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ABSTRACT

Speckle noise conupts ultrasonic data by introducing sharp changes in an echocardiographic image intensity profile, while
attenuation alters the intensity of equally significant cardiac structures. These properties introduce inhomegenity in the
spatial domain and suggest that measures based on phase information rather than intensity are more appropriate for
denoising and cardiac border detection. The present analysis method relies on the expansion of temporal ultrasonic volume
data on complex exponential wavelet-like basis functions called Brushlets. These basis functions decompose a signal into
distinct patterns of oriented textures. Projected coefficients are associated with distinct "brush strokes" of a particular size
and orientation. Four-dimensional overcomplete brushlet analysis is applied to temporal echocardiographic volumes. We
show that adding the time dimension in the analysis dramatically improves the quality and robustness of the method without
adding complexity in the design of a segmentation tool. We have investigated mathematical and empirical methods for
identifying the most "efficient" brush stroke sizes and orientations for decomposition and reconstruction on both phantom
and clinical data. In order to determine the 'best tiling' or equivalently, the 'best brushlet basis', we use an entropy-based
information cost metric function. Quantitative validation and clinical applications of this new spatio-temporal analysis tool
are reported for balloon phantoms and clinical data sets.
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1. INTRODUCTION

The recent introduction of real-time true four-dimensional (3D plus time) ultrasound (3DRT) represents an inexpensive,
rapid and clinically applicable tool for accurate cardiac function evaluation [1]. Since no interpolation between slices or
tomographic reconstruction is required, segmentation is left as the only barrier to automated quantification of physiological
parameters such as left ventricular (LV) ejection fraction and wall thickness. Because of hardware limitations, the spatial
resolution of volumetric data acquired by this new technology is low (compare to standard 2D echo images) and speckle
noise level is quite high. Speckle noise corrupts ultrasonic data by introducing sharp changes in an image intensity profile,
while attenuation alters the intensity of equally significant cardiac structures. These properties introduce inhomegenity in the
spatial domain and suggest that measures based on phase information rather than intensity are more appropriate for
denoising and cardiac border detection [2]. This motivates the development of a new framework to recover information in a
domain where speckle noise is decorrelated and an isolated signal may verify known properties.

Brushlet functions are based on a windowed Fourier transform of the Fourier transform of an image with good localization
in time and frequency. Windowed Fourier basis of the Fourier plane provide a space-frequency analysis with a better
angular resolution than wavelet packets [3]. These basis functions were first introduced by Meyer and Coifman [4] for
image compression. They decompose a signal into distinct patterns of oriented textures. Projected coefficients are associated
with distinct "brush strokes" of a particular size and orientation. Since brushlet decomposition depends on a signal's spatial
frequency content, it is invariant to intensity and contrast range. Four-dimensional overcomplete brushlet analysis is applied
to temporal echocardiographic volumes. We show that adding the time dimension in the analysis dramatically improves the
quality and robustness of the method without adding design complexity. The underlying hypothesis is that there is a strong
coherence in time during diastole and systole phases of the cardiac cycle in the low frequency volumes only and that speckle
noise can be reduced dramatically by including the time dimension in an orientation sensitive space-frequency analysis of
time-volume data.
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As tiling in the Fourier domain determines entirely the structure and utility of the transform, it can be viewed as a hyper-
dimension of the analysis. Arbitrary flexibility in partitioning the transform domain allows us to accommodate and precisely
match the sampling rates of each acquired dimension (sample spacing in x, y, z and time). This tiling is a critical parameter
of the analysis. In Section 2, we describe two mathematical and empirical methods for identifying the most "efficient" brush
stroke sizes and orientations for decomposition and reconstruction on phantoms and clinical data. In order to determine the
'best tiling' or equivalently, the 'best brushlet basis', we used an entropy-based information cost metric fimction as defined
in [5]. Applying a thresholding operator on the diagonal brushlet provided a risk of estimation close to the ideal oracle risk
[6]. In Section 3, quantitative results are provided for volumetric phantoms and clinical echocardiographic data sets.

For the rest of the paper, we model the echocardiographic signal 7 [n] contaminated with speckle noise ri' [n] as:

I [n] =I[n] + W [n] . The signal f is estimated by f after projecting the noisy data X on the brushlet basis

B = {i},n, N-I and applying a hard thresholding operator PT (at level 1) on the analysis coefficients XB [m] =(x, bm):

Y=:PT(XBm
2. METHOD

Four-dimensional brushlet analysis is applied to temporal phantom and clinical echocardiographic volumes. The analysis is
developed in an overcomplete framework to avoid aliasing effects introduced by critical sampling and provide a shift
invariant multiscale representation. Adding the time dimension in the analysis can dramatically improve quality and
robustness. The underlying hypothesis is that there is a strong coherence in time during diastole and systole for low
frequency volume components. In this case, speckle noise can be reduced and anatomical features enhanced by including
the time dimension in an orientation sensitive space-frequency analysis.

2. 1. Brushlet Analysis
F. Meyer and R. Coifman first introduced the brushlet functions for compression ofhighly texturized images [4].

By dividing the real axis into subintervals [a, , a1] of length 1,, , we can define a set of bruslilet functions on these

sub- intervals as:
u.,(x) = b,(x —c,)e1(x) + v(x —a,)e,(2a,, —x) —v(x —a,1)e1(2a, —x) , (1)

. (a —a) • . .
with c 1 . The indexj (j e z) determines the frequency of the complex value exponential e1, defined as:

2

1

(2)

The two window funtions bn and v are derived from the ramp function r characterized by the two following properties:

Io if t�—1

if t�1
and (3)

r2(t)+r2(—t)=1 , VtEI
Detailed description of the construction of brushlet functions and their numerical implementation can be found in [4].
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We can project f on a bmshlet basis, f f,,ju,,j where f are the brushlet coefficients. By applying an inverse

Fourier transform, we can compute a decomposition of f , f , on the orthonormal basis w,1 , inverse

Fourier transform of u,1 ,and defined as:

wnj (x) = e2xehx {(_1)i (lax_ J) — 2isin(lx) (lax + J)} (4)

The parameter s controls the degree of localization of the brushlet function and its inverse Fourier transform in time and
frequency. The smaller the value of c, the better the localization in frequency (smaller second peak shown in Figure 1 .b) but
the localization in time becomes less (spread of the central peak). This tradeoff in time-frequency resolution is analogous to
the Heisenberg uncertainty principle that controls wavelet packet resolution. We can observe in Equation (4) the wavelet-
like structure of the w,1 functions with scaling factor i, and translation factor j. The major difference between brushlet

basis and wavelet packets is the arbitrary tiling of the time-frequency plane and the perfect localization of a single frequency
for one coefficient. An example of an analysis brushlet function and its associated reconstruction function is provided in
Figure 1 below.

a- an+E

(a) (b)

Figure 1 : (a) Analysis brushlet function U,,1, defined on an interval of length ln. (b) Associated synthesis function W,,,1,
with two peaks localized at -jun and j/ln.

In order to control the oscillations of a brushlet w,,1 it is desirable to have a positive Fourier transform of the windowing

function b. However, this condition is not compatible with the original construction ofthe u,1 functions as in Equation (1).

Meyer and Coifman thus introduced two biorthogonal windowed Fourier bases: synthesis function Wnj and dual analysis

functions Un,j . In order to have b , the Fourier transform of b, positive, they relaxed conditions on the ramp function

defined in Equation (2) and defined a new ramp function with the following properties:

r(t)=O if t�1
and (5)

r2(t) + r2 (—t) > 0 , Vt I
Imposing b � 0 implies for the second derivative that b' (0) < 0 so that the bell function b cannot be flat around 0. This

condition imposes that e =i /2. In our implementation we followed the suggestion of Coifman and Meyer and defined b

(sin() . .
as a cubic spline so that b was equal to: b () = � 0 . The analysis functions u,,1, dual to the reconstruction\ ,r )
functions w,,1, are then defined as in Equation (1) by replacing b and v by b and defined with the new ramp function

r(t)
r(t)=

r(t)+ r(—t)

-i/in i/in
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2. 2. Multidimensional Implementation
The implementation of the brushlet
analysis in higher dimensions is
straightforward. The tensor product
structure of the basis allows a direct
extrapolation of the 1D case to n-D. In
terms of implementation, we used the
folding operator introduced by
Wickerhauser [7] to project the signal on
the complex exponential brushlet basis
functions. For a given volume data, (1) its
n-D Fourier transform is first computed,

(2) n-D tiling is applied, (3) individual (a b csub-volumes are folded along each ( )

dimension, (4) and finally folded sub-
volumes are expanded onto the complex
exponential functions via a second n-D
Fourier Transform.
In n-D, each sub-volume is associated
with a brushstroke whose orientation is determined by the position of the center of the sub-volume in the Fourier domain
and whose resolution is determined by the size of the sub-volume. An example in 2D is provided in Figure 2 for two
brushstrokes corresponding to two quadrants with same orientation but different resolution.

2. 3. Overcomplete analysis
The size of the sub-volumes created with a tiling of the Fourier domain determines the size of the coefficient set associated
with each characteristic brushstroke. The diminution of dimension between the spatial domain and the transform domain is
analogous to a two-fold downsampling observed in dyadic wavelet analysis between consecutive scales. In order to
overcome the problems of downsampling, we developed an overcomplete framework, best suited for image analysis and
denoising/enhancement, as it avoids aliasing effects introduced by critically sampled representations [8] and yields a shift
invariant representation.

In the case of brushlets, the aliasing effect arises from the selection of overlapping subintervals on the Fourier plane that are
expanded into a local Fourier basis. To avoid this and increase the number of coefficients within the same subinterval size,
we project onto an extended
Fourier basis. This increases the
matrix size in the projection
domain without changing the
original signal. The overcomplete
projection is efficiently 64

implemented by simply padding
the folded signal with zeros before
computing the final FFT. Since
padding a signal will increase the
resolution of the FT, overcomplete
projections increase the number of
coefficients for the same frequency
interval and therefore improves
resolution in the transform
(coefficient) domain. An example of
overcomplete vs. decimated brushlet
decomposition is presented in Figure 3.

Figure 2: Illustration in 20 of the influence of the tiling of the Fourier
domain on the resolution and orientation of a brushstrokes. (a) Tiling of
the Fourier domain. (b) Real-Part of coefficient for Cube 1. (c) Real-
Part of coefficient for Cube 2.

Figure 3: Example of decimated and overcomplete brushlet analysis for a single plane of
3D ultrasound data. (a) Original cardiac ultrasound slice. (b, c), Real-Part of coefficients
for a 16-quadrant tiling of the Fourier plane in the non-overcomplete case (b), and
overcomplete case (c). Actual dimension of the original image and the sub-quadrants
coefficients are indicated.
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2. 4. Estimation of noise variance
Envelope-detected ultrasound signals with fully developed speckle can be modeled with a Rayleigh distribution [9, 10]. In
this framework, the following signal-dependent noise model can be used to represent ultrasound signals:

X=f+n, (6)

where X is the observed signal,fis the true signal and n is the zero-mean noise component, independent of the true signal S.

In a uniform area where the true signal is constant (f =F)we have:

o-=F.o-, (7)

where o- is the variance of the observed signal X and o the variance of the noise n . This property has been used for

various adaptive-filtering approaches for denoising of B-scans ultrasounds [10-12]. In order to estimate the variance we
define local mean and variance for a window of size [M N]:

1
M/2 N/2

Iii,]
= : Xi_m,j_nA4 N ,n=—M12 n—N/2

1
M/2 N/2

cr1 = (Ximjn /1j,j)N m=—M12 n=—N/2

where X1 is the gray value of pixel (i, j), the mean value and a the variance of the observed signal at the same

location. We call a the ratio of the local variance over the local mean:

Hence, a(i, j) provides a good approximation of the local variance
of the speckle noise in homogeneous areas where the true signal is
constant and Equation (7) is almost verified. Hao et al [1 1] used this
approximation to define median filters weights as a function of the
local variance of the noise in ultrasound images.
In our application, three homogeneous areas are defined in the
ultrasound volume corresponding to the myocardium muscle wall, the
inside cavity and the outside space. In three dimensions, we used a
window of size [6 x 6 x 2] to estimate the noise variance volume A

with results displayed in Figure 4.

(a) (b)
Figure 4: Estimation of speckle noise variance in
echo volume. (a) Original slice extracted from
temporal volumetric data set. (b) Corresponding
speckle noise variance slice, extracted from
variance volume.

After analyzing the signal on the brushlet basis functions, we zero-out the higher frequency coefficients and apply a hard
thresholding to the lower frequency coefficients prior to reconstruction. Hard thresholding of the coefficients aims at
eliminating the influence of noise components, while preserving signal components, hopefully concentrated in few
coefficients of large magnitude. The risk of applying a hard thresholding operator PT (at level 1) on the analysis
coefficients is:

with fB [n] = (I, ) and XB [n] = (1,i ).

r (f) = : E{IJB [n] -PT (XB [nI)12}, (11)

(8)

a(i, j) = a1
In uniform areas where Equation (7) is verified, we observe:

a(i, j) = Pi,1
=

(9)

(10)

2. 5. Hard Thresholding
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2. 6. Best Basis framework
The tiling of the Fourier domain determines
entirely the structure of the transform domain and
can be viewed as a hyper-dimension of the 4D
analysis. The choice of the tiling determines at
which frequencies the original signal is analyzed
and at which resolution it is expanded. The
flexibility in partitioning the transform domain
allows us to accommodate and precisely match
the different sampling rates of each acquired
dimension (sample spacing in x, y, z and time).
This tiling is a critical parameter of the analysis as
it allows us to systematically adjust specific
brushlet coefficients for noise reduction and
selectively reconstruct salient features of interest.
We have investigated empirical and mathematical
methods for identifying the most "efficient" brush
stroke sizes and orientations for decomposition and
reconstruction on phantoms and clinical data:

4X5X3 cubes of
brushlet coefficients in
the Transform domam r'

4 ;
I c/I

samples

4 samples

(b)

Figure 5: (a) 3D tiling of the Fourier domain with arbitrary
sampling along each direction. (b) Corresponding structure of
brushlet coefficients in the transform domain.

(a) Empirical testing was carried out for regular tiling with 2, 4 and 8 sub-intervals along each dimension
(b) Computational method to select the best tiling followed the 'best basis' framework of Wickerhauser [5].

The information cost metric is the entropy functional [14] defined as:

E(f,)=mn(X[n]2,cr).
n=O

(12)

The best basis B for estimating the signal f minimizes the risk of estimation via hard thresholding with

threshold value set to the estimated variance of the noise

7N-i / g 2 2"
E(f,B)=min[ >minXB [n]5 (13)

The non-linear projector that minimizes this risk is the hard thresholding operator that keeps coefficients X [n] only if

If [1I > with the variance of the noise W [13]. In this case the risk of estimation is minimal:

roracle mm (fB [n]2 ,a7 ) . It is called and oracle risk since we do not ow ff []I . By applying a similar hard

thresholding to the coefficients XB [n] where the condition fB [n] > is replaced by 1X8 [n] > using the noise

variance estimated from the data, we hope to remain close to the ideal oracle risk.

Arbitrary tiling of
the FozirieDomthn

in 4X5X3 cubes

samples

5

samples

(a)
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3. RESULTS

3. 1. Optimal concentration of signal component in 4D compare to 3D analysis
To quantitatively evaluate the performance of our dynamic
4D analysis in decorrelating noise components in lower
frequencies, we first tested it on a mathematical phantom.
The phantom consisted of an ovoid volume growing in time
that schematically mimicked aspects of the left ventricle
with an inner gray cavity surrounded by a thick white wall
on a black background. The size of a single volume was
64x64x64 and there were 16 volumes growing in time. The
volume increased by 70% over 1 6 time frames, similar to
the average ejection fraction in normal patients.
We carried out a 3D and 4D brushlet analysis with four
subintervals in each direction on the original 4D volume
and on volumes with (1) additive white noise, (2) and
multiplicative speckle noise. Volumes were reconstructed
with only the lower frequency components.

. In the case of additive white noise (mean 0 and
standard deviation 1), the SNR of the noisy volume was -
5.7dB. We measured a SNR of -4.3dB (a 25%
improvement) with 3D brushlet analysis and -3.6dB (a 37%
improvement) with 4D brushlet analysis.

In the case of multiplicative speckle noise
(mean 0 and standard deviation 1), the SNR of the noisy
volume was -19.7dB. In Figure 6 the same slice is
displayed in the transform domain after a 3D analysis
on a single time frame or a 4D analysis with the entire
set of 16 frames. Visually, the 4D analysis performed
slightly better at denoising the data. Quantitatively, we
measured a SNR of -13.4dB (a 32% improvement) with
3D brushlet analysis and -13.0dB (a 34% improvement)
with 4D brushlet analysis.

3. 2. Reconstruction of wall defect with 4D analysis

4 .;,kr .,

(a.2)

(b.2)

Figure 6: Comparison of speckle-denoising performance in the
coefficient domain for 3D and 4D brushlet analysis. (a.1) Four slices
of original volume in one time frame, (a.2) slices after addition of
multiplicative speckle noise (SNR=-19.7dB), (b.1) corresponding
slices in coefficient domain for 3D brushlet analysis (SNR=-13.4 dB),
(b.2) corresponding slices in coefficient domain for 4D analysis
(SNR=-13.OdB).

Performing multidimensional analysis on cardiac clinical data takes full advantage of the continuity of spatial and temporal
frequency content of multidimensional signals.
The high level of speckle noise in ultrasound
clinical data sets recorded with the 3D real-time
transducer, the non-uniform absorption
coefficients of cardiac tissues and the motion of
the heart contribute to the addition of artifacts
that can either add echo-like signals inside the
cavity or suppress echo signals from the
myocardium wall. These artifacts complicate the (a) (b) (c)
segmentation task by introducing artificial edges
inside the cavity or destroying edges at the Figure 7: (a) Original slice with defect. Corresponding slice in transform

epicardium and endocardium borders. Since these domain for: (b) 3D analysis of single time frame and (c) 4D analysis of

artifacts are not persistent in time, including the 16 time frames.

temporal component in the analysis helps resolve them. To illustrate the aptitude of the brushlet analysis to repair missing
contour information, we modified the mathematical phantom used in Section 3 .1 . The same ovoid phantom was used, but a
part of the white wall has been eliminated in the eighth time frame. Both 3D analysis on the time frame with the defect and
4D brushlet analysis applied to the sixteen time frames were computed. For both cases, the sum of the coefficients of lower
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frequency for the eighth time frame (with the defect) is displayed in Figure 7. We observed remarkable correction in the
wall defect with the 4D transform domain (3D + time) that could not be obtained with 3D analysis alone.

3. 3. Optimal tiling on clinical data
We carried out brushlet analysis and thresholding prior to reconstruction on a clinical data set with sixteen
echocardiographic volumes of size [64 x 64 x 256] in the [x x y x z] directions. The sixteen frames contain the cardiac
chamber volume at different times during one cardiac cycle. To limit computational cost and to reduce the level ofnoise, the
original data set was down-sampled in the zdirectionby averaging every four consecutive slices, prior to analysis.

3.3.1. Empirical results with regular tiling
Empirical regular tiling was applied for 2, 4 and 8 subintervals in the x, y and z directions. Since there were only sixteen
time frames, the time dimension t was only divided in 2 or 4 subintervals. Hard thresholding was then applied, using the
estimated noise variance of the original volumes, prior to reconstruction. The tiling of the Fourier domain has a critical
influence on the quality of the estimation of the echo signal and the resolution of the denoised data. This influence is
illustrated in Figure 8 where a single slice of an original volume (time=5, after averaging in the z dimension) and
corresponding reconstructed slices with different tiling are presented. The slice displays a short-axis cut of the left
ventricular cavity (dark center cavity) surrounded by the myocardium muscular wall (white ring).
As predicted in theory, when the number of sub-intervals increases, the frequency resolution of the analysis increases but the
spatial resolution of the reconstruction decreases. This phenomenon, which can be observed in the results presented in
Figure 8, makes the task of evaluating the performance of the selected tiling in terms of enhancement —denoising difficult.
How can we decide that one tiling is better than another one for volume segmentation? One requirement is that no
anatomical features should be eliminated from the original data. This means that too fine tilings should not be investigated
since the spatial resolution during the reconstruction will be low. On the other hand, large sub-intervals will not be capable
of eliminating high frequency speckle-noise components.

Original
slice at

time t =

domain in 4D.

Number of subintervals in (z,

Figure 8: Slice reconstructed after hard thresholding of brushlet coefficients for different tilings of the Fourier
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3.3.2. Optimal tiling with best-basis search
In order to validate our method, we first ran the best
basis algorithm with the brushlet basis on a phantom
image composed of a white diagonal line with black
background. The result of the best basis search with L3
and L5 norms is presented in Figure 9. Since the L'
norm only measures the number of coefficients different
from zero, and the L2 norm is constant, we used 11'
norms with p>2 to measure the good concentration of
the energy of the signal in few coefficients. The result
shows that only the diagonal quadrants of the Fourier Figure 9: (a) Original image with diagonal line. (b) Fourier
plan with non zero frequency components are Transform of the image overlaid with optimal tiling for L3 norm.
decomposed in fine grids (note that there is a 90 (c) Fourier Transform of the image overlaid with optimal tiling for
degree shift between the location of the quadrant in norm.
the Fourier plan and the brushlet orientation).

We then applied the algorithm of best-basis search in 3D on one of the clinical volume (time=5) used in Section 3 .3 .1 . The
optimal tiling of the Fourier volume came out to be the regular tiling with 4 subintervals in each dimension except in the
higher frequency quadrant where only a 2x2x2tiling is applied. This appears to be a good compromise between spatial and
frequency resolutions with: (a) no selection of specific directional components in lower frequency, and (b) a coarse
decomposition of higher frequency terms containing principally speckle noise components with no coherence. The spatial
symmetry of the myocardium cavity can also explain such result that preserves the isotropy of the spatial information.

4. DISCUSSION

By applying 4D brushlet analysis to clinical ultrasound volumes we were able to decorrelate speckle noise from echo signals
and enhance myocardial anatomical features.
The performance of brushlet analysis to decorrelate signal from multiplicative speckle noise components was demonstrated
on a mathematical phantom in 3D and 4D and on a clinical data set. The example on the phantom showed the superiority of
4D denoising over 3D denoising for 4D data sets. It also showed that including temporal information in the analysis enabled
correction of artifacts that are not persistent in time.
The main power of a brushlet expansion is its flexibility in decomposing n-D signals and its ability to accommodate and
precisely match non-uniform sampling rates of each dimension typically obtained during 3DRT acquisition (independent
sample spacing in x, y, z and time). The multidimensionality of the brushlet analysis and its flexibility to accommodate
different sampling rates in different directions represent a potential for new analysis tools tailored to underlying sampling
rates. We observed that tiling in the directions of lowest sampling has the most effect on the image quality of the
reconstruction in terms of denoising and enhancement.
We applied denoising to 3DRT volumes by analyzing the data sets in 4D and applying hard thresholding on the coefficients
prior to reconstruction. The thresholding of the coefficients was based in the estimated variance of the noise. This
thresholding tried to minimize the estimation error risk [6]. The model used for speckle noise, initially proposed by Hao [11]
appeared to be appropriate for the denoising of the coefficients via hard thresholding.
The tiling of the Fourier domain determined the orientation and the resolution of the brush strokes on which the signal was
projected. In other words, the tiling selects the textural patterns used for the analysis of the original signal. From this point
of view, tiling can be considered as an extra dimension of the analysis. The optimization of analysis parameters can be
derived from mathematical modeling of the ultrasound data, based on the physics of the transducer and properties of the
volumetric data. The best basis approach [5] applied to the brushlet for ultrasound volumes selected a regular tiling in each
dimension, with coarser tiling of higher frequency components, providing a reasonable compromise between spatial and
frequency resolution.

(a) (b) (c)
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5. CONCLUSION

This study showed that we could characterize and isolate features of interest in 4D echocardiographic volumes by selection
of specific brushlet coefficients. The spatio-temporal analysis method developed for this task used directional multiscale
brushlet functions. Brushlet analysis identifies efficient tiling of the Fourier domain, along each dimension of a signal,
within sets of redundant articulated (orientation rich) bases that can separate signal and noise components. The
mathematical innovation lies in the inclusion of the time dimension with arbitrary tiling of the 4D Fourier domain. This
multidimensionality and the flexibility of the analysis functions to accommodate different sampling rates along each
direction represents a potential for new analysis tools tailored to true sampling rates. The optimization of analysis
parameters can be derived from both mathematical modeling of the ultrasound data, based on the physics of the transducer
and properties of the volumetric data. Accurate modeling of the physics of acquisition of ultrasound data in the construction
of the expansion resulted in efficient representations for dynamic denoising and analysis of cardiac features.
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