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ABSTRACT

This paper presents a novel shape-guided variational segmentation
method for extracting the fetus envelope on 3D obstetric ultrasound
images. Indeed, due to the inherent low quality of these images,
classical segmentation methods tend to fail at segmenting these data.
To compensate for the lack of contrast and of explicit boundaries, we
introduce a segmentation framework that combines three different
types of information: pixel intensity distribution, shape prior on the
fetal envelope and a back model varying with fetus age. The intensity
distributions, different for each tissue, and the shape prior, encoded
with Legendre moments, are added as energy terms in the functional
to be optimized. The back model is used in a post-processing step.
Results on 3D ultrasound data are presented and compared to a set
of manual segmentations. Both visual and quantitative comparisons
show the satisfactory results obtained by this method on the tested
data.

Index Terms— 3D Ultrasound, level-set, Legendre shape-prior,
statistical prior, fetus back model, obstetric imaging

1. INTRODUCTION

Ultrasound (US) is the main imaging modality being used during
pregnancy follow up to assess fetal development. Being low cost
and non invasive, it is routinely used to measure classical biometry
development markers such as the fetus volume, the bi-parietal diam-
eter or the crown-rump length. However, due to the inherent poor
visual quality of US data, automatic or semi-automatic computation
of such criteria remains an issue. Indeed, speckle noise, low con-
trast, lack of explicit boundaries, occlusions caused by surrounding
tissues or attenuation are examples of artifacts making such data so
difficult to exploit automatically and explain why standard segmen-
tation methods fail on these images.

Many papers have addressed the problem of segmentation on
US data, however only few of them dealt specifically with the prob-
lem of the segmentation of the fetus envelope on 3D US data [1].
In [2], Conditional Random Fields were used in combination with
wavelet-based textural features and Support Vector Machine classi-
fier to segment 2D fetal ultrasound images. Image partitioning into
fetus and background pixels was learned from their relative positions
on a training set. Such an approach assumes that the fetus has the
same position and orientation in all the images, which is not realistic
when dealing with 3D ultrasound data as illustrated in Figure 1.

In [3], adaptive statistical distributions of gray-level intensities
were used within a level-set framework to separate amniotic fluid,

This work has been partly supported by a grant from ANR-JST within
the FETUS project. The authors would like to thank Joe Wiart and his team
for their collaboration.

(a) 8 WA fetus (b) 13 WA fetus (c) 13 WA fetus

Fig. 1. Slices of three 3D US data at different stages of gestation
(WA: weeks of amenorrhea)

modeled with an exponential distribution, from maternal and fetal
tissues, modeled with a Rayleigh distribution on 3D ultrasound data.
The authors also extended their work to additional types of distri-
butions allowing them to handle different types of fetal ultrasound
images. While the method was useful for separating the amniotic
fluid from the union of the fetus and the uterus, the separation of the
fetus from the uterus was not straightforward.

In this paper, we propose to integrate a shape constraint into
a 3D multi-phase variational segmentation approach, extending the
two-phase framework introduced in [3] and taking advantage of a
shape prior encoded with Legendre moments as done in [4], [5] and
[6]. Variability of the fetus shape and position is handled via a set
of learned shape models, as an original feature of the proposed ap-
proach. Finally, we propose a new post-processing step exploiting a
set of back models to separate the fetus from other connected struc-
tures. Results on 3D fetal ultrasound images are presented in the
Section 4.

2. INTRODUCING GRAY-LEVEL STATISTICAL
DISTRIBUTIONS INTO A MULTI-PHASE LEVEL-SET

FRAMEWORK

With the aim of separating maternal tissues from fetal ones while
keeping apart the maternal ones from the amniotic fluid, the idea of
using more than two phases with homogeneity priors has emerged
and led us to extend the work presented in [3] to a multi-phase frame-
work. Following [7], we express the minimal partitioning segmenta-
tion problem for multiple objects as follows:

Let Ω be a bounded and open subset of R3 and I : Ω → R
an image. A given set of closed curves {C1, C2, ....Cn} defines a
partition of the image domain in a set of 2n phases. In the case of
two level-set functions, embedding these curves as the zero-level of
signed functions {φj}, the image segmentation into four phases is
performed using the following energy [7]:

Eim =
4∑

i=1

∫
Ω
|I(x)− ci|2χi(x)dx+

2∑
j=1

ν

∫
Ω
|∇H(φj)|dx (1)
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where ν ≥ 0 is a fixed parameter (set to 0.5 in our experiments),
χi is the characteristic function associated with each phase, ci is the
average intensity inside each phase and H is the Heaviside function
computed on each level-set φj , φj being positive inside each curve
and negative outside.

While in the original Vese and Chan formulation [7] the homo-
geneity measure is the mean value of the considered region, the seg-
mentation method here relies on a priori knowledge of the statistical
distribution of gray-levels inside each region [3]. The intensities of
the pixels belonging to the fetal and maternal tissues were modeled
using respectively a Rayleigh and a Gamma distribution while the
amniotic fluid was modeled using an Exponential one. As shown in
[3], the Gamma and the Rayleigh distributions were able to capture
the statistics of the maternal or fetal regions. Results of the segmen-
tation procedure using this multi-phase framework are illustrated in
Figure 2 (c). The use of two different statistical distributions enables
to capture small differences that could separate maternal from fetal
tissues but is not sufficient to achieve a perfect separation as shown
in Figure 2 (c). This task requires an additional information based
on a shape prior on the fetal body envelope, as described next.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Segmentation of a fetus at 12 WA. (a) Original slice of a 3D vol-
ume. (b) Segmentation with the two-phase framework from [3], (c) with the
four-phase framework with no shape constraint (gray, white, blue and green
corresponding to the 4 phases), (d) with the four-phase one with shape con-
straint, and (e) with post-processing for the fetus envelope. (f) Segmented
fetus envelope overlaid on the US image.

3. SHAPE CONSTRAINT

Numerous methods have been proposed to constrain shape in a level-
set based segmentation energy functional. In [8], a PCA analysis is
performed on the level-set functions of a training set of shapes. In
[9] the optimization is done on the first few eigenmodes. A non lin-
ear statistical shape model was introduced by Cremers et al. [10]
while an implicit shape prior based on an active shape model was
introduced by Rousson et al. [11]. More recently, Foulonneau et al.
[4] proposed a geometric shape prior computed through the distance
between the Legendre moments of a set of representative shapes and

the currently segmented one. In [6] a statistical shape model was
built from the Legendre moments of a set of training shapes in a PCA
reduced feature space while in [5] the shape prior built from Legen-
dre moments was integrated into a fuzzy region competition frame-
work for cardiac segmentation on CT-images. Since fetus positions
and morphologies vary greatly, the use of a unique shape prior seems
difficult. Thus, as in [4], we propose to handle this variability by us-
ing multiple shape priors. Inspired by the two previous methods, the
one proposed in this paper optimizes, within a multiphase level-sets
framework, a prior model represented by the distance computed be-
tween the currently determined shape, represented by its Legendre
moments and a set of Legendre moments computed on a training set
as explained next.

3.1. Shape encoding with Legendre moments

Let I : [−1, 1]3 →R be a 3D binary image encoding a shape where
spatial coordinates are normalized in [−1, 1]. The (p + q + r)th

order 3D Legendre moments of the image are defined as:

Lpqr = λpqr

∫
[−1,1]3

Pp(x)Pq(y)Pr(z)I(x, y, z)dxdydz (2)

with λpqr = (2p+1)(2q+1)(2r+1)
8

, (p, q, r) ∈ N+ and Pi (i =
p, q, r), the Legendre polynomial defined as:

Pi(x) =

i∑
k=0,i−k=even

(−1)
i−k
2

1

2i
(i+ k)!xk

( i−k
2

)!( i+k
2

)!k!
(3)

Working with a finite number N of moments (set to 60 in all our
experiments) for each dimension, an estimate of I is given by:

Ĩ(x, y, z) =
N∑

p=0

p∑
q=0

q∑
r=0

λp−q,q−r,rPp−q(x)Pq−r(y)Pr(z) (4)

The computation of the 3D Legendre moments can be performed
using the fast method proposed by Hosny [12]. Translation and
scale invariance are achieved by reformulating the Legendre mo-
ments in Eq. 2 by replacing (x, y, z) by (x−x0

A
, y−y0

A
, z−z0

A
) where

(x0,y0,z0) are the coordinates of the shape centroid and A is its vol-
ume.

3.2. Introducing a shape constraint into the multi-phase level-
set framework

First, a set of training shapes are used to learn a fetus envelope shape
model via Legendre moments. Then, the previously presented 3D
multi-phase framework is updated accordingly to take into account
the shape prior into the segmentation process.

Shape learning. As in [4], we used aL2 distance to compare the
evolving shape and the reference ones. Since we do not know which
fetus positions and shapes are more likely to appear in the currently
segmented image, all theNs training reference shapes might be con-
sidered as equiprobable, which leads us to the following mixture of
Gaussians:

P (L) =
1

Nsσ
√
2π

Ns∑
k=1

exp(−
|L− Lref

k |2

2σ2
) (5)

where Ns is the number of reference shapes, L the vector of Legen-
dre moments {Lpqr} of a considered shape and Lref

k the vector of
Legendre moments of the kth reference shape.

Given β the weight of the shape prior, the energy function can
thus be re-written as:

E = Eim + βEp(L) (6)
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with the shape prior term computed on the Legendre moments of the
phase to constraint:

Ep(L) = −ln(P (L)) (7)

Iterative segmentation process. Since we want to control only
the shape of the fetus envelope, we constrain only the phase contain-
ing it. The phase is chosen according to it statistics in order to match
fetal pixels distribution. The other ones are evolved based only on
gray-level statistical appearance models as explained in steps 2 to 5
of the following optimization procedure:
Do

1. Initialize {φj}j=1,2 as {φ0
j}j=1,2

2. Evolution of {φj}j=1,2 by minimizing Eq. 1 using Euler-
Lagrange equations according to gray-level homogeneity
measures:

{φnj }j=1,2 → {φn+1
j }j=1,2 (8)

{φn+1
j }j=1,2 → {χn+1

i }i=1,4 (9)

{cni }i=1,4 → {cn+1
i }i=1,4 (10)

3. Computation of translation and scale invariant Legendre mo-
ments for one χi (here χ1)

χn+1
1 → Lpqr (11)

4. Update of Lpqr via gradient descent

L′pqr = Lpqr − β
∂Eprior

∂Lpqr
(12)

5. Shape reconstruction from Legendre moments

L′pqr → χn+1
1 (13)

6. Phases update
χn+1

1 → {φn+1
j }j=1,2 (14)

{cn+1
i }i=1,4 → {cn+1

i }i=1,4 (15)

Until no shape change occurs in two consecutive iterations

3.2.1. Parameterization

Time step. Since Legendre moments are sensitive to noise and the it-
erative estimates remain approximate, the shape reconstruction from
moments tends to over-smooth the resulting shape. Since we are
dealing with noisy images where precise boundaries are difficult
to determine even for a human expert, the segmented phases need
to evolve slowly to reach the correct tissue delineation. Too much
smoothing can lead the segmentation process to miss the right par-
tition into homogeneous tissues. Therefore, we decided to alternate
between relaxation and enforcement of the shape prior, computing
steps 2 to 5 only 1 upon k iterations (k was usually set to 2 in our
experiments). The global time step ∆t was set to 0.1 as in [7].

Choice of β. Since the time step has been relaxed and in order
to guide efficiently the segmentation process toward the right shape,
one has to choose a high weighting value. The β value was empiri-
cally set to 0.8 for all the performed experiments. This value leads
to satisfactory results for all the tested data.

A comparison of the segmentation results obtained with the seg-
mentation algorithm without and with the shape constraint is shown
in Figures 2 (c) and (d). As seen on these figures, using the enve-
lope prior improves the fetus body envelope segmentation but some
maternal tissues remain attached to the fetus along the lower uterus
boundaries. To adress this issue, a post-processing step is used as
explained next.

(a) (b)

Fig. 3. Back model of a (a) 10 WA old fetus. (b) 13 WA old fetus.

(a) (b) (c)

Fig. 4. (a) Crown-rump measurement. (b) 3D fetus reconstruction without
post-processing. (c) Result after post-processing.

4. FETUS ENVELOPE SEGMENTATION

4.1. Algorithm

Since the approach deals with translation and scale invariant Legen-
dre moments wich are not rotation invariant, the rotation parameters
for the registration of the training set on the case being segmented
have to be determined in an initialization step. Note that the parame-
ters extracted during initialization are also used for post-processing.

Initialization The user is asked to select two landmarks corre-
sponding to the ones used to compute the crown-rump measurement
as shown in Figure 4 (a). The rotation between the fetus in the seg-
mented image and the shape models is computed using the two given
landmarks and the pre-positioned corresponding points on the tem-
plate shapes. The scale factor can also be computed from the land-
marks and could eliminate the need for scale invariance. These two
landmarks also serve to compute the initialization of one of the two
level-set functions using a cylindric shape with a diameter equal to
the crown-rump measurement. The other initial level-set function is
represented by a set of uniformaly distributed small cylinders over
the rest of the image.

Post-Processing To take into account growth variations, a
database composed of fetus back shapes was created based on a
weekly-time scale, as illustrated in Figure 3. A back model for each
week was derived by interpolating the shapes from this database
for the missing weeks. Linear interpolation was performed along
axes radiating from the middle of the crown-rump segment. For
a given image to segment, the fetus age was then estimated from
the crown-rump measurement and used to select the appropriate
back model in the database. After rigidly registering it with the
segmented fetus, the subset of the segmentation result located back-
ward of both the back model and the coronal plane containing the
crown-rump segment is removed according to the following opera-
tion: Ires = (Ib ∧ Imask)∨ If , Imask being the back model, Ib the
image representing the back of the segmented fetus and If the image
representing the front of the segmented fetus. Non-fetus tissues are
efficiently removed by this processing, as illustrated in Figure 4.

1016



(a) (b)
Fig. 5. Segmentation on 3D US cases at (a) 13 WA and (b) 10 WA.

Table 1. Quantitative results. Similarity, sensitivity and specificity indices
computed between automatic and manual segmentations of the fetal enve-
lope. The fetus age is given in weeks of amenorrhea (WA). Legend: TP: True
positive, TN: True Negative, FP: False positive, FN: False Negative

fetus age (WA) similarity index sensitivity specificity
|Imres∩Imref |
|Imres∪Imref |

TP
TP+FN

TN
TN+FP

10 0.86 0.95 0.99
12 0.68 0.83 0.98
12 0.72 0.90 0.96
12 0.71 0.89 0.96
13 0.66 0.88 0.97
13 0.72 0.87 0.97
13 0.72 0.93 0.95

Mean Value 0.72 0.89 0.97

4.2. Results

The training data consisted of a set of 5 manually segmented 3D US
cases (acquired using a 3D probe) representing fetuses at different
ages (from 8 to 13 WA) and in different positions. Tests were car-
ried out on a set of eleven 3D US cases for fetus aged from 8 to
13 WA which correspond to the first trimester of pregnancy where
whole fetus body imaging is performed. For each case, a visual vali-
dation of the segmentation result was performed as illustrated in Fig-
ure 5. For seven of them a manual segmentation made by an expert
was available and thus comparison between manual and automatic
segmentations was carried out. Similarity, sensitivity and specificity
indices were computed and are reported in Table 1. As shown in this
table and in Figure 5, the proposed method provides accurate results
with mean values of 0.72 for the similarity index, 0.89 for the sensi-
tivity index and 0.97 for the specificity one. However, one can notice
that in one case, presented in Figure 5 (a) (which corresponds to the
one with a similarity index of 0.66 in Table 1), the segmented fetus
tends to be smaller than the real one and sometimes some mater-
nal tissues still remain attached to the fetus as in Figure 4 (c). This
issue is a consequence of the error made during the registration of
the back model with the output of the level-set segmentation proce-
dure. Indeed, the back model used is a generic one and thus does not
perfectly match the fetus one. Despite these errors, which remain
limited, the segmentation process also gives satisfying results for all
cases in terms of fetus shape preservation as seen in Figures 2 (f) and
5 (b).

5. DISCUSSION AND CONCLUSION

In order to segment the fetal envelope in 3D US images, a shape-
guided multi-phase level-set segmentation framework has been pre-
sented in this paper. This 3D segmentation method embeds statisti-
cal priors on pixels distributions in the different parts of the utero-
fetal unit and a shape prior on the fetus envelope. Shape information
is encoded with Legendre moments and shape priors were learned
over a variety of cases. Initialization of the segmentation process
is performed semi-automatically by asking the user to determine

the crown-rump measurement. A post-processing step is also per-
formed in order to clean the segmentation results from the remain-
ing maternal tissues using a generic back model of a fetus. Tests
on clinical cases provided satisfying results when compared visually
and quantitatively to manual segmentations. Due to the small size
of the dataset, the initial crown-rump measurement remains under-
exploited in the proposed method. Indeed, the stage of fetal growth
based on this measurement is only used during the post-processing
step to determine the most suitable back shape mask. However, with
a larger training set, we could automatically detect the most suitable
shapes of the training sets to be used. Indeed, using only fetal evel-
ope shapes belonging to fetuses from the same gestational age would
lead to a more accurate prior. Finally, the segmentation framework
presented in this paper could be extended in a sequential way to seg-
ment also internal fetal structures (e.g. brain) on 3D US images.
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