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3-D Ultrasound Images
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Abstract—The development of 3-D ultrasonic probes and 3-D
ultrasound (3DUS) imaging offers new functionalities that call for
specific image processing developments. In this paper, we propose
an original method for the segmentation of the utero-fetal unit
(UFU) from 3DUS volumes, acquired during the first trimester of
gestation. UFU segmentation is required for a number of tasks,
such as precise organ delineation, 3-D modeling, quantitative mea-
surements, and evaluation of the clinical impact of 3-D imaging.
The segmentation problem is formulated as the optimization of a
partition of the image into two classes of tissues: the amniotic fluid
and the fetal tissues. A Bayesian formulation of the partition prob-
lem integrates statistical models of the intensity distributions in
each tissue class and regularity constraints on the contours. An en-
ergy functional is minimized using a level set implementation of a
deformable model to identify the optimal partition. We propose to
combine Rayleigh, Normal, Exponential, and Gamma distribution
models to compute the region homogeneity constraints. We tested
the segmentation method on a database of 19 antenatal 3DUS im-
ages. Promising results were obtained, showing the flexibility of
the level set formulation and the interest of learning the most ap-
propriate statistical models according to the idiosyncrasies of the
data and the tissues. The segmentation method was shown to be
robust to different types of initialization and to provide accurate
results, with an average overlap measure of 0.89 when comparing
with manual segmentations.

Index Terms—Antenatal imaging, biomedical image processing,
image segmentation, level sets, 3-D ultrasonic imaging.

I. INTRODUCTION AND LITERATURE

U LTRASOUND imaging, introduced for obstetrical screen-
ing in the 1950s, became widely used as a diagnostic tool

in the late 1960s, and was introduced as a screening tool for preg-
nancy monitoring in the late 1970s [1]. It remains the modality
of choice for routine fetal imaging [2]. Obstetrical echography
covers several applications including precise determination of
the pregnancy stage, placenta positioning, fetal growth, or char-
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(FEMONUM Project). Asterisk indicates corresponding author.

J. Anquez is with Theraclion, 92240 Malakoff, France (e-mail:
jeremie.anquez@gmail.com).

E. D. Angelini is with the Institut Mines-Telecom, Telecom ParisTech, CNRS
LTCI, 75013 Paris, France (e-mail: elsa.angelini@telecom-paristech.fr).
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acterization of potential pathologies [3]. Standard echography
screening includes the acquisition of a series of 2-D B-scan
anatomical images. These images are used for visual inspec-
tion or to perform quantitative measures of biometric markers
such as biparietal diameter, femur length, head circumference,
or abdominal circumference [4]. Three-dimensional echogra-
phy was introduced in the early 1990s for fetal screening, but its
widespread was limited due to poor image quality and slow ac-
quisition protocols, unable to prevent fetal motion artifacts [5].
These limitations are progressively disappearing with advanced
technologies, increasing the clinical interest for 3-D ultrasound
(3DUS) [6]. During the first trimester and early stage of the
second trimester of gestation, the field of view of the ultrasound
probes can integrate the whole gestational sac. Consequently,
3DUS-based volumetric studies of uterine structures have been
published [7], as well as quantification of the whole fetus [8] or
partial body portions (e.g., head and trunk) [9], providing useful
information for clinical routine. These volumetric studies still
rely on manual tracing, and automated segmentation methods
are, therefore, desirable. Semi-automated methods were used in
recent studies, especially with the software tool VOCAL, com-
mercialized by General Electric and cited in several works [7],
[9], [10]. It enables to reconstruct smooth organ surfaces from
a set of 2-D contours acquired on rotated views along a single
axis [11]. This software remains limited to the extraction of sin-
gle organs and is not yet capable of segmenting complex objects
such as the whole fetus. Moreover, several manual interactions
are often needed. Other works have dealt with the segmenta-
tion of specific organs, such as the cardiac cavities [12], using a
commercial segmentation tool, and manually supervised image
partition.

The general domain of automated ultrasound image segmen-
tation was reviewed in [13] and includes dedicated methods for
the extraction of biometric markers on fetal US imaging. A first
family of 2-D methods proposes to segment specific anatomi-
cal structures with morphological operators, such as the femur
in [14], and the skull in [15]. A second family of methods is
based on deformable models. A parametric active contour [16],
exploiting local intensity variations, was used in [17] to seg-
ment the skull. This approach was limited by the requirements
to initialize the contour close to the skull borders and the lack
of robustness on images with poor skull contrast. In [18], a
Bayesian parametric deformable model was proposed, exploit-
ing statistical models of intensity distributions in the femoral
and skull bones. Recent works in [19] have enabled the segmen-
tation of the skull, abdomen, and femoral bone.

Few works were dedicated to automated segmentation of
3DUS images for obstetrical applications, although there is
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a real clinical need for automated and reproducible methods
leading to reliable quantitative measurements. We can cite the
preliminary work of Sarti et al. [20] where the so-called sub-
jective surfaces were proposed to segment objects with partially
missing contours. In [21], these surfaces were improved with
additional homogeneity terms, to segment fetal heart cavities on
two datasets. More recently, the method proposed in [22] uses
a maximum likelihood (ML) formalism optimized with level
set deformable models. Intensities inside and outside the fetus
were modeled with Rayleigh distributions, but no clinical vali-
dation of the method was reported. In [23], the authors derived
a multiple object detection framework evaluated on 3DUS fe-
tal ultrasound for brain structures and faces. Binary classifiers,
indicating the presence or absence of an object, were learned
from a large database of annotated images. In [24], the authors
proposed a method for fetal face extraction from 3DUS data.
Multiscale Haar expansions and steerable filters were used to
derive image features on face landmark points. The same fea-
tures were used in [25] for the supervised learning and detection
of fetal anatomical structures.

In this paper, we address the problem of fetal 3DUS vol-
ume segmentation as an optimal partition of the voxels into
statistically “homogeneous” regions (corresponding to different
classes) with smooth contours. We use parametric probability
distribution functions (pdf) to measure region homogeneities,
as in [22]. The classification task is formulated as a variational
deformable model segmentation, within a level set framework,
and performed through an iterative deformation process of an
initial shape. As an original feature of the method, we propose to
rely on a generic class of pdf which can model different types of
tissue distributions in both saturated and non-saturated images.
This differs from existing methods such as [22]–[25].

Segmentation results were evaluated quantitatively with the
help of an experienced obstetrician, who provided some manual
segmentations. Experiments on 19 obstetrical ultrasound 3-D
images illustrate the behavior of the method and the influence
of the parameters. Quantitative results show accurate and robust
segmentation performances.

II. 3DUS IMAGES AND TISSUE APPEARANCE MODELS

A. Image Database

A database of 3DUS volumes (noted DB = {Ii}i=1...19) was
gathered, including:

1) eighteen 3-D volumes {Ii}i=1...18 provided by the Beau-
jon AP-HP hospital (Clichy, France) and acquired with a
Voluson 730 Expert system from General Electric (GE,
Zipf, Austria), with a 3.7–9.3 MHz transvaginal volumet-
ric probe. Spatial resolution ranges from 0.21 to 0.96 mm3

with isotropic voxels;
2) and one 3-D volume I19 provided by Philips Healthcare

Research Labs (Suresnes, France) and acquired with a
iU22 transducer from Philips Ultrasound (Bothell, WA,
USA), with a 2-6 MHz volumetric probe. Spatial resolu-
tion was 0.95 × 0.6 × 1.37 mm3 .

This database enabled us to study a large set of examples
of fetuses in different positions and at different stages of ges-

tation during the first trimester of pregnancy. All cases in the
database were associated with their timing of acquisition, mea-
sured as the number of weeks of amenorrhea (WA) of the mother,
which ranged between 8 and 13 WA for {Ii}i=1...18 . The ad-
ditional case, I19 , acquired at 22 WA, was also included in the
database. Voluson images were acquired using harmonic imag-
ing and without compounding. This corresponds to the routine
acquisition mode used at the collaborating hospital for obstetric
3DUS acquisitions during the first trimester, to optimize im-
age contrast at the interfaces between tissues. The echographers
defined a field of view as small as possible, while including
the whole amniotic sac. In some cases, the amniotic sac was,
however, slightly truncated. Images were post-processed (for
speckle reduction) and reconstructed on a Cartesian grid with
dedicated post-processing tools provided by the manufacturers
and included in the ultrasound scanning systems. Voxel intensi-
ties were normalized during this process in the range of values
[0, 255]. These considerations have an impact on the modeling
of the intensity distributions, as explained later.

Given the low signal-to-noise ratio (SNR) of ultrasound im-
age data, setting up an automated segmentation of homogeneous
structures is a difficult task. Indeed, images are corrupted with
textured speckle noise and some structures lack sharp contrast
along their contours. Visual inspection of the data by an obste-
trician relies heavily on prior knowledge of the fetal anatomy,
and the specific image characteristics generated by the presence
of highly reflective interfaces, absorption in bone structures,
and echo cancellation along interfaces parallel to the ultrasound
beam. To learn tissue appearance and validate the segmentation
method presented in this paper, an experienced obstetrician in-
teractively processed the images with two different approaches:
1) detailed manual segmentation of some fetal and maternal
structures, 2) binarization of the images into amniotic fluid and
fetal tissues via intensity thresholding. These two approaches
are now detailed.

1) Manual segmentation of 3DUS volumes is a tedious task
given their large size and their low SNR. Therefore, only a
subset of five volumes was manually segmented in 3-D. The
set of volumes included four development stages of the fetuses
over the first trimester, corresponding to 8-9-10-13 WA, and the
case at 22 WA. The placenta, amniotic fluid, fetus envelope,
and umbilical cord were manually delineated by an experienced
obstetrician. Slices from the 9 and 13 WA cases are illustrated in
Fig. 1(a) and (b), with the corresponding detailed manual seg-
mentations. For the other volumes of the database, three slices
in orthogonal directions were segmented to outline the spatial
extent of the anatomical structures of interest. Two voxel classes
were distinguished: the amniotic fluid and the fetal tissues (in-
cluding the placenta,1 umbilical cord, and fetus), as illustrated
in Fig. 1(c) and (d). The two classes, included in these partial
segmentations, are denoted AF and FT, respectively.

2) Using an interactive software tool, the experienced ob-
stetrician interactively defined for each volume case-specific
threshold values to binarize the volumes into two regions, cor-
responding to AF and FT.

1The placenta is indeed a fetal tissue originating from the feconded egg.
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Fig. 1. (a) and (b) Two-dimensional slices of I9 (9 WA), I18 (13 WA) with
the corresponding complete manual segmentations. Segmented tissues are the
placenta (red), the amniotic fluid (blue), the fetus (pink), and the umbilical cord
(green). (c) and (d) Two orthogonal slices of I6 (9 WA) with the corresponding
partial manual segmentations. Identified tissues are the amniotic fluid (gray)
and fetal tissues (white).

Our segmentation framework is designed to be used with any
type of initialization (e.g., random–uniform partitions or thresh-
olding with an a priori threshold). We used the manually defined
thresholds to learn an average threshold value, that can be used
for the initial partition of any new volume of images to segment,
prior to fine level-set segmentation. This initialization greatly
speeds up the convergence of the segmentation algorithm. Two
criteria were considered to define the manual threshold values:
1) the completeness of the boundary between the placenta and
the amniotic fluid, and 2) the precision of the position of the
boundary between the fetus and the amniotic fluid. A first set of
threshold values {s1

i } was defined for each volume of images Ii

during a first session. One week later, a second session was held
to identify a second set of values {s2

i }. These consecutive ses-
sions enabled us to assess the intra-expert variability in defining
a single optimal threshold value per case. The mean value si

between the two experiments was computed. Let εi = |s1
i − s2

i |
be the absolute difference between the two thresholds for each
Ii . Let με and σε be the mean and standard deviation of the εi

values, respectively. A noticeable intra-user variability was mea-
sured, since με = 12.8 and σε = 5.6, which can be explained
by the important amount of noise in the images. The quantity
ε+ = maxi(εi) can be used to define an interval of “admissible”
threshold values for each volume of the database: a value s is
considered admissible to binarize Ii if it satisfies s ∈ [s−i , s+

i ],
with s+

i = si + ε+

2 and s−i = si − ε+

2 . Let μs
i be the average

of the mean threshold values si over the whole database but
excluding the volume Ii . These average values μs

i ended up
to be admissible threshold values for 17 of the 19 volumes of
images of the database. For the other two volumes, the average
still remained close to the si values (less than five gray levels
difference).

Alternative threshold values were also studied, using the
Otsu’s automatic thresholding method [26] and the K-means
classification [27] with K = 2. The same threshold values were
obtained with the two automated selection methods. Let oi be
the threshold value for Ii . The oi threshold values were higher
than the si values and were non-admissible (in a strict sense) in
17 of the 19 cases. However, the distances |oi − si | remained
small compared to the intensity range in the images (the average

|oi − si | distance was inferior to 25, which is equivalent to 10%
of the whole intensity range).

B. Intensity Distribution Modeling

Distributions of voxel intensities were learned based on the
manual segmentation presented above. Two sets of voxels were
considered: ΩAF , for the voxels belonging to AF, and ΩFT , for
the voxels belonging to FT. During the ultrasound data acquisi-
tion process, a transfer function can be applied to saturate the low
and high intensities, reducing the range of attenuations to record
and facilitating image interpretation by the clinician, within soft
tissues. As a result, some images of the database were saturated
by the ultrasound scanning machine during the acquisition. We
therefore distinguished two subsets within the database: DBS

which contains saturated volumes and DBS̄ which contains the
non-saturated volumes. This was simply done by identifying
the presence of an initial large peak in the histogram for satu-
rated cases. In this study, histograms were reviewed manually
to detect the presence of this peak and label each case in the
database as having saturated or unsaturated intensities in the
amniotic fluid. We identified DBS̄ = {Ii}, i ∈ {1, . . . , 5} and
DBS = {Ii}, i ∈ {6, . . . , 19}. Histograms of the intensity val-
ues within ΩAF and ΩFT are noted p̂AF

i and p̂FT
i for the volume

Ii , and can differ significantly.
Standard modeling of tissue intensity distributions in US im-

ages has been based on the Rayleigh distribution in many works.
However, it did not provide satisfying modeling on our database
and may not properly model tissue intensities on clinical ultra-
sound images as discussed below. Alternatively, we propose to
exploit the Gamma distribution, which pdf is expressed as

pG (I(x)) = I(x)α−1 βα exp (−βI(x))
Γ(α)

(1)

with I(x) the image intensity at voxel x (with I(x) > 0), α >
0, β > 0, and

Γ(α) =
∫ ∞

0
tα−1e−tdt. (2)

This pdf provides great genericity and flexibility for the mod-
eling of voxel intensities, through the parameters α and β. The
ML estimators αML and βML of the distribution parameters α
and β were evaluated for each dataset. Since no close form exists
for αML , this value was estimated using the method presented
in [28], based on the iterative Newton’s technique. The value of
βML was then computed, which depends only on αML .

Modeling of the intensity distributions using the Gamma pdf
is illustrated in Fig. 2. The histograms p̂AF

4 (a), p̂FT
4 (b), p̂AF

13
(c), and p̂FT

13 (d) are displayed, along with the corresponding
pdf pG (I(x)) (I4 corresponds to a non-saturated volume, while
I13 is a saturated one). The fitting ability of the distribution
is not surprising in the non-saturated case. It was also used
advantageously in [29] to model blood appearance (a physio-
logical fluid with a similar appearance to the amniotic fluid)
and soft tissue appearance on echocardiographic images. More
interestingly, its genericity also enables to model the intensities
when saturated images are considered as illustrated in Fig. 2(c)
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Fig. 2. Modeling of the intensity distributions with the Gamma pdf in ΩAF
and ΩFT : (a), (b) in the non-saturated volume I4 and (c), (d) in the saturated
volume I13 . The histograms: (a) p̂AF

4 , (b) p̂FT
4 , (c) p̂AF

13 , and (d) p̂FT
13 are

represented in blue and the Gamma distribution pG (I(x)) in green.

and (d). This shows that the Gamma distribution can be used
as a generic intensity model for the AF and the FT, whatever
post-processing was applied to the US signal when recorded by
the scanning system, but at the cost of computing distribution
parameters that do not have analytical expressions.

As an alternative, we investigated the use of tissue-specific
distribution models, with analytical ML estimators of the pa-
rameters. Depending on the intensity saturation, we propose to
use different parametric distributions, dedicated to the two spe-
cific tissue types being studied (amniotic fluid or fetal tissues).
Regarding the amniotic fluid, we exploit the Rayleigh distribu-
tion to model the intensity distribution in non-saturated images.
This distribution, initially proposed in [30] and [31], has been
widely used for ultrasound images processing [13]. The pdf of
this distribution is expressed as:

pR (I(x)) =
I(x) exp

(
−I (x)2

2σ 2

)

σ2 (3)

with I(x) ∈ [0,∞) and σ > 0. This distribution provides a good
fit of the intensity distribution in the amniotic fluid of a non-
saturated image, as illustrated in Fig. 3(a). However, this is
no longer true when the intensities are saturated. In this case,
the frequency of the zero intensity class is artificially high.
Consequently, the Rayleigh distribution is not relevant since
it always leads to pR (0) = 0. Moreover, the histogram value
decreases, while pR (I(x)) increases for I(x) ∈ [0, σ] and de-
creases for I(x) ∈ [σ,∞). As a surrogate, we exploit the Expo-
nential distribution to model the intensity histograms in ΩAF ,
when Ii ∈ DBS . The pdf of this distribution is expressed as:

pE (I(x)) = λe−λI (x) (4)

with I(x) ∈ [0,∞) and λ > 0. This choice clearly fits better
the intensity histograms than the Rayleigh distribution [see

Fig. 3. Modeling of the intensity distributions with specific models in ΩAF
and ΩFT (a), (b) in the non-saturated image I4 and (c), (d) in the saturated image
I13 . The histograms (a) p̂AF

4 , (b) p̂FT
4 , (c) p̂AF

13 , and (d) p̂FT
13 are represented

in blue and the Rayleigh distribution pR (I(x)) in cyan (a)–(d). (b), (d) Normal
and (c) Exponential distributions are represented in red.

Fig. 3(c)]. This distribution has been seldom considered to
model intensity distributions in ultrasound images, since sat-
urated images are frequently excluded from the test databases
used to validate image processing methods [29]. It has neverthe-
less been exploited to model the blood and to segment echocar-
diographic images [32]. Regarding fetal tissues, one can notice
by observing p̂FT

4 and p̂FT
13 in Fig. 3(b) and (d) that there are

very few pixels with intensity below 25, which actually belong to
regions affected by acoustic shadowing. Generally, the p̂FT

i in-
crease rate is slow for low intensities. The Rayleigh distribution
is therefore not satisfying to model the intensity distributions in
ΩFT , and we propose to use the Normal distribution. The pdf of
this distribution is expressed as

pN (I(x)) =
1

σ
√

2π
exp

(
− (I(x) − μ)2

2σ2

)
(5)

with I(x) ∈ R, μ ∈ R, σ > 0. It was also used to model the in-
tensity distribution in soft tissues, to process ultrasound images
of the heart and prostate in [33] and [34].

An important advantage of the Rayleigh, Exponential, and
Normal distributions over the Gamma distribution is that close
forms of the ML estimators of their parameters systematically
exist. This simplifies the fitting process, in comparison with the
computation of the Gamma distribution parameter αML , which
is obtained through an iterative process. Choice is left to the
user to give priority either to the genericity of the model or to
the computation speed.

To quantitatively evaluate the goodness of fit between the
histograms and our models, we used the Cramer–Von Mises
criterion [35] on the whole database DB and for the two
classes of tissues. This criterion, CVM, is expressed as CVM =∫ +∞
−∞ (P ∗(g) − P (g))2dP (g), comparing the cumulative
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TABLE I
DESCRIPTION OF THE INTENSITY DISTRIBUTION MODELING STRATEGIES USED

TO GUIDE THE SEGMENTATION OF THE 3DUS VOLUMES

density function of the theoretical distribution P with the
cumulative histogram of the empirical data P ∗. This test has
the advantage of being weakly sensitive to the tail of the
distributions. Since this tail may not be well represented in
the experimental data, and thus wrongly estimated, it is better
to use a test that is not too sensitive to it. The CVM test
was therefore preferred to the Kolomogorov–Smirnov one,
which is more sensitive to outliers and wrong estimation of
the tail of the distribution. The lower the CVM test value, the
better the fit between the data and the distribution model. We
obtained optimal test values with the Gamma model, followed
by the Exponential (for AF)/Normal (for FT) model and the
Rayleigh model. Average CVM test values for {AF, FT} tissues
with the three models were: {0.001, 0.001} for the Gamma
model, {0.01, 0.001} for the Exponential/Normal model and
{0.037, 0.0075} for the Rayleigh model. For the Rayleigh
model, we observed a large variability of the CVM values over
the 19 cases, and the maximum values were 0.08 and 0.02 for
AF and FT tissues.

This statistical evaluation confirmed that the Gamma distribu-
tion provides a relevant intensity modeling in ΩAF and ΩFT , for
saturated and unsaturated images. Fitting accuracy was equiv-
alent or better than with specific distributions in ΩAF , while
being slightly inferior than with the Normal distribution for 15
cases of the DB in ΩFT .

The segmentation process presented in the next section relies
on intensity distributions modeling in ΩAF and ΩFT , which
requires iterative data fitting and parameters estimation. The
results obtained with the dedicated models will be compared
with a strategy consisting in modeling voxels intensities in a
given region using Normal distributions with identical standard
deviations. This model corresponds to the Chan–Vese method
described in [36].

The intensity distribution modeling strategies used to guide
the segmentation process are summarized in Table I. Note that
if using the SD modeling strategy (with distributions depending
on the tissues), information on the presence of saturation or
not is used to decide on using an Exponential or a Rayleigh
distribution to model the amniotic fluid.

III. SEGMENTATION METHOD: BAYESIAN FORMULATION AND

VARIATIONAL APPROACH

Let Ω be an open and bounded subset of RN and let
I : Ω → R be an N-D image to segment. We propose a method
which aims at providing an optimal partition of the image do-
main, notedP(Ω) = {Ωe ,Ωi}, by embedding prior information
regarding the distributions followed by the voxel intensities in
Ωe and Ωi and on the boundary between these two regions (Ωi

and Ωe correspond to ΩAF and ΩFT ). To achieve this task,
we consider a Bayesian framework and propose to maximize
the posterior probability of the partition given the image I , de-
noted p(P(Ω)|I). Since p(I) is identical for all partitions, this
is equivalent to maximizing p(I|P(Ω))p(P(Ω)). The first term
is called the image likelihood and the second term represents
the a priori probability of the partition and is modeled as a
boundary smoothness constraint. Maximization of p(P(Ω)|I)
corresponds to the identification of the maximum a posteriori
(MAP) partition P(Ω).

A. Formulation of the Boundary Smoothness Constraint

Let C be the boundary of the partition P(Ω). Integrating a
prior on the boundary enables to regularize the optimization
problem. This is particularly important in the case of US im-
ages, as underlined, for example, in [37]. We aim at modeling
smooth boundaries, since this feature characterizes most organs
and anatomical structures. To obtain smooth boundaries, we
consider the following prior that depends on the measure |C| of
the boundary C (curve in 2-D, surface in 3-D) between Ωe and
Ωi (i.e. the length in 2-D and the surface area in 3-D):

p(P(Ω)) ∝ ν exp(−ν|C|), ν > 0. (6)

The smoothness of the boundary C is controlled by the pa-
rameter ν of this distribution. The choice of ν is explained in
Section IV-A.

B. Formulation of the Region Likelihood

The likelihood term relies on a homogeneity measure com-
puted at each voxel x with intensity I(x) in the image, which
depends on the region it belongs to. The pdf p(I(x)) then takes a
first form pe with parameter(s) θe in a parameter space Θe , hence
denoted pe(I(x), θe), if x ∈ Ωe , and a second form pi with pa-
rameter(s) θi in a parameter space Θi (denoted pi(I(x), θi)), if
x ∈ Ωi . Consequently, we have

p(I(x)) =
{

pe(I(x), θe), if x ∈ Ωe , with θe ∈ Θe

pi(I(x), θi), if x ∈ Ωi , with θi ∈ Θi .
(7)

Under the hypothesis that the voxel intensities are independent
conditionally to P(Ω), we obtain

p(I|P(Ω)) =
∏

x∈Ωe

pe(I(x), θe)
∏

x∈Ω i

pi(I(x), θi). (8)

C. Posterior Probability

Integrating (6) and (8) into the posterior probability of a
partition P(Ω) conditionally to the image leads to:

p(P(Ω)|I)=ν exp(−ν|C|)
∏

x∈Ωe

pe(I(x), θe)
∏

x∈Ω i

pi(I(x), θi).

(9)

D. Formulation of the MAP Optimization Problem

To solve the MAP problem, we linearize the posterior prob-
ability by defining an energy E equal to the negative loga-
rithm of p(P(Ω)|I). The negative logarithm function being
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strictly decreasing, the minimization of E is equivalent to the
maximization of p(P(Ω)|I). Therefore, we look for C, θe , θi

minimizing E:

E(C, θe , θi) = Ereg (C) + Ee(C, θe) + Ei(C, θi) (10)

with ⎧⎪⎨
⎪⎩

Ereg (C) = − log ν + ν|C|
Ee(C, θe) = −

∫
x∈Ωe

log pe(I(x), θe)dx

Ei(C, θi) = −
∫

x∈Ω i
log pi(I(x), θi)dx.

Note that the integrals become discrete sums over a bounded
domain in the implementation on digital images. The energy
E is minimized by optimizing its three parameters (C, θe , θi),
noting that {Ωe ,Ωi} are entirely defined by the position of the
contour C. The constant − log ν of Ereg is neglected in the
following, since it depends on a weighting parameter ν that is
not optimized during the minimization process of E, but fixed
beforehand.

E. Segmentation Via Energy Minimization

Minimization of the energy functional E is performed by an
iterative process, progressively deforming an initial contour C0
and updating the pdf parameters {θe , θi}. At each iteration, the
contour is deformed to correspond to a lower energy level. To
implement this iterative process, we need to encode the spatial
localization of the contour C. To do this, we chose to use the
level set framework which represents the contours C implicitly
as the zero level of a scalar function φ : Ω → R. The sign of
φ therefore defines two regions: Ωe , where φ(x) > 0, and Ωi ,
where φ(x) < 0 [38]. The boundary C between Ωe and Ωi is
implicitly defined as φ(x) = 0.

To reformulate the energy functional in terms of φ instead of
{Ωe ,Ωi} (or C), we express the measure |C| in Ereg (φ) with
the Dirac function δ(φ), equal to zero everywhere except where
φ(x) = 0. The terms Ee and Ei can be rewritten as integrals over
the entire image, by exploiting the Heaviside function H(φ),
equal to 1 where φ(x) > 0 and zero elsewhere. Equation (10)
is, therefore, rewritten as:

E(φ, θi, θe) = Ereg (φ) + Ee(φ, θe) + Ei(φ, θi)

with⎧⎪⎨
⎪⎩

Ereg (φ) = ν
∫

x∈Ω δ(φ(x))|∇φ(x)|dx

Ee(φ, θe) = −
∫

x∈Ω H(φ(x)) log(pe(I(x), θe))dx

Ei(φ, θi) = −
∫

x∈Ω(1 − H(φ(x))) log(pi(I(x), θi))dx.

The energy E now depends on the three parameters (φ, θe , θi).
The minimization of E is performed using the numerical im-
plementation detailed in [36]. This implementation alternates
between two minimization tasks:

1) minimizing E with respect to θe and θi (with a fixed φ),
and

2) minimizing E with respect to φ (with fixed θe and θi

parameters).
The energy E being non-convex, only a local minimum

might be obtained [39]. The quality of the initialization might,

TABLE II
ML ESTIMATORS θ̂r OF THE PARAMETER VALUES FOR THE PDF LAWS

CONSIDERED IN THE HOMOGENEITY MEASURES [r = e, i]

therefore, play an important role, which is further discussed in
Section IV-D.

Starting from an initial function φ0(x) at time t = 0, we
define φ(x, 0) = φ0(x). This initial function is defined as the
signed distance to the initial contour C0 . A gradient descent is
then used to derive the following system governing the dynamic
deformation of the implicit level set function, now noted φ(x, t):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

θ̂r = arg min
θr ∈Θ r

(Er (C, θr ))

= arg min
θr ∈Θ r

(
−

∫
x∈Ωr

log(pr (I(x), θr ))dx

)
, [r = i, e]

∂φ

∂t
= δ(φ(x))(Freg (φ(x)) + Fdata(φ(x), θ̂e , θ̂i)) in Ω

(11)
with⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Freg (φ(x)) = νdiv

(
∇φ(x)
|∇φ(x)|

)

Fdata(φ(x), θ̂e , θ̂i) = Fi(φ(x), θ̂i) − Fe(φ(x), θ̂e)

Fr (φ(x), θ̂r ) = − log pr (I(x), θ̂r ), [r = i, e]

where Freg , Fe , Fi are derived from Ereg , Ee , Ei , respectively,
by calculating the partial derivatives with respect to φ.

The expression of θ̂r in (11) corresponds to the definition of
the ML estimate of the pdf parameter within each region Ωr . It is
therefore explicitly defined according to the chosen distribution
and the models listed in Table I. Closed-form expressions of the
ML parameters exist for the Rayleigh, Exponential, and Normal
distributions. Their derivation is described in [22] and [40]. For
the Gamma distribution, a closed form of the scale parameter
β exists, but not for the shape parameter α. This value is ap-
proximated with the method proposed in [28]. Expressions of
the different θr are detailed in Table II for the different pdf laws
considered in this study to measure homogeneity of appearance
within 3DUS image regions.

IV. RESULTS

In this section, we first discuss the implementation and pa-
rameterization of the segmentation method and then present an
evaluation of the accuracy of the segmentation results on the
database of obstetrical 3DUS volumes, comparing to manual
tracing.

A. Numerical Implementation of the Segmentation Method

The pseudocode of the algorithm used to solve the system of
equations (11) is described in Fig. 4, where we introduce some



1394 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 60, NO. 5, MAY 2013

Fig. 4. Pseudocode of the segmentation algorithm.

notations for the discrete implementation of the iterative opti-
mization process. In the implementation, the Heaviside function
H and Dirac function δ were approximated with smooth ver-
sions, as in [36].

1) Input Data: The φ0 function was generated by computing
a signed distance map from a binary partition of the image,
which defines the inside region Ωi and the outside region Ωe .

The value of the regularization parameter ν was chosen em-
pirically to obtain smooth boundaries and eliminate small con-
nected components. This value must be set so that Freg and
Fdata magnitudes are numerically comparable. We used ν = 2
for the models RN,EN,GG, and ν = 4000 for the CV model
since the magnitude of Fdata is much lower with RN,EN , and
GG than with CV .

We set Δt = 0.1 in all experiments, as proposed in [41],
τ = 1

1000 and N = 10 iterations. The influence of these last two
values will be discussed in the following section.

2) Numerical Evolution of the Implicit Function φ: Segmen-
tation of the image was performed by iteratively deforming the
boundary C corresponding to the zero level of the level set
function φ(x, t). To update the value of the implicit function at
each voxel x, we first computed the values of the pdf parameters
θ̂e and θ̂i at iteration n + 1, denoted θn+1

e and θn+1
i . We then

evaluated the value of φ(x, n + 1) at iteration n + 1, from the
values of φ(x, n) via the discretization and linearization of (11),
using the following scheme:

φ(x, n + 1) = φ(x, n) + Δtδ(φ(x, n))(νFreg (φ(x, n))

+ Fdata(φ(x, n), θn+1
e , θn+1

i )). (12)

The regularization force Freg (φ(x, n)) was discretized using
the semi-implicit scheme described in [36]. The homogeneity
term Fdata(φ(x, n), θn+1

e , θn+1
i ) was computed as the differ-

ence between Fi(φ(x, n), θn+1
i ) and Fe(φ(x, n), θn+1

e ).
3) Reinitialization of the Level Set Function and Stopping

Criterion: The φ function was reinitialized every N iterations,
by computing the signed distance map to its zero level. The value
of N results from a tradeoff. On the one hand, frequent reini-
tializations ensure numerical stability of the spatial derivatives
of φ away from the zero level. On the other hand, computation
of the signed distance function is computationally expensive.
By choosing N = 10, we did not observe any degenerated be-
havior of the contour shape, while convergence was reached in
a few hundred iterations. This empirical value was used in all
experiments and did not require any fine tuning.

The segmentation algorithm stops when the partition of the
image is stationary. We consider that this state is reached when
the image partition does not evolve significantly between two
reinitializations. Let M be the number of region switches, com-
puted as the number of voxels changing from Ωe to Ωi or from
Ωi to Ωe , during N iterations. We consider that the solution
is stationary when M < τ |Ω|. In our experiments, we used
τ = 1

1000 , τ being called the “threshold of minimal evolution
of the partition” (see the following section).

4) Generation of the Final Segmentation Result: The final
segmentation of I(x) is defined as a binary image corresponding
to the regions defined by φ(x, n + 1) > 0 and φ(x, n + 1) < 0.
Depending on the pdf used for voxel intensity modeling, some
post-processing could be needed to obtain a clean final partition
of the image:

1) With the GG and CV models, the pdf laws are identi-
cal in Ωe and Ωi . It is therefore necessary to determine
which region corresponds to Ω∗

AF (amniotic fluid in the
final partition) and which region corresponds to Ω∗

FT (fe-
tal tissues in the final partition). Since the amniotic fluid
is less echogenic than the fetal tissues, we rely on the
mean intensities values in Ωe and Ωi at convergence: the
region with the lowest (respectively highest) mean value
is associated with Ω∗

AF (respectively, Ω∗
FT ).

2) With the strategies RN and EN , the pdf laws are different
in Ωe and Ωi . Hence, an initial choice associates Ωe and
Ωi with Ω∗

AF and Ω∗
FT , which does not leave any room for

ambiguity.

B. Evaluation of the Segmentation Quality With Respect to
Parameters Setting

The iterative evolution of the segmentation process is dis-
cussed in this section, and illustrated on one 3DUS case, seg-
mented with an RN model, using a Rayleigh pdf in Ωe and a
Normal pdf in Ωi .

A slice of the 3DUS volume segmentation is illustrated in
Fig. 5, with partitions P(Ω) defined by φ(x, n) evolving over
the iterations of the segmentation process. The evolution of the
partition was fast during the first 100 iterations (phase 1), and
slowed down afterward. This algorithm behavior was observed
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Fig. 5. Iterative segmentation of one 3DUS volume. One slice of the 3DUS
volume is presented along with the regions Ωe and Ωi at initialization and
after 30, 60, 90, 120, 220, and 390 iterations of the minimization of the energy
functional.

on all the 3DUS volumes that were processed, for all the pdf
models.

We evaluated the influence of the stopping criterion. For the
example shown in Fig. 5, with τ = 1

500 , τ = 1
1000 , and τ = 1

2000 ,
the algorithm converged at iterations 120, 220, and 390, respec-
tively. This illustrates the impact of the tradeoff between the
numbers of iterations and the final segmentation quality. Images
in Fig. 5 illustrate the corresponding final segmentation results,
which are almost identical. If we look in more details, we ob-
serve that with τ = 1

500 , the uterine wall and the embryo’s head
are not fully closed. By using τ = 1

1000 , local improvements
of P(Ω) were obtained and the previous segmentation defects
were no longer observed. Finally, very little differences were
observed with τ = 1

2000 , despite 100 additional iterations. The
value τ = 1

1000 therefore seems to be a suitable intermediate
value, for which the partition reaches a suitable stability. This
was the case for all volumes of the database. This parameter can
be interpreted as follows: τ encodes the authorized proportion
of image points that can oscillate between phases while consid-
ering the partition to be stabilized. Using a τ = 1/1000 means
that convergence is considered when less than 0.1% of the points
in the image change phases between few iterations. The points
that keep on oscillating at convergence of the partition are points
at the interface between two phases. In the absence of a priori
knowledge on the perimeter of the object to segment, the usual
approach is to perform empirical tests to derive a generic value
for τ , suited for the type of image data to segment, that pro-
vides a good tradeoff between the number of iterations needed
to converge and the final segmentation quality. We followed this
approach, and tests were performed on the whole database with
similar results, leading to this value of τ = 1/1000.

C. Analysis of Homogeneity Measures in FData

We illustrate in Fig. 6 the different profiles of the homogeneity
measures Fe, Fi and the energy term Fdata as a function of voxel
intensities, at convergence of the iterative segmentation process,
considering the models SD(EN) (a), GG (b), and CV (c).
Note that the figure is related to the final segmentation result,
and not the curve evolution. These profiles were computed for
one case to illustrate the fact that the implicit threshold value
depends on the modeling strategy. Note that it would not be
suited to display profiles merged from different cases, since
they do not have calibrated values, and therefore, parameters
of the distribution functions vary between cases, as well as the
final implicit threshold, defined below.

A voxel of intensity I(x) is more likely to belong to Ωe

(respectively, Ωi) if Fdata is negative (respectively, positive).
The profile of Fdata therefore defines an implicit threshold value
sm for the model m, corresponding to its zero crossing, i.e. the
intensity value for which Fdata = 0. At this value, indicated by
the black-dotted line in the figure, Fe and Fi are equal, and Ωi

and Ωe equally probable. This implicit threshold value separates
the two phases of the image partition.

We can observe that the profile of Fdata depends on the
modeling strategy and different implicit threshold values are
obtained for each model. A 2-D slice of a clinical case example
is shown in Fig. 7(a). The hypoechogenic class in this image is
composed of the placenta (green ellipse), the fetus’ skull content
(red ellipse) degraded by an acoustic shadow due to a strong
reflexion on the skull bone, and the amniotic fluid, part of which
is located behind the fetus’ trunk (blue ellipse). The influence of
the model and its final implicit threshold value defined by Fdata
is visible on the segmentation results in Fig. 7(b)–(d), obtained
with EN (b), GG (c), and CV (d) models.

In this example, the lowest threshold value was obtained with
the EN model (where sEN = 41). This value enabled to seg-
ment properly the placenta and the fetus’ skull, but the amniotic
fluid region located behind the fetus was segmented as belonging
to fetal tissues. For the CV model, the highest threshold value
was obtained (sC V = 72), and the amniotic fluid region was
correctly segmented (d). However, the segmentation of the pla-
centa and the fetal skull were not satisfying, as voxels intensities
are low in these structures. With the GG model (sGG = 50), we
obtained a reasonable tradeoff between the two other partitions
(c).

Moreover, Fig. 6 illustrates the fact that the magnitude of
Fdata depends on the pdf exploited by the different models. For
voxel intensities within the range [0, 255] in the database, Fdata
varies in an interval of values of width 20 with the RN,EN ,
and GG models, and in an interval of values of width 40 000
with the CV model. This observation was used to set the value
of ν, as mentioned in Section IV-A, leading to an appropriate
weighting of the regularization energy term Freg in the global
energy functional.

D. Robustness of Segmentation Results With Respect to the
Initialization

To evaluate the robustness of the proposed segmentation
method with respect to the initial partition, three initialization
strategies, denoted SM,SO, and CY , were tested to define φ0 .
The φ0 function was computed as the signed distance from the
contours C0 of a binary image. The binary images correspond
to initial guesses of the image partition into two classes.

The binary images used to build SM and SO were obtained
via intensity thresholding, considering learned threshold val-
ues, from the manual thresholding experiments presented in
Section II-A. When processing an image Ii from the database,
the threshold value for SM was defined as μs

i which corresponds
to the average threshold value defined by the expert (computed
on the whole database except Ii). The threshold value for SO
was defined as oi , which corresponds to the K-means threshold
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Fig. 6. Profiles of homogeneity measures Fe (red), Fi (blue), and Fdata (green) at convergence of the segmentation process, for one 3DUS volume, using
(a) EN , (b) GG, and (c) CV models. The black-dotted line identifies the implicit threshold value, obtained as the intensity for which Fdata = 0, and which
depends on the modeling strategy.

Fig. 7. Example of segmentation results with different models on a 2-D slice
from one 3DUS volume. (a) Slice from the 3DUS volume and corresponding
segmentation results for the (b) EN , (c) GG, and (d) CV models. Regions
in the placenta (green ellipse), the fetus’ skull content (red ellipse) degraded
by an acoustic shadow due to a strong reflexion on the skull bone, and the
amniotic fluid, part of which is located behind the fetus’ trunk (blue ellipse) are
segmented differently.

computed on image Ii . The binary image with the CY initial-
ization was not defined from an a priori threshold value, but
simply as a set of cylinders partitioning the image into two
classes as in [36]. This corresponds to a traditional initial ge-
ometric configurations of φ0 when no a priori information is
available.

To evaluate the robustness of the proposed segmentation
method with respect to initial conditions, overlap and similar-
ity measures between the partitions obtained with the different
initialization strategies and the different models described in
Table I were computed. Let m ∈ {SD,GG,CV } be the model
and j ∈ {SM,SO,CY } the initialization strategy, the segmen-
tation result obtained on image Ii , using m and j, is denoted
segm

i (j).
The overlap measure recm

i (j, k) for a given model m is de-

fined as recm
i (j, k) = |segm

i (j )∩segm
i (k)|

|segm
i (j )∪segm

i (k)| , j �= k. The minimum

overlap value over the different pairs of initializations (j, k) is
denoted recm

i and corresponds to the less similar results. Over
the whole database, the μm

rec , minm
rec , maxm

rec measures denote
the mean, minimum, and maximum values of the minimum over-
lap for a given modeling strategy m (i.e., the mean, minimum,
and maximum values over i of {recm

i }). We obtained average
values μSD

rec = 0.92, μGG
rec = 0.93, and μC V

rec = 0.93, min values
of minSD

rec = 0.86, minGG
rec = 0.89, and minC V

rec = 0.88 and max
values of maxSD

rec = 0.96, maxGG
rec = 0.96, and maxC V

rec = 0.96.
The mean overlap values computed on the less similar parti-
tions were high for all modeling strategies, confirming a good

robustness of the proposed segmentation method with respect
to initial conditions. We also compared the implicit threshold
values corresponding to the different segmentation setups. Let
sm

i (j) be the implicit threshold defined by the homogeneity
term Fdata at convergence of the segmentation process for
the image Ii , using the model m and the initialization j. Let
εm
i (j, k) = |sm

i (j) − sm
i (k)|, with j �= k, be the difference be-

tween the thresholds sm
i (j) and sm

i (k). Let εm
i be the maximum

difference of the εm
i (j, k) values over the different pairs of ini-

tializations (j, k). We denote by μm
ε and σm

ε the mean and the
standard deviation of the εm

i measures over the database. For the
different modeling strategies, we measured μSD

ε = 5.7, μGG
ε =

4.1, μC V
ε = 3 and σSD

ε = 4, σGG
ε = 2.5, σC V

ε = 2.1. Compar-
ing average manual (intra-observer) and automated variability of
the threshold values, we obtained that εm

μ < με and σm
ε < σε for

all the modeling strategies, since the intra-observer variability
was measured as με = 12.8 and σε = 5.6. Moreover, the differ-
ences between the threshold values obtained with our automated
approach were systematically smaller than those obtained with
the expert. This analysis, therefore, confirms that the threshold
values obtained with the proposed segmentation approach are
less variable than those defined by a human expert. This stresses
that the method exhibits a satisfactory robustness with respect
to the initialization, based on this reproducibility criterion.

To homogenize the evaluation conditions in the following, we
will only consider the result obtained with the SM initialization,
which appeared to be appropriate for all cases. Moreover, we ex-
perimentally observed that the convergence was fastest with this
initialization. We denote in the following segm

i = segm
i (SM).

E. Quantitative Evaluation of the Segmentation Results
Accuracy

Segmentation results obtained automatically were compared
with manual segmentations. While segmentations were always
performed in 3-D, quantitative evaluation was performed as fol-
lows: in 3-D for five clinical case from the database for which a
detailed 3-D manual segmentation was available, and in 2-D on
the other clinical cases for which a detailed manual segmentation
was only available on three orthogonal slices. The manual seg-
mentation result of a volume Ii is denoted segMAN

i . Similarity
between the manual segmentation segMAN

i and the automated
segmentation segm

i was evaluated by computing two measures:
the overlap between regions and the mean distance (expressed
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Fig. 8. Evaluation, on the 3DUS images, of the similarities between the automated segmentation and the manual detailed segmentation. (a) Overlap measure
recm ,MAN

i and (b) mean tissue interfaces distance d̄m ,MAN
i for the automated segmentations obtained with the model m. The blue curves correspond to SD, the

green ones to GG, and the red ones to CV . Squares correspond to SD = EN , and circles to SD = RN . (c) Implicit threshold values defined by the homogeneity
measure Fdata : sS D

i (blue), sG G
i (green), and sC V

i (red), along with the manually defined extremal admissible threshold values plotted with the two black-dotted
curves.

in voxels) between tissue interfaces, denoted recm,MAN
i and

d̄m ,MAN
i , respectively. The mean distance (based on the L2

norm) compares binary volumes at the voxel level, without ex-
tracting a surface, and is usually more informative than the
Hausdorff distance, since US images are noisy and intratracer
variability is very high. The Hausdorff distance is suited when a
precise delineation is targeted, and comparison is made to a pre-
cise ground truth. In [24], for example, the authors only used the
mean distance to compare segmentations of fetal faces, seeking
clinical evaluation of their segmentation tool. In clinical studies,
such as in [42], only correlations of specific biometric measures
are studied.

Similarity measures are plotted in Fig. 8(a) and (b). Let
recm,MAN and d̄m ,MAN be the average values of the overlap
and distance measures on the database, considering the model
m. We obtained the following average values: recSD,MAN =
0.89, recGG,MAN = 0.89, recC V ,MAN = 0.83 and d̄SD,MAN =
1.8, d̄GG,MAN = 1.9, d̄C V ,MAN = 2.7 (distances are given in
voxels). We observed that results obtained with the modeling
strategies exploiting statistical distributions SD and GG were
very similar, and superior to those obtained with the CV model,
which did not compare well with the manual reference for sev-
eral cases.

We also evaluated the accuracy of the segmentation in terms
of identifying an implicit threshold close to the manual threshold
value. Fig. 8(c) reports the sm

i values for the different modeling
strategies, together with the minimum and maximum manually
defined admissible values. One can note that the sSD

i and sGG
i

are within the range of the admissible values for most images,
while it is the case for only two images for the sC V

i values. More
precisely, threshold values defined with the CV model are too
high for many images. Voxels belonging to ΩFT and located in
regions affected by acoustic shadows, posterior reinforcement
or Total Gain Compensation artifacts have abnormally low in-
tensities. If the implicit threshold defined by the homogeneity
term Fdata is high, these voxels will be associated with Ω∗

AF
in the final partition. This behavior, illustrated in Fig. 7(d), ex-
plains the lower quality of the results (regarding overlap and
distance measures) obtained when the CV model is considered.
On the other hand, the GG and SD models provided overall
very similar quantitative measures of segmentation quality.

Fig. 9. Illustration of segmentation discrepancies on the case with the largest
segmentation error measures (acquired at 22 WA). (a) Single slice from the
3DUS volume I19 . Segmentation results (b) segMAN

19 and (c) segS D
19 . Voxels

of ΩAF and Ω∗
AF are displayed in white, while voxels of ΩFT and Ω∗

FT are
displayed in gray. (d) Segmentation differences between segMAN

19 and segS D
19 .

Numbers in (d) refer to the sources of errors discussed in the text.

Beyond global segmentation accuracy evaluation, we also
analyzed local segmentation errors. The interface between the
amniotic fluid and the fetal tissues is generally slightly blurred,
which makes the manual segmentation difficult at the voxel
level, leading to small segmentation discrepancies around this
boundary. But otherwise the results are very satisfactory. For
all 18 first trimester cases, automated segmentation results were
visually very similar to the manual ones, as confirmed by the
quantitative evaluation measures. Fig. 9 illustrates the segmen-
tation results for a single slice of the clinical case I19 , acquired
at 22 WA using the iU22 transducer, showing segMAN

19 (the ref-
erence) and segSD

19 , and the difference image between them. On
the difference image, white voxels are correctly segmented, gray
pixels correspond to segmentation errors, and black pixels are
out of the field of view. Light (respectively, dark) gray voxels
are classified in Ω∗

FT (Ω∗
AF ) in segSD

19 while they belong to ΩAF
(ΩFT ) in the reference segMAN

19 . Although it is difficult to com-
pare the results with those obtained on the other data since the
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Fig. 10. Illustration of the 3-D reconstructions of fetal tissues corresponding
to (a) segS D

19 and (b) segG G
18 for anatomical modeling of pregnant women.

The placenta is displayed in red and the fetus is displayed in pink. The arrows
correspond to the fetus skull, torso, legs, and arms. The images on the right
(c) illustrate a single slice of the 3DUS volume I18 and the corresponding
segmentation result segG G

18 . Results for I19 are displayed in Fig. 9.

transducer is not the same and the resolution is lower, it can be
observed that this case at 22 WA generated significantly lower
segmentation accuracy, when compared to manual segmenta-
tion. This lower performance of a binary partition of the images
into two homogeneous tissue types could be expected, whatever
the acquisition setup, since this case is out of the range of the
first trimester of gestation. Indeed, illustration of the segmen-
tation results on the case acquired at 22 WA shows the limits
of the proposed approach when the image displays more com-
plex fetal structures and more shadowing artifacts generated by
calcified bones. The binary partition model is no longer suited
when the image gets more complex, with more visible fetal
structures (but again the results for all other cases are good,
as illustrated, for instance, in Fig. 10). Visual analysis of the
automated segmentation results allows us to understand the dif-
ferent phenomena causing the large segmentation discrepancies
observed in Fig. 9(d). It appears that the main causes of errors
are due to 1) the blurred interface between the amniotic fluid and
the fetal tissues; 2) the introduction of artificially high intensity
values during the image interpolation process from the acquisi-
tion grid to a Cartesian grid; 3) the presence of large acoustic
shadows; 4) the low intensity of the voxels located far from
the transducer despite Total Gain Compensation; and 5) the ef-
fect of the regularization term Freg which prevents the proper
segmentation of strong concavities. However, despite these er-
rors, the morphology of the fetus is preserved and can be well
distinguished, as illustrated in Fig. 10. Finally, the proposed seg-
mentation framework enabled to partition automatically 3DUS
volumes englobing the whole embryo. Little user interactions
were required to separate the uterus from the fetal tissues. We
illustrate in Fig. 10 two 3-D reconstructions generated from two
segmentation results.

V. DISCUSSION AND SUMMARY

The segmentation method proposed in this paper aims at ex-
tracting automatically two types of tissues on fetal 3DUS im-
ages: fetal tissues and amniotic fluid. This problem was previ-

ously addressed only partially and in few works. To guide the
segmentation process, we tested several combinations of statis-
tical distribution models of the voxel intensities in the two types
of tissues. Histograms of the voxel intensities differ greatly in
the fetal tissues and the amniotic fluid, and depend on the image
saturation. We therefore proposed specific distributions for each
type of tissue and for saturated/unsaturated images. For satu-
rated images, we proposed to combine Exponential and Normal
distributions, while for non-saturated images, we proposed to
use Rayleigh and Normal distributions. A more generic formu-
lation of the pairs of models with the Gamma distribution was
also studied, covering all situations. The segmentation problem
was formulated as the minimization of an energy functional. The
energy was itself derived from a Bayesian MAP formulation of
the partition of the image into “homogeneous” regions. Homo-
geneity of the regions was quantified via probability measures
exploiting the statistical distribution models. Energy minimiza-
tion was implemented using the level-set formalism and an it-
erative estimation of the optimal partition via gradient descent.
We proposed a generic expression of the segmentation problem
in order to compare the proposed method with the one described
in [36], where voxel intensities within the regions are modeled
with constant intensity values.

Since the optimization process does not guarantee to obtain
a partition of the image corresponding to a global minimum of
the energy, we first evaluated the robustness of the segmentation
process with respect to the initial conditions (i.e., the initial par-
tition of the image). Evaluation results showed that the method
is little sensitive to initialization conditions. Average overlap
values in Section IV-D provide a level of intrinsic variability
of a given modeling strategy with different initializations. They
can, therefore, be seen as cap values of segmentation preci-
sion achievable by a given segmentation method. The different
modeling strategies were evaluated in terms of segmentation
accuracy comparing to manual segmentation. All models ex-
ploiting statistical distributions of the voxel intensities provided
similar segmentation accuracy, and proved to be more accu-
rate than the piecewise constant model from [36]. This shows
the interest of using adaptive distributions, depending on the
image characteristics and the type of tissue to segment. This ap-
proach contrasts with other methods that blindly use Rayleigh
distributions, or distributions learned from manually delineated
images which are then used to segment other images (e.g., [43]
for prostate segmentation), or distributions that depend on the
segmentation objective but not on individual images (for in-
stance, the authors in [37] use Rayleigh distributions to segment
the left ventricle and the classical Chan–Vese model to seg-
ment the prostate). Evaluations were performed on a database
of 19 3-D images, acquired in standard clinical conditions, and
exhibiting great variability in terms of fetus ages, acquisition
setup, and image properties. This constitutes thus a good pre-
liminary validation, which is promising for further large-scale
studies. We can expect a reasonable robustness with respect to
image characteristics and acquisition conditions, since the pro-
posed segmentation method uses tissue appearance models that
are adapted to the type of US image acquisition (saturated or
not), the type of tissue to extract, and the tissue appearance via
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optimization of the modeling parameters, and since segmen-
tation performances were stable for 19 cases, acquired in
clinical routine and not optimized for this particular study.
More extensive clinical validation could be based on several
manual segmentations, provided by different experts, so that
inter-expert variability could be assessed. A next step could also
be to provide a methodology to decide a priori on the best
modeling strategy.

Our segmentation method was implemented in MATLAB,
without code optimization. An order of magnitude of 20 minutes
for a 100 × 200 × 100 matrix size was needed for the whole
process. The only hint to reduce running time, besides code
optimization, is to start with a good initialization, hence reducing
the number of iterations.

Three-dimensional reconstructions, based on the segmenta-
tion results, were illustrated and enabled to precisely visualize
the fetus in the uterine environment, even on challenging images
with strong artifacts.

The segmentation results provided by our method were inter-
actively refined by distinguishing the fetus body, the umbilical
cord, and the placenta. Since the contact region between the
fetus and the uterine wall is small, little user interaction was
required to perform this task. In a clinical context, the VOCAL
software tool can be used to interactively segment the amniotic
sac as proposed in [44], with limited effort thanks to the pow-
erful visualization and interaction functionalities of this tool.
Echographers are getting familiar with the manipulation of such
interactive segmentation tools for 3DUS images but still con-
sider a full segmentation to be cumbersome in clinical routine.
Future methodological developments will consist in identifying
the three aforementioned structures, in an automated or semi-
automated fashion, for applications such as biometric measures
(amniotic sac and fetal volumes, crown-rump length, etc.) on
large datasets.

Morphological and biometrical analysis of the fetus could be
performed using the proposed automated segmentation tool.
There are several potential clinical applications for the ex-
ploitation of detailed segmentations of the fetus during the first
trimester: detection of asymmetries between the cephalic pole
and the embryo’s body is of interest to identify severe abnormali-
ties and identify potential correlation with miscarriage probabil-
ity; quantification of fetus volumes could be exploited to assess
fetal development and refine delivery date prediction; finer im-
age markers of abnormalities could be investigated, exploiting
the automated localization of the ocular lobes, the limbs, the
stomach, the bladder, and the nuchal translucency; comparison
of 3-D measures with 1-D/2-D measurements extracted from
standard 2-D echographic images is still needed to evaluate the
clinical impact of 3DUS imaging for biometry.

Our study was performed in the context of anatomical model-
ing of pregnant women for numerical dosimetry simulations. In
this context, we exploited four 3DUS cases to generate detailed
anatomical models used to investigate the influence of electro-
magnetic fields on the fetus during pregnancy (see [45] and [46]
for details). Surfacic models of the uterus and its content were
built and embedded within a synthetic woman model. These
models were manually refined by distinguishing, from the auto-

Fig. 11. Pregnant woman model at 15 WA, embedding the utero-fetal unit
segmented on a 3DUS clinical case. Coronal and sagittal views of the 3-D
model are provided.

mated segmentation results, the fetus body envelope, the umbil-
ical cord, and the placenta. An example of a generated pregnant
woman model at 13 WA is provided in Fig. 11. Additional preg-
nant woman models are publically available for download for
research purposes on the web page of the FEMONUM project:
http://femonum.telecom-paristech.fr/.

Future developments will focus on preprocessing US images
to attenuate strong artefacts and on the refinement of the segmen-
tation process to identify, in an automated or semi-automated
fashion, internal fetal organs (brain, heart), as well as the three
aforementioned structures, for instance, using a similar method-
ology but in a multiphase framework [47].
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