
developed optical flow (OF) tracking method is applied to 
track myocardial motion. These results are then compared 
to the true motion fields of the underlying tissues. 

3. RESULTS AND DISCUSSION 
Acquisition using a 2D matrix-based linear array in 
Cartesian coordinate system was simulated. Sample cross-
section views from the simulated volume are shown in 
Figure 1. 

(a) (b) (c)  
Figure 1. Sample views from simulated volume: (a) short axis view; 
(b) elevation long axis-view; and (c) azimuth long-axis view. 

Correlation-based 4D OF algorithm is applied to two 
consecutive simulated RT3D ultrasound volumes. 
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Figure 2. OF tracking errors during tissue translation: (a) error in 
magnitude of motion vector; (b) error in angle of motion vector. 

 The mean and standard deviation for the errors in 
magnitude and angular displacement during tissue 
translation are plotted against the displacement 
magnitude in Figure 2. Similar to the findings in other 
studies [15, 17], errors are minimal. 
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The mean and standard deviation for the errors in 
magnitude and angular displacement during tissue 
rotation are plotted against the rotation angles in Figure 3. 
Similar to the findings in other studies [13, 18], both the 
mean and the standard deviation of the errors increase 
with rotation angles. Fortunately the rotation observed in 
real clinical RT3D data within two consecutive volumes 
is usually less than 3 degrees, which is within the interval 
where our method still exhibits high accuracy.  

 
Figure 3. OF tracking errors during tissue rotation: (a) error in 
magnitude of motion vector; (b) error in angle of motion vector. 

 
Figure 4. OF tracking errors during tissue deformation: (a) error in 
magnitude of motion vector; (b) error in angle of motion vector. 

Mean and standard deviation for the errors in 
magnitude and angular displacement during tissue 
deformation (thickening or thinning) are plotted against 
the deformation magnitude (expressed in %) in Figure 4. 
The product of deformation percentages in all directions 
is kept to 1 for the sake of total mass conservation. 
Similar to the findings in other studies [14, 15, 18], both 
the mean and the standard deviation of the errors are 
increasing with tissue deformations. 

4. CONCLUSION 
 
A “quasi-LV” 3D mathematical phantom was built 
modeling both the myocardium and blood. Model 
parameters were directly estimated from actual clinical 
RT3D ultrasound machines and data rather than using 
parameters derived from common 2D transducers.  
Based on this phantom, simulated RT3D ultrasound data 
sets were generated to evaluate our previously developed 
OF tracking software. In future work, real acquisition 
protocol parameters in RT3D ultrasound and real 
myocardial motion parameters from a cardiac model [21] 
will also be incorporated in the model for more realistic 
simulations. 
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