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Abstract Fuzzy set theory constitutes a powerful represen-
tation framework that can lead to more robustness in prob-
lems such as image segmentation and recognition. This ro-
bustness results to some extent from the partial recovery of
the continuity that is lost during digitization. In this paper
we deal with connectivity measures on fuzzy sets. We show
that usual fuzzy connectivity definitions have some draw-
backs, and we propose a new definition that exhibits better
properties, in particular in terms of continuity. This defin-
ition leads to a nested family of hyperconnections associ-
ated with a tolerance parameter. We show that correspond-
ing connected components can be efficiently extracted using
simple operations on a max-tree representation. Then we de-
fine attribute openings based on crisp or fuzzy criteria. We
illustrate a potential use of these filters in a brain segmenta-
tion and recognition process.
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1 Introduction

Connectivity is a key concept in image segmentation, filter-
ing and pattern recognition, where objects of interest are of-
ten constrained to be connected according to some definition
of connectivity. This definition depends on the selected ob-
ject representation. Binary representation on a discrete grid
remains the most widespread, and the connectivity is then
generally derived from an elementary connectivity, such as
4- or 8-connectivity in 2D (for a square grid).

In [38], Serra introduced the notion of connection as an
axiomatization of the classical definitions of connectivity.
A connection (also referred to as connectivity class) on a
space E is a family of subsets of E that are said connected.
Among others the connected subsets of a binary image, the
arc-connected subsets of R

n or the connected subsets of a
graph can be represented by a connection. Another equiva-
lent axiomatization was proposed by Ronse in [29]. Based
on connections derived from usual notions of connectivity,
more complex connections can be obtained. For instance
we can assume that a subset is connected if its dilation
is [14, 29], consider connections in attribute spaces [48] or
make use of nested connections to represent multiscale con-
nectivity [5].

Connections are closely related to connected operators
(i.e. operators that manipulate only connected components
according to a definition of connectivity). For example, con-
sidering a usual connection on the digital space, connected
filters for binary images [12, 18, 37] modify only connected
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components of the object or of the background, without cre-
ating new boundaries nor moving existing ones.

In [40] the framework of connections was extended to
general complete lattices and to the notion of hypercon-
nectivity (i.e. based on a more general definition of over-
lap), in particular to represent connectivity on grey scale im-
ages [7, 41]. Further properties of connections on complete
lattices were given in [4, 31]. Connected filters for grey-level
images [36, 46] were proposed independently, generally re-
lying on the notion of flat-zones (i.e. the largest connected
regions with constant grey level). Those filters were recently
generalized to connective segmentation [30, 32, 42].

From a computational point of view, connected filtering
is generally efficiently performed using a tree representa-
tion of the image. The well known max-tree representation
(also referred to as the component tree [16, 25] or opening
tree [47]) was introduced in [35] to compute attribute open-
ings [8] and can be built using efficient algorithms [1, 19, 23,
25, 49]. The max-tree representation has also been extended
to handle second-generation connectivity [28]. The tree of
shapes proposed in [24] introduces a contrast-invariant tree
representation of the image that allows the computation of
more complex filters.

In this paper we deal with connectivity of fuzzy sets de-
fined on the digital space and with associated connected at-
tribute openings. Object representation using fuzzy sets [51]
enables to model various types of imperfections, in partic-
ular related to image imprecision. Considering fuzzy repre-
sentations of objects (for instance in an image segmentation
and recognition process) can lead to more robustness that
results, to some extent, from the partial recovery of the con-
tinuity that is lost during the digitization process. However
the use of fuzzy representations leads also to more com-
plexity in the definition of filters and their numerical im-
plementation. Extending filters for binary sets to filters for
fuzzy sets is sometimes possible, for instance using the ex-
tension principle [50]. The result of that extension is gener-
ally quite different from extensions to grey-level images. For
instance when dealing with connected filters, the binary def-
inition can be extended to the grey-level case stating that the
connected components of a grey-level image are the largest
regions that present a constant grey-level. Such filters are
known as flat-zones connected filters [36, 46]. Obviously
this extension does not make sense for fuzzy sets, since the
semantics of pixels values is quite different. The values of a
fuzzy set refer to a membership degree to a set while there is
in general no obvious relation between grey-levels and their
variations and membership degrees. Since in the binary case
the connected components of a set are sets, the connected
components of a fuzzy set should in the same manner be
defined as fuzzy sets. Connectivity for fuzzy sets and con-
nected operators thus need a specific definition that really
takes into account the semantics of the membership values.

Table 1 Main notations

Notation Definition

X Spatial domain, i.e. a bounded subset of Z
n

μ A fuzzy set on X, i.e. a mapping from X to [0,1]
(μ)α α-cut of μ

F Set of all fuzzy sets on X

H1 Set of connected fuzzy sets according to (1)

H1
τ Set of connected fuzzy sets according to (2)

H2
τ Set of connected fuzzy sets according to (4)

c1
μ(x, y) Point to point connectivity degree with respect to

a fuzzy set μ (cf. Definition 1)

c1(μ) Connectivity degree of μ as defined by (3)

c2(μ) Connectivity degree of μ according to Definition 6

δt
x(y) Impulse function: δt

x(y) = t if y = x and 0 otherwise

⊥1, ⊥1
τ , ⊥2

τ Overlap mappings associated to H1, H1
τ and H2

τ

In [33, 34], Rosenfeld proposed a first definition of fuzzy
connectivity between points in the digital space according
to a fuzzy set. Based on this definition, he derived a charac-
terization of the connectivity of a fuzzy set, known as topo-
graphic connectivity. According to this characterization, a
fuzzy set is connected if it presents a unique regional maxi-
mum or equivalently if all its α-cuts are connected. A similar
definition for fuzzy sets on continuous spaces was proposed
in [20].

Its later extension [6] leads to a characterization of the
connectivity as a degree, defined as the membership degree
of the lowest saddle point. This degree is however not con-
tinuous with respect to the membership function.

Therefore we propose a new definition that exhibits bet-
ter properties, in particular in terms of continuity. We will
show that this definition can be appropriately represented by
a hyperconnection.

We first recall in Sect. 2 some preliminary definitions
on fuzzy sets, connections and fuzzy connectivity. We il-
lustrate in particular some of their drawbacks. In Sect. 3,
we introduce a new connectivity measure, and we show that
it leads to a nested family of hyperconnections indexed by
a tolerance parameter, with nice continuity properties. Hy-
perconnected components are then defined, and an extrac-
tion scheme based on a max-tree representation is proposed.
These notions lead to the definition of filters over hypercon-
nected components and in particular to attribute openings
that may be used in a combined segmentation and recogni-
tion process. A generic formulation of such filters is given in
Sect. 4, and in Sect. 5 two practical examples are presented.
The first one illustrates the use of a fuzzy marker, while the
second one makes use of a fuzzy volume prior. Both filters
are illustrated in a recognition process on a brain magnetic
resonance image (MRI). Proofs of all propositions are pro-
vided in Appendix. Table 1 brings together the main nota-
tions.
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2 Background

2.1 Fuzzy Sets

Let X be a bounded subset of the digital space Z
n endowed

with a discrete connectivity cd . A fuzzy set on X will be
denoted by its membership function μ : X → [0,1] which
quantifies the membership degree of x ∈ X to the fuzzy
set. We only consider fuzzy sets having a bounded support
(which is always the case if X is bounded). A fuzzy set μ

is entirely characterized by the set of its α-cuts, denoted by
(μ)α : (μ)α = {x ∈ X | μ(x) ≥ α}. We denote by F the set
of fuzzy sets defined on X. The binary relation ≤ on F , de-
fined by μ1 ≤ μ2 ⇔ ∀x ∈ X,μ1(x) ≤ μ2(x), is a partial or-
der, and (F ,≤) is a complete lattice. The supremum

∨
and

infimum
∧

over any family I of fuzzy sets are defined re-
spectively as ∀x ∈ X, (

∨
μi∈I μi)(x) = supμi∈I (μi(x)) and

∀x ∈ X, (
∧

μi∈I μi)(x) = infμi∈I (μi(x)). The smallest ele-
ment is denoted by 0F and the largest element by 1F . They
are fuzzy sets with constant membership functions, equal to
0 and 1, respectively.

A family � of fuzzy sets on X is said to be sup-
generating if ∀μ ∈ F ,μ = ∨{δ ∈ � | δ ≤ μ}. We will con-
sider in particular the family {δt

x} defined as δt
x(y) = t if

y = x and δt
x(y) = 0 otherwise, which is sup-generating in

the lattice (F ,≤).
As a metric on F , inducing a definition of continuity,

we use: d∞(μ1,μ2) = supx∈X |μ1(x) − μ2(x)|, for which
(F , d∞) is a metric space.

2.2 Fuzzy Connectivity

The first definition of fuzzy connectivity was proposed by
Rosenfeld [33]. More precisely, a degree of connectivity be-
tween two points in a fuzzy set was defined, from which the
connectivity of a fuzzy set was derived.

Definition 1 [33] The degree of connectivity between two
points x and y of X in a fuzzy set μ (μ ∈ F ) is defined as:

c1
μ(x, y) = max

l∈Lx,y

l={x0=x,x1,...,xn=y}
min

0≤i≤n
μ(xi)

where Lx,y denotes the set of digital paths from x to y, ac-
cording to the underlying digital connectivity defined on X.

This degree of connectivity is symmetrical in x and y (i.e.
∀(x, y) ∈ X2, c1

μ(x, y) = c1
μ(y, x)), weakly reflexive (i.e.

∀(x, y) ∈ X2, c1
μ(x, x) ≥ c1

μ(x, y)), and max-min transitive
(i.e. ∀(x, y, z) ∈ X3, c1

μ(x, z) ≥ min(c1
μ(x, y), c1

μ(y, z))).
It is thus a similitude relation over X. We also have
∀x ∈ X, c1

μ(x, x) = μ(x) and ∀(x, y) ∈ X2, c1
μ(x, y) ≤

Fig. 1 (a) A non-connected fuzzy set according to Definition 2, and
membership values on the path defining the degree of connectivity be-
tween two points x and y. (b) A connected fuzzy set

min(μ(x),μ(y)). Moreover, the following monotony prop-
erty holds: ∀(μ1,μ2) ∈ F 2,μ1 ≤ μ2 ⇒ ∀(x, y) ∈ X2,
c1
μ1

(x, y) ≤ c1
μ2

(x, y).
This definition was incorporated in segmentation proces-

ses, based on markers [9, 15, 43]. The idea was to extend
this definition by defining an affinity measure between im-
age points based on adjacency and grey level similarity.

Definition 2 [33] A fuzzy set μ is said connected if

∀(x, y) ∈ X2, c1
μ(x, y) = min(μ(x),μ(y)).

Proposition 1 [33, 34] A fuzzy set is connected iff all its α-
cuts are connected (in the sense of the digital connectivity
cd on X).

Proposition 2 [33, 34] A fuzzy set μ is connected iff it has
a unique regional maximum.1

These definitions are illustrated in Fig. 1. One of the opti-
mal paths between x and y (achieving the max-min criterion
of the definition) is displayed in (a), and the minimal value
on this path is 0.5, which provides the degree of connectiv-
ity between x and y. The fuzzy set in (a) is non-connected
since c1

μ(x, y) = 0.5, which is strictly less than the member-
ship degrees of x and y (μ(x) = 1 and μ(y) = 0.9). On the
contrary, the fuzzy set in Fig. 1(b) is connected.

2.3 Connections and Hyperconnections

Definition 2 provides a crisp definition of the connectivity
of a fuzzy set. However, if a set is fuzzy, it may be intu-
itively more satisfactory to consider that its connectivity is
also a matter of degree. The notions of connection and hy-
perconnection [21, 22, 29, 38, 40] provide an appropriate

1A regional maximum R ⊆ X of a fuzzy set μ is a connected compo-
nent (according to the discrete connectivity cd ) of an α-cut μα , such
that ∀x ∈ R,μ(x) = α.
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framework to this aim. We consider here the axiomatization
of connectivity classes with canonical markers proposed in
Sect. 2.3 of [40], which was also considered in [4, 31].

Definition 3 [40] Let (L,≤) be a complete lattice with sup-
generating family S and 0L its smallest element. A con-
nected class, or connection, C is a family of elements of L

such that:

1. 0L ∈ C ,
2. S ⊆ C ,
3. for any family {Ci} of elements of C such that

∧
i Ci �=

0L, then
∨

i Ci ∈ C .

This definition provides an abstract framework for ma-
nipulating connectivity notions. Generic properties can be
derived, without referring explicitly to the considered space
and the underlying connectivity. As will be seen in Sect. 3.3,
connected components of a set A can be simply defined as
the greatest elements of C which are smaller than A accord-
ing to the spatial ordering of the lattice.

Let us first consider the lattice (P (X),⊆). On this lattice,
we use the usual connection Cd [39] induced by a digital
connectivity cd on X (in the sense of the graph of digital
points). An element of Cd is then simply a subset A of X

that is connected in the sense of cd (i.e. ∀(x, y) ∈ A2,∃x0 =
x, x1, . . . , xn = y,∀i < n,xi ∈ A, and cd(xi, xi+1) = 1). It
is easy to check that the class Cd satisfies all conditions of
Definition 3:

1. ∅ ∈ Cd ,
2. points constitute a sup-generating family for P (X) and

belong to Cd ,
3. if a family {Ai} of elements of Cd satisfies

⋂
i Ai �= ∅, we

get
⋃

i Ai ∈ Cd since ∀(x, y) ∈ ⋃
i Ai it is possible to find

a path from x to y in
⋃

i Ai that meets the intersection
⋂

i Ai .

Other examples of connections defined on continuous
spaces or on graphs can be found e.g. in [6].

A connection C defined on a complete lattice L and a sup-
generating family S for L can be characterized by a family
of openings {γx, x ∈ S \{0L}}, which are called connectivity
openings, satisfying the following conditions [40]:

1. ∀x ∈ S \ {0L}, γx(x) = x,
2. ∀A ∈ L,∀(x, y) ∈ (S \ {0L})2, (γx(A) = γy(A)) or

(γx(A) ∧ γy(A) = 0L),
3. ∀A ∈ L,∀x ∈ S \ {0L}, x ≤ A or γx(A) = 0L.

These openings are defined as:

γx(A) =
∨

{C ∈ C | x ≤ C ≤ A}.
Conversely, if C is a sup-generating family of L which

corresponds to the invariant elements of a family {γx, x ∈ S}

Fig. 2 Examples of 1D fuzzy sets. (a) The union is connected in the
sense of Definition 2. (b) The union is not connected

satisfying the previous conditions, then C is a connection.
The element γx(A) is then the connected component of A

(according to the connection C ) which contains x.
Let us again consider the lattice (P (X),⊆). For point x ∈

X and a set A ⊆ X, γ{x}(A) is the connected component of
A containing x in the usual sense. This is illustrated in Fig. 8
in Sect. 3.3.

An equivalent axiomatization, based on the notion of sep-
aration, has been proposed in [29].

Now, on the lattice (F ,≤), let us consider the crisp defi-
nition of connectivity in Definition 2, and the 1D examples
in Fig. 2. In (a), each fuzzy set is connected, and so is their
union (defined as the point-wise maximum of membership
functions). However, in (b), the union is not connected, al-
though each fuzzy set is connected and their intersection is
not equal to 0F . Therefore Definition 3 cannot account for
this type of situation on the lattice of fuzzy sets. Dealing
with such cases require to replace the infimum (

∧
) in con-

dition 3 by another overlap mapping ⊥ [40], leading to the
notion of hyperconnection.

Definition 4 [6, 40] Let (L,≤) be a complete lattice. A hy-
perconnection H is a family of elements of L such that:

1. 0L ∈ H,
2. H contains a sup-generating family S of L,
3. for any family {Hi} of elements of H such that ⊥iHi �=

0L, then
∨

i Hi ∈ H.

As for connections, hyperconnectivity openings associ-
ated with H can be defined:

ηx(A) =
∨

{h ∈ H | x ≤ h ≤ A},
with x ∈ S and A ∈ L. However, some properties may not
hold anymore in the case of hyperconnections. In particular,
the property ηx(A) ∈ H may not hold, and it does not for
hyperconnections associated with fuzzy sets.

On the lattice (F ,≤), let us consider the following hy-
perconnection:

H1 = {μ ∈ F | ∀(x, y) ∈ X2, c1
μ(x, y)

= min(μ(x),μ(y))}, (1)
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Fig. 3 A 1D fuzzy set μ (plain). x and y two points that belong to
its regional maxima. Corresponding connected openings: (a) η1

δ
μ(x)
x

(μ)

(dashed) and (b) η1
δ
μ(y)
y

(μ) (dashed)

which contains the connected fuzzy sets according to Defi-
nition 2. It is obtained for the overlap mapping ⊥1 defined
as [6]:

⊥1({μi}) =
{

1 if ∀α ∈ [0,1], ⋂
i{(μi)α | (μi)α �= ∅} �= ∅,

0 otherwise.

For the sake of simplicity, we denote the values taken by ⊥1

as 1 and 0 (instead of 1F and 0F ). It is easy to check that
the union of connected fuzzy sets such that their non empty
α-cuts intersect is connected in the sense of Definition 2.
For instance in Fig. 2, the two fuzzy sets in (a) belong to H1

since they are connected according to Definition 2. All their
non empty α-cuts intersect, we thus have ⊥1(μ1,μ2) = 1
and their union belongs to H1. The two fuzzy sets in (b) are
also connected but some of their non empty α-cuts do not
intersect and their union do not belong to H1.

For ν ∈ F , let η1
ν(μ) denote the connected opening with

origin ν associated with this hyperconnection:

η1
ν(μ) =

∨
{h ∈ H1 | ν ≤ h ≤ μ}.

Proposition 3 Let y be a point of a regional maximum of μ.
Then η1

δ
μ(y)
y

(μ) belongs to H1 and ∀x ∈ X, η1
δ
μ(y)
y

(μ)(x) =
c1
μ(x, y).

For instance in Fig. 3, the 1D fuzzy set μ presents two
regional maxima and x and y are two points that belong
to those maxima. η1

δ
μ(x)
x

(μ) (a) and η1
δ
μ(y)
y

(μ) (b) belong to

H1 since all their α-cuts are connected. Moreover the max-
min criterion of the connectivity degree c1

μ(x, y) between
x and y is reached for the saddle point (whose member-
ship degree is 0.1) between the regional maxima. We check
that η1

δ
μ(x)
x

(μ)(y) = 0.1 = c1
μ(x, y) and η1

δ
μ(y)
y

(μ)(x) = 0.1 =
c1
μ(y, x).

The overlap mapping ⊥1 was extended in [6] to the fol-
lowing family indexed by a parameter τ :

⊥1
τ ({μi}) =

{
1 if ∀α ≤ τ,

⋂
i{(μi)α | (μi)α �= ∅} �= ∅,

0 otherwise.

Fig. 4 (a) The degree of connectivity of the 1D fuzzy set according to
c1 is equal to 0.25. (b) The degree of connectivity according to c1 is
equal to 0.05, although this fuzzy set seems to be more connected than
the one in (a). According to c2 (see Sect. 3.1), we obtain a connectivity
degree of 0.25 (a) and 0.95 (b)

If the set of subsets over which the intersection is taken
is empty, we use the classical lattice rule

∧∅ = 1L (and
∨∅ = 0L).

Let us define:

H1
τ = {μ ∈ F | ∀α ≤ τ, (μ)α ∈ Cd}. (2)

Proposition 4 [6] Each H1
τ is a hyperconnection, i.e. veri-

fies all items of Definition 4, for the overlap mapping ⊥1
τ .

It contains in particular the sup-generating family � =
{δt

x, x ∈ X, t ∈ [0,1]}. The family {H1
τ , τ ∈ [0,1]} is de-

creasing with respect to τ : τ1 ≤ τ2 ⇒ H1
τ2

⊆ H1
τ1

.

For τ = 1, we have ⊥1
τ = ⊥1 and H1

τ = H1. The family
{H1

τ , τ ∈ [0,1]} is then an extension of the hyperconnection
H1 (which is associated with Rosenfeld’s notion of fuzzy
connectivity).

Now the connectivity of a fuzzy set can be defined as a
degree, instead of a crisp notion, as follows:

c1(μ) = sup{τ ∈ [0,1] | μ ∈ H1
τ }

= sup{τ ∈ [0,1] | ∀α ≤ τ, (μ)α ∈ Cd}. (3)

As an illustration, the fuzzy sets in Fig. 4(a) and (b) have
a degree of connectivity of 0.25 and 0.05, respectively. How-
ever, intuitively we would rather say that the example in (b)
is more connected than the one in (a), which seems to have
two distinct parts. The degree of connectivity depends on
the height of the lowest minimum or saddle point, and not
on its depth. A small modification in (b) would make the
fuzzy set fully connected, illustrating that this definition is
not continuous.

The contribution of this paper aims at overcoming this
drawback.
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3 A New Class of Connectivity

3.1 Connectivity Measure

In this section, we introduce a new extension of the fuzzy
connectivity introduced by Rosenfeld [33]. In the sense of
Definition 2, a fuzzy set μ is connected iff ∀(x, y) ∈ X2,

c1
μ(x, y) = min(μ(x),μ(y)). We propose to define the de-

gree of connectivity of a fuzzy set μ as a degree of satisfac-
tion of this equality.

Let us consider two fixed points x and y, then the degree
of satisfaction of the equality c1

μ(x, y) = min(μ(x),μ(y))

can be characterized from the Lukasiewicz equality opera-
tor [10] defined as: ∀(a, b) ∈ [0,1]2, μ=(a, b) = 1−|a −b|.
Rewriting this expression for a = min(μ(x),μ(y)) and b =
c1
μ(x, y) leads to the following definition.

Definition 5 The connectivity degree between two points x

and y in a fuzzy set μ is defined as:

c2
μ(x, y) = 1 − |min(μ(x),μ(y)) − c1

μ(x, y)|
= 1 − min(μ(x),μ(y)) + c1

μ(x, y),

since by definition c1
μ(x, y) ≤ min(μ(x),μ(y)).

The degree c2
μ(x, y) is obtained as 1 minus the difference

between the membership degrees of x and y on the one hand
and the reached minimum through the optimal path on the
other hand.

This measure takes its values in [0,1], is symmetrical and
reflexive (c2

μ(x, x) = 1). It is not transitive, but satisfies the
following weaker property:

Proposition 5 Let xm such that ∀x ∈ X,μ(xm) ≥ μ(x) (the
global maximum of μ is always reached since μ is assumed
to have a bounded support and X is discrete). The following
inequality is satisfied:

∀(x, y) ∈ X2, c2
μ(x, y) ≥ min(c2

μ(x, xm), c2
μ(xm,y)).

The following property can then be derived.

Proposition 6 c2
μ(x, y) reaches its minimum for x being a

point for which a global maximum of μ is reached and y

belonging to a regional maximum of μ.

Note that this minimum can also be reached for other val-
ues for x and y.

Figure 5 illustrates this property. The connectivity de-
gree c2

μ(x, y) between two points x and y belonging to the
two regional maxima of the fuzzy set μ (a) is equal to 0.6
(1 − min(1, 0.9) + c1

μ(x, y) = 1 − 0.9 + 0.5 = 0.6). One

Fig. 5 (Color online) (a) The connectivity degree c2
μ(x, y) is equal to

0.6. One of the paths achieving this connectivity degree is depicted in
blue. (b) The connectivity degree c2

μ(x, y) is equal to 0.9

of the optimal paths between x and y (achieving the max-
min criterion in the definition of c1

μ) is depicted in blue. The
minimal value through this path is equal to 0.5. In (b) x does
no longer belong to a regional maximum. The connectivity
degree c2

μ(x, y) is now equal to 0.9 (1 − min(1, 0.6) + 0.5),
which is indeed higher than the connectivity degree obtained
for x and y belonging to the two regional maxima of μ.

From this degree of connectivity between two points we
derive the following definition of the connectivity degree of
a fuzzy set.

Definition 6 The connectivity degree of a fuzzy set μ is
defined as : c2(μ) = min(x,y)∈X2 c2

μ(x, y).

For any two given points x and y, c1
μ(x, y) and c2

μ(x, y)

are achieved for the same point on the same path from x

to y, but c1(μ) and c2(μ) are not achieved for the same
points. Roughly speaking, the connectivity degree of a fuzzy
set depends now on the depth of the deepest saddle point
in the fuzzy set.2 On the examples illustrated in Fig. 4, it
can be observed that the fuzzy set in (a) is 0.25-connected
(1 − 1 + 0.25), while the fuzzy set in (b) is 0.95-connected.
In both cases, the minimum (c2(μ) = min(x,y)∈X2 c2

μ(x, y))

2Note that there exists some links between c2(μ) and the notion
of grey-level dynamics defined in [2, 11]. Indeed we can rewrite
the dynamic of a point xi that belongs to a regional maximum as:
�μ(xi) = μ(xi) − max{c1

μ(xi , xj ) | μ(xi) < μ(xj ) and xj ∈ M(μ)}
(where M(μ) is the set of points that belong to a regional max-
imum) and �μ(xi) = +∞ if xi belongs to a global maximum. If
we compute the maximal dynamic over all regional maxima xi (ex-
cept the global maxima), we obtain the expression maxxi

(μ(xi) −
max{c1

μ(xi , xj ) | μ(xi) < μ(xj ) and xj ∈ M(μ)}). On the other hand

as the minimum of c2
μ(x, y) is reached for x and y belonging

to regional maxima (cf. Proposition 6), we can rewrite c2(μ) =
1 − maxxi∈M(μ)(μ(xi) − min{c1

μ(xi , xj ) | μ(xi) ≤ μ(xj ) and xj ∈
M(μ)}). For some examples the connectivity degree c2 is thus linked
to the maximal dynamic, but this is generally not the case, especially
when the minimum for c2 is reached for two points belonging to global
maxima.
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Fig. 6 A fuzzy set μ with a
connectivity degree c2(μ) equal
to 0.4

is reached for x and y corresponding to the two local max-
ima. On these examples, if one mode progressively shrinks
to 0, the connectivity degree c2 will evolve smoothly to-
wards 1. This property is expressed formally by the follow-
ing result, using as a distance between fuzzy sets μ1 and μ2:
d∞(μ1,μ2) = sup(x,y)∈X2 |μ1(x, y) − μ2(x, y)|.

Proposition 7 For fixed x and y, the mapping associating
μ and c1

μ(x, y) is Lipschitz and therefore continuous, and

the mapping associating μ and c2
μ(x, y) is 2-Lipschitz with

respect to the d∞ metric on F .

Proposition 8 The mapping associating μ and c2(μ) is 2-
Lipschitz.

Figure 6 illustrates these definitions on a 2D example.
The fuzzy set presents three regional maxima whose height
are respectively 1, 0.7 and 0.6, and containing the points A,
B et C (A is a global maximum). One of the optimal paths
between A and B (achieving the max−min criterion in the
definition of c2

μ(A,B)) is provided. It has a minimum value
of 0.4. We obtain c2

μ(A,B) = 1 − min(1, 0.7) + 0.4 = 0.7.
All paths between A and C present a minimum value of 0.
The connectivity degree according to c1 between A and C

is hence equal to 0. The connectivity degree according to c2

corresponds to c2
μ(A,C) = 1−min(1, 0.6)+0 = 0.4.3 Sim-

ilarly, we obtain c2
μ(B,C) = 1 − min(0.7, 0.6) + 0 = 0.4.

Since according to Proposition 6, the connectivity degree
c2(μ) can be computed from the regional maxima of μ, we
thus obtain c2(μ) = 0.4.

3.2 Link with a hyperconnection

We define the family H2
τ indexed by the connectivity degree

τ as follows:

H2
τ = {μ ∈ F | c2(μ) ≥ τ }. (4)

3The value of c2
μ(A,C) is not equal to zero even if there does not exist

any path between A a C with a minimum different from 0. In fact
the degree c2

μ(A,C) is obtained as 1 minus the membership degrees
difference between A and C on the one hand and the reached minimum
through the optimal path on the other hand. It would therefore be zero
if the membership degrees of A and C would be equal to 1 and if the
minimum of all paths between A and C would be equal 0.

Each set H2
τ contains all the fuzzy sets with a connectiv-

ity degree higher than or equal to τ , in the sense of c2. We
will show in the sequel that this family is a family of hyper-
connections and specify its associated overlap measure.

If we consider the example in Fig. 7, the connectivity de-
gree, according to c2, of the fuzzy set μA depicted in (a)
is equal to 0.6 (the minimum is in fact achieved for x and
y corresponding to the two regional maxima; in this case
c1
μA

(x, y) = 0.1 and thus c2(μA) = 1 − min(1, 0.5)+ 0.1 =
0.6). Let us consider now a second fuzzy set μB depicted
in red dashed line in (b) with a connectivity degree in the
sense of c2 equal to 1. We are interested in the family H2

0.6.
Our aim is to derive an overlap measure that will be satis-
fied for at least 0.6-connected fuzzy sets if it is satisfied for
their union as well. In Fig. 7(b) one can easily check that the
union of μA and μB is 0.4-connected (μA ∨ μB /∈ H2

0.6)
and that the α-cuts of the two fuzzy sets intersect for α

lower than or equal to 0.5. However, for the configuration
in Fig. 7(c) the union is 0.7-connected (μA ∨ μB ∈ H2

0.6)
whereas the two sets also intersect only for the levels lower
than or equal to 0.5.

Conversely to the case in Fig. 7(c), in the case exhib-
ited in (b), the fuzzy set μB intersects a “secondary mode”
(i.e. corresponding to a regional maximum that is not a glo-
bal maximum) of μA and does not intersect its “principal
mode” (i.e. corresponding to a global maximum). The over-
lap measure associated with the hyperconnection H2

τ relies
therefore on the overlap of the “principal modes” of the con-
sidered fuzzy sets. In the following definition these modes
can be defined as the connected openings with origin δ

hi
xi

:
η1

δ
hi
xi

(μi), where μi is the fuzzy set, xi a point where the

global maximum of μi is reached and hi = μi(xi).
We therefore propose a new overlap measure, consider-

ing that two fuzzy sets do not overlap if they “do not signif-
icantly overlap”, as follows:

⊥2
τ ({μi}) =

⎧
⎪⎨

⎪⎩

1 if ∀α ∈ [0,1],
⋂

i{(η1
δ
hi
xi

(μi))α | α ≤ hi − 1 + τ } �= ∅,

0 otherwise,

where xi is any point for which the global maximum of μi

is reached.
A family of fuzzy sets {μi} overlaps according to this

measure if the α-cuts with α ≤ hi − 1 + τ of their principal
modes overlap. The value hi − 1 + τ guarantees that saddle
points in

∨{μi} (if ∀i, c2
μi

≥ τ ) have a maximal “depth” of
1−τ . If the fuzzy set

∨{μi} does not reveal any saddle point
with a “depth” higher than 1 − τ , its connectivity degree
according to c2 will then be higher than τ .

Let us again consider the examples in Fig. 7 with τ = 0.6.
The “principal modes” η1

δ
hi
xi

(μi) of the two fuzzy sets in (c)

are depicted in (d). The height hA of μA (in blue) is equal
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to 1. The α-cuts of η1
δ
hA
xA

(μA) used in the calculus of the

overlap measure verify α ≤ hA − 1 + 0.6 = 0.6. Likewise
the height hB of μB (in red dashed line) is equal to 0.8 and
the α-cuts to consider verify α ≤ hB − 1 + 0.6 = 0.4. For
α comprised between 0 and 0.4, the α-cuts (η1

δ
hi
xi

(μi))α as-

sociated with the two fuzzy sets intersect. For α comprised
between 0.4 and 0.6, the condition α ≤ hi − 1 + τ is not
satisfied by μB and therefore we consider only the α-cuts
associated with μA. The intersection is thus not zero. For
α higher than 0.6, the condition α ≤ hi − 1 + τ is never
satisfied. The intersection of an empty family being non-
zero, the overlap condition is satisfied. Therefore we have
c2(μA) ≥ 0.6, c2(μB) ≥ 0.6 and ⊥2

0.6({μA,μB}) = 1 and
we can verify that c2(μA ∨ μB) ≥ 0.6.

Let us consider now τ = 0.8 and μA and μB the fuzzy
sets depicted respectively in blue and in red in Fig. 7(d). The
α-cuts of μB used in the calculus of the overlap measure ver-
ify α ≤ 0.6. However the α-cuts of η1

δ
hA
xA

(μA) and η1
δ
hB
xB

(μB)

do not intersect between the levels 0.5 and 0.6; the overlap
measure is therefore zero. We can also verify that the con-
nectivity degree of the union of the two fuzzy sets is equal
to 0.7. We thus have in (d): c2(μA) ≥ 0.8, c2(μB) ≥ 0.8,
⊥2

0.8({μA,μB}) = 0 and c2(μA ∨ μB) < 0.8.

Proposition 9 H2
τ defines a hyperconnection for the over-

lap measure ⊥2
τ .

For τ = 1, the hyperconnection H2
τ contains the fuzzy

sets that are connected according to Definition 2. We then
have H2

1 = H1
1 = H1. The family {H2

τ , τ ∈ [0,1]} is de-
creasing with respect to τ : τ1 ≤ τ2 ⇒ H2

τ2
⊆ H2

τ1
. These de-

finitions lead us to a connected component definition that is
more interesting than the one associated with H1

τ , as shown
next.

3.3 Connected Components

In the general framework of connections, connected com-
ponents of an element A of a lattice (L,≤), relatively to
a connection C on L, are the elements Ci of C such that:
Ci ≤ A and �C ∈ C,Ci < C ≤ A (i.e. Ci are the largest el-
ements of C that are smaller than A) [40]. The connected
components can be extracted using the following connected
openings: γx(A) corresponds to the connected component
of A including the element x ∈ C (see Sect. 2.3).

If we consider for instance the lattice (P (X),⊆), the set
A presented in Fig. 8 contains five connected components.
The connected component γ{x}(A) extracted using the con-
nected opening associated with the point x is depicted in
red.

This definition extends naturally to hyperconnections.
Let H be a hyperconnection on a lattice (L,≤). The hy-
perconnected components of A ∈ L are the elements Hi of

Fig. 7 (Color online) (a) The fuzzy set μA contains one principal
mode and one secondary mode. (b) The fuzzy set μB (in red dashed
line) does not overlap with μA according to ⊥2

0.6. (c) Fuzzy sets over-
lap with respect to ⊥2

0.6 due to the fact that the α-cuts of their “principal
modes” (d) overlap at least for all levels lower than 0.4

Fig. 8 Connected components
of the object A ⊆ X

Fig. 9 (Color online) (a) Two 1D fuzzy sets, μ in blue and ν in red
dashed line. The opening result η1

ν(μ) does not belong to H1: the
fuzzy sets μ1 (b) and μ2 (c) verify ν ≤ μi ≤ μ and μi ∈ H1, hence
η1

ν(μ) = μ but μ /∈ H1

H such that: Hi ≤ A and �H ∈ H,Hi < H ≤ A. However
ηx(A) (where x ∈ L) does not necessarily correspond to
the hyperconnected component of A containing x (in con-
trary to the case of connections). In fact, nothing ensures
that ηx(A) would belong to H. Figure 9 presents an ex-
ample where the opening result η1

ν(μ) (associated with the
hyperconnection H1) does not belong to H1. By definition
η1

ν(μ) = ∨{h ∈ H1 | ν ≤ h ≤ μ}. Since ν ≤ μ1 ≤ μ and
μ1 ∈ H1, we then deduce that μ1 ≤ η1

ν(μ). Similarly, we
derive μ2 ≤ η1

ν(μ). Moreover, μ = μ1 ∨ μ2 and therefore
η1

ν(μ) = μ. But μ /∈ H1.
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Proposition 10 [6] Let x ∈ H and A ∈ L. If ηx(A) ∈ H
then ηx(A) is a hyperconnected component of A in the sense
of H.

If ⊥ is an overlap measure associated with a hypercon-
nection, then two hyperconnected components Hi and Hj

of A verify either Hi = Hj , or Hi⊥Hj = 0. Furthermore
∨

i Hi = A, where the supremum is computed over all the
hyperconnected components of A. For the hyperconnection
H2

τ , we will speak of τ -hyperconnected component and will
denote by H2

τ (μ) the set of τ -hyperconnected components
of μ. Similarly, we will denote by H1(μ) (= H2

1(μ) =
H1

1(μ)) the set of hyperconnected components of μ accord-
ing to H1.

Proposition 11 If xi belongs to a regional maximum of μ

and hi = μ(xi), then η1
δ
hi
xi

(μ) is a hyperconnected compo-

nent of μ according to H1. If {Ri} denotes the set of regional
maxima of μ, then H1(μ) is isomorphic to {Ri}.

The 1-hyperconnected components are therefore exactly
the geodesic reconstructions in μ of its regional maxima.

Proposition 12 Let H1(μ) = {μi} be the set of hypercon-
nected components of μ according to H1 and {xi} the set
of points that belong to the associated regional maxima. It
follows that c1

μ(xi, xj ) = maxx∈X min(μi(x),μj (x)).

These notions are illustrated in Fig. 10, for the hyper-
connection H2

τ . Let μ be the fuzzy set in (a). It has four
1-hyperconnected components, corresponding to each re-
gional maximum of μ (b–e), two 0.5-hyperconnected com-
ponents (f–g), and one 0.1-hyperconnected component (a),
equal to μ. The computation of the hyperconnected com-
ponents will be explained in Sect. 3.4. The degree of con-
nectivity of μ is c2(μ) = 0.2, hence μ is a connected com-
ponent in the sense of H2

τ for τ ≤ 0.2. If we denote by μ1

and μ2 the two 0.5-hyperconnected components in (f) and
(g), it is easy to check that c2(μ1) = c2(μ2) = 0.5. They are
hence elements of H2

0.5 (τ = 0.5). Let x1 and x2 be points at
which the global maxima of μ1 and μ2 are reached. We have
h1 = μ1(x1) = h2 = μ2(x2) = 1. The hyperconnected open-
ings η1

δ
h1
x1

(μ1) and η1
δ
h2
x2

(μ2) (h) overlap only for levels lower

than or equal to α = 0.2, which is less than hi −1+ τ = 0.5.
This shows that actually μ1 and μ2 do not overlap in the
sense of ⊥2

τ .

3.4 Tree-Based Representation

From an algorithmical point of view, computing the τ -
hyperconnected components and further processing them
can benefit from an appropriate representation. Since the

manipulation of α-cuts plays a critical role in the proposed
concepts and definitions, we can rely on a classical max-
tree [35] representation. From now on, we assume that mem-
bership degrees are uniformly quantified. For each level α of
this quantification, vertices of the tree representation are as-
sociated with the connected components (in the sense of Cd )
of the α-cut of the considered fuzzy set. Edges are induced
by the inclusion relation between connected components for
successive values of α. A fuzzy set μ can therefore be ex-
actly represented by a tree T (μ), with:

– V the set of vertices of the tree,
– h(v) (with v ∈ V ) the height of v, i.e. the value of α asso-

ciated with this vertex,
– R the root of the tree,
– L the set of leaves,
– P t(v) the set of points associated with the vertex v (i.e.

the set of points of the connected component of the α-cut
associated with v),

– E the set of edges of the tree (E ⊆ V × V ), derived from
the inclusion relation between associated sets of points,

– P v(h), for v ∈ V , the set of vertices of T (μ) linking the
root to the vertex v and having a height smaller than or
equal to h.

A subtree of T (μ) is represented by a subset G ⊆ V and
we write h(G) the maximal height of its vertices. Edges of
this subtree are induced by the inclusion relation for the set
of points associated with the vertices, for successive heights.

Several algorithms have been proposed to compute the
tree [1, 17, 19, 23, 35, 46, 49], a recent one [25] with a quasi-
linear time complexity.

Those notations are illustrated in Fig. 11 for a 1D fuzzy
set. In this example, the membership degrees are quantified
with a step of 0.1. Each connected component of an α-cut
is associated with a vertex of the tree. For instance, the red
vertex v1 and the blue vertex v2 are associated with the bi-
nary regions drawn in red P t(v1) and blue P t(v2) which
are connected components of α-cuts at levels 0.6 and 0.3,
respectively. The root R is associated with the whole space.
Leaves L = {l1, l2} are associated with regional maxima of
the fuzzy set. The set P l1(0.3) of vertices linking the root to
the leaf l1 and whose height is lower than or equal to 0.3 is
circled in red. The initial fuzzy set can be recovered from its
tree representation as: μ(x) = maxv∈V |x∈P t(v) h(v), assum-
ing that the quantification steps for membership degrees in
the fuzzy set and in the tree are the same. This assumption
is made in the rest of this paper.

As described below, we make use of this representation
to extract efficiently the τ -hyperconnected components of a
fuzzy set μ and to compute the filters proposed in Sect. 4
(since this extraction is the core component for the compu-
tation of these filters).
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Fig. 10 (Color online)
(a) Fuzzy set μ with its
τ -hyperconnected component
for τ ≤ 0.2. (b–e) Four
1-hyperconnected components.
(f, g) The two
0.5-hyperconnected components
μ1 and μ2. (h) η1

δ
h1
x1

(μ1) in blue

and η1
δ
h2
x2

(μ2) in red

Fig. 11 1D fuzzy set and associated max-tree representation

Let us first consider τ = 1. Proposition 2 ensures that
a fuzzy set is connected if it has a unique regional maxi-
mum. As the regional maxima of an image are isomorphic
to the set of leaves of its tree representation, a fuzzy set is 1-
hyperconnected if its associated tree has only one leaf. We
can also show that the 1-hyperconnected components of a
fuzzy set are exactly the branches of its tree representation.

Proposition 13 The set H1(μ) = {μi} of 1-hyperconnected
components of μ is isomorphic to the set of leaves L, and
T (μi) = P li (h(li)), where li is the leaf associated with μi .

The 1-hyperconnected components of a fuzzy set can
therefore be efficiently obtained via simple operations on its
associated tree representation.

Extraction of τ -hyperconnected components for τ < 1
requires the extraction of more complex subtrees. These
subtrees are “complete” in the sense that when a vertex be-
longs to a subtree, all its parents also belong to that subtree.
Let us consider the set ST (μ) of subtrees of T (μ) so that if
S ∈ ST (μ), then ∀v ∈ S,P v(h(v)) ⊆ S. The set of subtrees

ST (μ) is endowed with the following partial order relation:

∀ (S1, S2) ∈ ST
2, S1 ≤ S2

⇔ ∀v ∈ V , v ∈ S1 ⇒ v ∈ S2.

(ST (μ),≤) is a complete lattice. The associated infimum
∧

and supremum
∨

are respectively defined as the inter-
section and union of subtrees defined as sets of vertices.
We have ∀l ∈ L,∀h ∈ [0,1],P l(h) ∈ ST (μ) and the family
{P l(h) | l ∈ L, h ∈ [0,1]} is sup-generating in (ST (μ),≤).
Any subtree S ∈ ST (μ) can be written as: S = ∨

l∈L P l(hl
S),

where hl
S corresponds to the maximal height of the subtree

S on the branch corresponding to leaf l. The supremum
∨

and infimum
∧

can therefore be respectively reformulated
as:
∨

i

Si =
∨

l∈L
P l(max

i
hl

Si
),

∧

i

Si =
∨

l∈L
P l(min

i
hl

Si
).

In addition we denote by il1,l2 = h(P l1(1) ∧ P l2(1)) the
height of the common subtree associated with both leaves
l1 and l2.

Figure 12 illustrates these definitions. The tree T (μ) (b)
representing the fuzzy set (a) (quantified with a step of 0.2)
has four leaves L = {l1, l2, l3, l4} and we have for instance
il1,l2 = 0 and il2,l3 = 0.6. A subtree S1 ∈ ST (μ) is repre-
sented by its set of vertices (c) (in red). This subtree can
be expressed as S1 = ∨

l∈L P l(hl
S1

). The set of vertices

P l(hl
S1

) associated with the leaves l1, l2, l3 and l4 are re-
spectively circled in red, yellow, blue and green and we
have h

l1
S1

= 0.4, h
l2
S1

= 0.8, h
l3
S1

= 0.6 and h
l4
S1

= 0.4. An-
other subtree S2 is displayed in (d). The supremum S1 ∨ S2

(e) is obtained either as the union of S1 and S2 (consid-
ered as sets of vertices), or as

∨
l∈L P l(max(hl

S1
, hl

S2
)). Sets

P l(max(hl
S1

, hl
S2

)) are circled in (e). Similarly the infimum
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Fig. 12 (Color online) (a) Fuzzy set μ. (b) Associated tree
T (μ) (α-cuts are quantified with a step of 0.2). (c) A subtree
S1 ∈ ST (μ) : S1 = ∨

l∈L P l(hl
S1

). Sets of vertices P l(hl
S1

) associ-
ated with the leaves l1, l2, l3 and l4 are circled respectively in
red, yellow, blue and green. (d) Another subtree S2 ∈ ST (μ). (e)
S1 ∨ S2. (f) S1 ∧ S2. (g) δT (μ)(S1, 0.4) (added vertices are plotted
in blue). (h) εT (μ)(S1 , 0.4) (deleted vertices are plotted in blue). Sets
P l(max(0, hl

S1
− 0.4)) involved in the computation are highlighted in

this figure and can be compared to the sets P l(hl
ε) in (i) obtained as in

(c)

S1 ∧ S2 (f) is obtained either as
∨

l∈L P l(min(hl
S1

, hl
S2

)), or
as the intersection of vertices sets.

Proposition 14 The degree of connectivity c2(μ) of a fuzzy
set μ can be computed from its tree representation, as:

c2(μ) = 1 − max
(l1,l2)∈L2

(min(h(l1), h(l2)) − il1,l2).

Proposition 15 Let μ ∈ F , G ∈ ST (μ) and ν the fuzzy set
associated with G. We have:

c2(ν) = min
(

1,1 − max
(l1,l2)∈L2

(min(h
l1
G,h

l2
G) − il1,l2)

)
.

We define the following operators on ST (μ) × R
+:

εT (μ)(S, r) =
∨

l∈L
P l(max(0, hl

S − r)),

δT (μ)(S, r) =
∨

l∈L
P l(min(h(l), hl

S + r)).

The first one intuitively corresponds to a contraction of
the subtree S whose branch lengths are reduced by size r .4

The second operator corresponds to a dilation5 of size r of
the subtree S.

Let us consider again the example in Fig. 12. The re-
sult of the dilation δ = δT (μ)(S1, 0.4) of S1 (c) is displayed
in (g). It is obtained by increasing S1 height by 0.4 on all
branches. Added vertices are displayed in blue, and the sets
P l(min(h(l), hl

S1
+r)) for l ∈ L are circled. We have exactly

hl
δ = min(h(l), hl

S1
+ r) (see proof of Proposition 16). The

contraction ε = εT (μ)(S1, 0.4) is illustrated in (h) (with ver-
tices plotted in red). It is computed by reducing the height
of all branches by 0.4. The sets P l(max(0, hl

S1
− 0.4)) are

circled in (h). The contraction result is then obtained as the
supremum of these sets. As opposed to the dilation operator,
the equality hl

ε = max(0, hl
S1

− 0.4) is not true in general

and we have hl
ε ≥ max(0, hl

S1
− 0.4): for instance h

l4
ε = 0.2

and max(0, h
l4
S1

− 0.4) = 0. The sets P l(hl
ε) are shown in (i)

and can be compared to those in (h).

Proposition 16 If G ∈ ST (μ) represents a τ -hyperconnected
fuzzy subset of μ, then δT (μ)(G, r) represents a max(0, τ −
r)-hyperconnected fuzzy set and εT (μ)(G, r) a min(1, τ +
r)-hyperconnected fuzzy set.

Proposition 17 The set of τ -hyperconnected components
H2

τ (μ) of a fuzzy set μ is isomorphic to the set of leaves
of εT (μ)(T (μ),1 − τ). A τ -hyperconnected component of μ

can be obtained by the dilation of size (1 − τ) of a 1-hyper-
connected component of εT (μ)(T (μ),1 − τ).

If a fuzzy set presents k τ -hyperconnected components,
their extraction is therefore performed by one contraction
and k dilations. Since both contraction and dilation have a
complexity in O(|V |), the extraction of all connected com-
ponents can be performed in O((k + 1)|V |) (once the tree is
built). The filters defined in Sect. 4 are based on this extrac-
tion and their complexity will include this cost.

Figure 13 shows in (b) the tree T (μ) associated with the
fuzzy set (a) (with a quantification step of 0.2). There are
four 1-hyperconnected components (c–j) corresponding to
the four regional maxima of (a). Results for a contraction of
size 0.4 applied to T (μ) and for a dilation of size 0.4 of one

4This is not an erosion since this operator does not commute with the
infimum.
5To prove that this operator commutes with the supremum, we
can check that the heights of the subtrees δ1 = δT (μ)(

∨
i Si , r)

and δ2 = ∨
i δT (μ)(Si , r) are equal on every branch of T (μ). We

have hl∨
i Si

= maxi (h
l
Si

) and therefore hl
δ1 = min(h(l),maxi (h

l
Si

) +
r) = maxi min(h(l), hl

Si
+ r). Moreover, we have hl

δT (μ)(Si ,r)
=

min(h(l), hl
Si

+ r) and therefore hl
δ2 = maxi min(h(l), hl

Si
+ r).
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Fig. 13 (Color online) (a) Fuzzy set. (b) Associated tree (the α-cuts
are quantified with a 0.2 step). The four 1-hyperconnected compo-
nents (d), (f), (h) and (j) and associated subtrees (c), (e), (g) and
(i). (k) Subtree corresponding to the contraction of size 0.4 (in ma-
genta). (l) A 0.6-hyperconnected component (circled in red) ob-
tained as the dilation of a 1-hyperconnected component of the con-
traction (in magenta) and the corresponding fuzzy set (m). Another
0.6-hyperconnected component (n) and the associated fuzzy set (o).
(p) Number of τ -hyperconnected components of the fuzzy set (a) cor-
rupted with white Gaussian noise (of variance 0.005) as function of τ

of the 1-hyperconnected components are illustrated respec-
tively in (k) et (l). The resulting subtree corresponds exactly
to a 0.6-hyperconnected component (m) of μ. The second
0.6-hyperconnected component is illustrated in (o) and its
associated subtree in (n). If the fuzzy set (a) is corrupted
with white Gaussian noise of variance 0.05, we obtain about
20,000 1-hyperconnected components. The evolution of the
number of τ -hyperconnected components as a function of τ

is plotted in (p), illustrating the grouping effect.

4 Attribute Openings Applied to Fuzzy Sets

4.1 Motivation

We focus here on segmentation and recognition tasks. In
this context we want to extract a connected object A rep-
resented by its membership function μA. For this purpose,
we rely on prior structural knowledge expressed as spatial
relations between structures [3], and on grey-level informa-
tion. The segmentation and recognition process can thus be
formalized as an iterative reduction of an over-estimation
A of μA [27]. Considering a current over-estimation A and
a prior on A represented as a characteristic function f on
F , we can obtain a new upper-bound A

′
as the supremum

of the fuzzy sets that fulfill the prior and that are smaller
than A: A

′ = ∨{ν ∈ F | ν ≤ A and f (ν) = 1}. As illus-
trated in the sequel, such reductions can be performed based
on grey-level prior or on an approximate spatial location. In
this framework, we can also take advantage of connectiv-
ity priors about objects of interest. Considering the connec-
tivity constraint and some available prior information about
the object, we want to obtain a reduction A

′
of an over-

estimation A such that μA ≤ A
′ ≤ A.

Figure 14 provides an example on a brain MRI segmen-
tation and recognition task. Suppose for instance that we
have already extracted the brain surface and that we want
to extract the right lateral ventricle LV r delineated in red
(a) on one axial slice of a 3D T1 weighted brain MRI. From
grey-level prior we can obtain a first over-estimation LV rGl ,
since the lateral ventricles have darker intensities than other
brain tissues, including white matter and grey matter, on this
type of images. Lateral ventricles are also always quite cen-
tral in the brain. This prior can be translated into a fuzzy set
LV rSp (c), so as to guarantee μLV r ≤ LV rSp . The conjunc-
tive fusion LV r = LV rGl ∧LV rSp is shown in (d), and sat-
isfies μLV r ≤ LV r . Although the over-estimation has been
strongly reduced, LV r still exhibits several connected com-
ponents. The circled ones, for instance, correspond to brain
sulci and present a volume smaller than the typical range
of volume for the lateral ventricle in normal cases. We can
thus remove the connected components of LV r that do not
fulfill a minimal volume criterion (based on a prior volume
information for the lateral ventricle).
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Fig. 14 (a) One axial slice of a 3D brain MRI. (b) Grey level infor-
mation: LV rGl . (c) Central location inside the brain: LV rSp . (d) Con-
junctive fusion

4.2 Attribute Openings Based on a Crisp Criterion

We first suppose that some prior knowledge about the con-
nected object A is expressed as a crisp criterion function:
fC : F → {0,1} such that fC(μA) = 1. Based on fC , we
define the following operator on F :

ξ(A) =
∨

{ν ∈ H2
τ |ν ≤ A and fC(ν) = 1}. (5)

This operator satisfies the property μA ≤ ξ(A) ≤ A, since
μA is supposed to be connected, to be smaller than A and
to fulfill the criterion. The resulting fuzzy set is thus a better
approximation of μA than A. It is important to note that this
operator is increasing, idempotent and anti-extensive and is
thus a morphological opening.

However without any condition on fC , the computation
of this operator requires to evaluate the criterion over all el-
ements of H2

τ smaller than A and has an exponential com-
plexity. To overcome this, we take advantage of the fol-
lowing property: ∀ν ∈ H2

τ , ν ≤ A ⇒ ∃μi ∈ H2
τ (A), ν ≤ μi .

Therefore if the criterion fC is increasing, the computation
of ξ(A) can be performed over the τ -hyperconnected com-
ponents of A:

ξ(A) =
∨

{μi ∈ H2
τ (A)|fC(μi) = 1}. (6)

This filter only processes connected components of A and
corresponds intuitively to an extension of attribute openings
as defined for binary images [8, 13]. Note that the increas-
ingness of the criterion is required to obtain a tractable com-
putation of (5), which prevents using non increasing criteria
such as shape criteria as recently proposed in [44].

This filter can be easily computed using the tree repre-
sentation. Proposition 17 ensures an isomorphism between

Fig. 15 Algorithm used to compute ξ(A)

the leaves of εT (A)(T (A),1 − τ) and the τ -hyperconnected

components of A. The process can thus be efficiently per-
formed with the algorithm described in Fig. 15, where the
most time consuming operation is the tree computation [25].

More precisely, the complexity of this filter is in O((k +
1)|V | + kCfC

+ CT ), where CT is the cost of the tree com-
putation, CfC

is the cost of the criterion computation and
k is the cardinality of H2

τ (A). Computing the criterion can
be computationally expensive since it has to be performed k

times and it generally involves a computation over all ver-
tices of the τ -hyperconnected components (a vertex can be-
long to more than one τ -hyperconnected component and
a pixel to more than one vertex). However, a preliminary
partial computation of the criterion can sometimes be per-
formed during the tree computation. For instance if we con-
sider an area criterion (the area of a fuzzy set μ is defined
as S(μ) = ∑

x∈X μ(x)), it can be advantageous to compute,
during the tree initialization, the area associated with every
vertex of the tree. The area of the τ -hyperconnected compo-
nents is then obtained as the sum of vertices area, that were
previously computed.

Figure 16 presents an example, where the criterion is
defined as a minimal area of 10,000 pixels and the cho-
sen hyperconnection is H2

0.6. During the computation of
the tree (b) associated with the fuzzy set (a), we com-
pute for each vertex its associated area. We then compute
εT (μ)(T (μ),0.4) to obtain the 0.6-hyperconnected compo-
nents (c) and (d). Their areas are respectively 8612 and
11,520 pixels and can be easily obtained from the vertices
area. The first one does not satisfy the criterion. The second
one does and is the resulting subtree in this case (d) which
represents the fuzzy set (e).

4.3 Extension to a Fuzzy Criterion

The filter proposed in the previous section only handles crisp
criteria. It follows that it is not continuous since a small
modification of the input set may result in the modification
of a complete connected component. To overcome this and
achieve more robustness in the filtering process, we extend
in this section the previous definition to fuzzy criteria. For
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Fig. 16 Fuzzy set (a) and its representation as a tree (b) (the vertices
are labeled with their area). Two 0.6-hyperconnected components (c)
and (d). The area of the component (c) is smaller than the minimal
threshold. This component does not belong to the result, whereas the
component (d) does. (e) Resulting fuzzy set

instance, a minimal area criterion can be represented by a
membership function (corresponding for instance to a lin-
guistic value such as “large”). The satisfaction of the crite-
rion by a fuzzy set ν is thus defined as a degree μC(ν).

We propose to preserve connected fuzzy subsets whose
maximum membership degree is less than or equal to the
satisfaction degree of the criterion via the following operator
(which guarantees the idempotence of the associated filter):

ξμC
(A) =

∨{
ν ∈ H2

τ | ν ≤ A and max
x∈X

ν(x) ≤ μC(ν)
}
.

(7)

This operator is also a morphological opening and re-
duces to (5) if μC is crisp. If it is not crisp but Lipschitz, it
presents nice regularity properties expressed by the follow-
ing proposition (regularity properties given in the following
make the assumption that the membership degrees are not
quantified).

Proposition 18 If μC is Lipschitz, then the mapping asso-
ciating A with ξμC

(A) is Lipschitz.

For computational purposes, we also assume that μC is
increasing which leads to a simplification of (7).6

Proposition 19 If μC is increasing, ξμC
(A) rewrites as:

6Note that if μC(ν) is increasing for fixed maxx∈X ν(x), Proposition 19
still holds.

Fig. 17 (Color online) (a) Fuzzy set. Two 0.6-hyperconnected com-
ponents (b) and (c). (d) μS in red plain, in dashed blue the values
(S(min(μi,m)),m). Resulting subtree (e) and associated fuzzy set (f).
See Table 2 for detailed values involved in this filtering process

ξμC
(A) =

∨

μi∈
H2

τ (A)

∨

m∈[0,1]
{min(μi,m) | m ≤ μC(min(μi,m))}.

This leads to a fast computation of ξμC
(A) since we only

have to handle the τ -hyperconnected components “leveled”
at m (i.e. min(μi,m)). Therefore this filter has a complexity

in O((k + 1)|V | + kCfC

s
+ CT ), where CT is the cost of the

tree computation, CfC
is the cost of the criterion computa-

tion, k is the cardinal of H2
τ (A) and s is the quantification

step of the membership degrees.
We illustrate this definition in Fig. 17. The criterion is

here defined as a membership function μS : R
+ → [0,1]

(d) representing a fuzzy minimal threshold on the area
(computed as the cardinality of the fuzzy set: S(μ) =∑

x∈X μ(x)). First we extract from the tree (b) (which repre-
sents the fuzzy set μ (a)) the two 0.6-hyperconnected com-
ponents μ1 (b) and μ2 (c). These components are then pro-
gressively leveled from 1 to 0: ν = min(μi,m). The satisfac-
tion degree of the criterion μS(S(ν)) is evaluated for each
leveled subtree. If the level is less than or equal to this de-
gree we add the leveled subtree to the resulting subtree (e).
The associated fuzzy set is shown in (f). Table 2 shows for
the two 0.6-hyperconnected components and all levels m,
the area of leveled subtree, the satisfaction degree of the cri-
terion μS and finally whether the leveled subtree has to be
added to the result or not.

5 Filtering

We propose in this section two connected filters, based on
the definitions introduced in Sect. 4, that can be used in
a segmentation and recognition process, implementing the
idea of deriving a finer estimation of μA from a first rough
over-estimation A and a criterion.
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Table 2 For each connected component presented in Fig. 17 and for
each level m, the area of the thresholded component: min(μi,m), the
satisfaction degree μS(S(ν)) and the satisfaction of the criterion C:
maxx∈X ν(x) ≤ μS(S(ν)) are provided

Connected component (b) Connected component (c)

Level S(ν) μS(S(ν)) C S(ν) μS(S(ν)) C

1 8612 0.7687 no 11520 1 yes

0.8 8411 0.7352 no 11267 1 yes

0.6 8163 0.6938 yes 10056 1 yes

0.4 7880 0.6467 yes 7880 0.6467 yes

0.2 4554 0.0923 no 4554 0.0923 no

0 0 0 yes 0 0 yes

5.1 Marker Inclusion

We define a criterion from another estimation A of μA, such
that A ≤ μA (A can be seen as a marker7 of the target ob-
ject):

ξ1
A(A) =

∨
{ν ∈ H2

τ |ν ≤ A and A ≤ ν}. (8)

Figure 18 illustrates this filter on a 1D example and for
τ = 1. The fuzzy set A (a) in blue is filtered by various mark-
ers A (b–f) in dashed red. In (b) only one hyperconnected
component fulfills the inclusion constraint and is preserved.
In (c) and (d), two hyperconnected components satisfy the
inclusion constraint. A small modification of the marker
leads in (e) to the satisfaction of the constraint with the
four connected components. As the height of the marker de-
creases, the connectivity degree of the result also decreases.
This property will be formally expressed by Proposition 20.
In addition, discontinuities appear as A changes (consider
for instance (d) and (e)), which illustrates that ξ1

A is not con-
tinuous with respect to A. In (f) the marker A cannot be
included in any hyperconnected component of A (since the
chosen connectivity degree τ = 1 is too strict) and the filter
thus returns an empty set.

Proposition 20 Let α = maxx∈X A(x). The result of the fil-
ter defined in (8) is max(0, (α − (1 − τ)))-hyperconnected.

Instead of considering a strict inclusion, we can rely on a
fuzzy one, based on Lukasiewicz operator [10]:

μ≤(μA,μB) = min
x∈X

min(1,1 − μA(x) + μB(x)).

The filter defined by (7) then writes:

ξ2
A(A) =

∨{
ν ∈ H2

τ | ν ≤ A and max
x∈X

ν(x) ≤ μ≤(A, ν)
}
.

(9)

7Note that this filter does not behave as a reconstruction filter.

Fig. 18 (Color online) Filtering of a fuzzy set A (a) according to (8)
using markers A (in red) of decreasing height (b–e) or a marker A that
presents two distinct modes (f). The result is displayed in blue. In (f),
the result is 0F (meaning that there is actually no solution satisfying
the constraints)

Fig. 19 (Color online) Filtering of a fuzzy set A (a) according to (9)
(for τ = 1) using markers A (in red) of decreasing height (b–e) or a
marker A that presents two distinct modes (f). The result is displayed
in blue

The results of this filter are presented in Fig. 19 (for
τ = 1) and can be compared to the results in Fig. 18. We
can notice that the input fuzzy set is now progressively fil-
tered when the marker gets larger and larger. Intuitively, hy-
perconnected components verifying the inclusion constraint
are kept, while the other ones are reduced to a level corre-
sponding to the degree of satisfaction of the constraint.

Proposition 21 The mapping associating A with ξ2
A(A) is

Lipschitz, as well as the mapping that associates A to ξ2
A(A).

Proposition 22 Let α = maxx∈X A(x). The result of the
connected filter defined in (9) is max(0, (α − (1 − τ)))-
hyperconnected.

We illustrate now this filter on a brain recognition task in
Fig. 20. As in Sect. 4.1, we want to extract the right lateral
ventricle from a brain MRI (a). We will refine the overes-
timation LV r (b) obtained in Fig. 14(d) based on a marker
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Fig. 20 (a) One axial slice of a 3D brain MRI. (b) LV r . (c–f) Results
of the connected filter specified by (9) using a marker centered in the
right ventricle, with maximal value 1, 0.75, 0.5 and 0, respectively

LV r defined as a fuzzy set having a support reduced to one
point centered in the right lateral ventricle, with a member-
ship value taking values 1 (which mostly selects the right
ventricle), 0.75, 0.5 and 0 (which does not filter), respec-
tively (c–f). In (c) the right lateral ventricle is clearly dis-
tinguished from the other parts of the fuzzy set in (b). This
distinction decreases with the maximal value of the marker
and the other parts of the fuzzy set have higher and higher
membership degrees in the filtering result. A potential ap-
plication of this approach is to perform a filter, preserving
connectivity properties, and being more or less selective de-
pending on the confidence we may have in the marker.

5.2 Fuzzy Area Opening

Area opening is a well known connected operators [45]. It
filters connected components based on a minimal area crite-
rion, and can be formulated as:

ξSmin(A) =
∨

{c ∈ C | c ≤ A and S(c) ≥ Smin},
where C is a connection over X and S a function computing
the area. In the examples developed in Sect. 4, we used a
criterion based on the area defined as the cardinality of the
fuzzy objects. We denote by ξ1

Smin
the filter derived from (5)

using a crisp minimal area criterion, and by ξ2
μSmin

the filter
derived from (7) using a fuzzy minimal area criterion.

However modeling the area of the fuzzy set by its car-
dinality is quite simplistic (think for instance of a fuzzy set
that has a large support and a small kernel) and it may be
more appropriate to consider a criterion on the area of each
α-cut. To this aim we make use of the following fuzzy mea-
sure of the area [10]: μS(μ)(s) = supS(μα)≥s α, which rep-
resents the highest level such that all α-cuts of μ until this
level have an area larger than s. The membership function
μS(μ) is decreasing. If we consider a minimal area Smin,

the inequality maxx∈X ν(x) ≤ μS(ν)(Smin) is therefore ful-
filled if all non empty α-cuts of ν satisfy the area criterion.
Deriving the filter of (7), we obtain:

ξ2
Smin

(A) =
∨{

ν ∈ H2
τ | ν ≤ A and

max
x∈X

ν(x) ≤ μS(ν)(Smin)
}
.

For more flexibility in recognition tasks, it is more appro-
priate to represent the criterion by a membership function
μSmin : R

+ → [0,1] (for instance a ramp function replac-
ing the crisp threshold). We will now keep fuzzy sets whose
height is smaller than the satisfaction degree μSmin(sm),
where sm is the area of its highest non empty α-cut. This
property can be expressed as the satisfaction of the inequal-
ity

max
x∈X

ν(x) ≤ max
s∈R+ min(μS(ν)(s),μSmin(s)).

The filter defined by (7) then rewrites:

ξ2
μSmin

(A) =
∨{

ν ∈ H2
τ | ν ≤ A and

max
x∈X

ν(x) ≤ max
s∈R+ min(μS(ν)(s),

μSmin(s))
}
.

Figure 21 illustrates these filters for τ = 1. The fuzzy set
(a) contains 7 objects of increasing area. Their fuzzy area
μS(μ) is represented in (b) and their area (defined as the
cardinality of the fuzzy set) is respectively 60.77, 281.57,
669.44, 1202.12, 1896.76, 2696.83 and 3702.12. We first
apply the filter ξ1

Smin
(based on a minimal value of the car-

dinality) with Smin = 1202 (c) and Smin = 1203 (d). In (c)
three objects are filtered whereas in (d) there are four. This
illustrates that this filter is not continuous according to the
parameter Smin. In (e) we apply ξ2

Smin
with Smin = 1202. All

α-cuts of the 1-hyperconnected components that satisfy the
criterion are selected and the third object is now partially fil-
tered. The use of a membership function μSmin (b) (in dashed
red) as criterion leads to more robustness of the filter. The
result ξ2

μSmin
is presented in (f).

Proposition 23 The mapping that associates A to ξ2
μSmin

(A)

is Lipschitz, as well as the mapping that associates μSmin to
ξ2
μSmin

(A).

Figure 22 illustrates this filter on a brain MRI example.
We filter an over-estimation LV r of the lateral ventricles (b)
according to a minimal volume prior represented by a mem-
bership function μSmin . The result ξ2

μSmin
(LV r) is shown

in (c). Some components corresponding in particular to the
sulci are efficiently removed and we thus obtain a better ap-
proximation of the lateral ventricles.
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Fig. 21 (Color online) (a) Fuzzy set that contains 7 objects of increas-
ing size. (b) For each object, fuzzy area μS(μ)(s) in blue and a mini-
mal fuzzy threshold μSmin in dashed red. Filtering of (a) by ξ1

1202 (c),
ξ1

1203 (d), ξ2
1202 (e) and ξ2

μSmin
(f)

Fig. 22 (a) One axial slice of a 3D MRI. (b) LV r . (c) ξ2
μSmin

(LV r)

6 Conclusion

In this paper, we focused on the notion of connectivity of
fuzzy sets. The contributions are three-fold. From a theo-
retical point of view, we proposed a new definition of a
measure of connectivity, represented as a family of hyper-
connections and adapted to the semantics of fuzzy sets. We
derived a number of properties showing that some draw-
backs of previously proposed measures are overcome. From
an algorithmical point of view, an efficient computational
framework was developed, based on a max-tree represen-
tation of the considered fuzzy set. In this framework the
hyperconnected-components can be easily identified and ex-
tracted in linear time with respect to the number of vertices,
once the tree is built. This leads to derived attribute open-
ings, based on crisp or fuzzy criteria that presents also nice
regularity properties. Finally, from an application point of
view, some hints on the potential of the proposed approach
are illustrated on a brain imaging segmentation and recogni-
tion task. The proposed connected openings based on mark-
ers or on volume criteria lead to interesting gradual filtering
and are used to refine a first approximation of specific brain
structures.

Future work aims at further developing such filters, and
integrating them in a segmentation framework in both nor-
mal and pathological cases, as suggested in [26]. From a

more conceptual and theoretical point of view, another per-
spective of this work concerns the combination of differ-
ent structural criteria, including connectivity ones, in a con-
straint network in order to drive a segmentation and recog-
nition process [27].

Appendix: Proofs of the Main Results

Proof of Proposition 3 We will first prove that if xi belongs
to a regional maximum Rμ of μ, then η1

δ
μ(xi )
xi

(μ) ∈ H1. By

definition η1

δ
μ(xi )
xi

(μ) = ∨{ν ∈ H1 | δ
μ(xi )
xi

≤ ν ≤ μ}. Let us

show that all elements ν ∈ H1 satisfying δ
μ(xi)
xi

≤ ν ≤ μ

overlap according to ⊥1.
First let us show that maxx∈X ν(x) = μ(xi). According to

Proposition 2, if ν ∈ H1, ν has a unique regional maximum.
Let xm be a point belonging to this regional maximum. Since
this maximum is unique and X is bounded and discrete, for
all points x ∈ X, there exists an increasing discrete path in
ν from x to xm. Thus there exists an increasing path lxi ,xm

in ν from xi to xm. Since ν(xi) = μ(xi) and ν ≤ μ, we
obtain ∀xk ∈ lxi ,xm, μ(xk) ≥ ν(xk) ≥ μ(xi). Since lxi ,xm is
increasing, ∀xk ∈ lxi ,xm, xk ∈ Rμ (otherwise the first point
xk not belonging to Rμ would satisfy μ(xk) < μ(xi)). The
point xm thus belongs to Rμ and μ(xi) = μ(xm). There-
fore ν reaches its global maximum at xi and all elements
ν of H1 such that δ

μ(xi)
xi

≤ ν ≤ μ satisfy ν(xi) = μ(xi) and
maxx∈X ν(x) = μxi

. They overlap according to ⊥1 (since
whatever the level α, their α-cuts are either empty or con-
tain xi and so intersect in xi ) and we obtain η1

δ
μ(xi )
xi

(μ) ∈ H1.

Let us now prove that ∀x ∈ X, η1

δ
μ(xi )
xi

(μ)(x) = c1
μ(x, xi).

Let c be a fuzzy set such that ∀x ∈ X, c(x) = c1
μ(x, xi).

Then c belongs to H1. Indeed, by definition, ∀α ∈ [0,1],
(c)α = {x ∈ X | c1

μ(x, xi) ≥ α}. Let x be a point in (c)α and
lx,xi

be a discrete path that maximizes the criterion:

max
l∈Lx,xi

l={x0=x,x1,...,xn=y}
min

0≤k≤n
μ(xk).

We have ∀xk ∈ lx,xi
, xk ∈ (c)α (since minxk∈lx,xi

μ(xk) ≥ α).
For all pairs of points belonging to (c)α , there exists a dis-
crete path in (c)α between those points that contains the
point xi . We thus have ∀α ∈ [0,1], (c)α ∈ Cd and according
to Proposition 1, c ∈ H1. In addition c(xi) = c1

μ(xi, xi) =
μ(xi). Therefore c satisfies c ∈ H1 and δ

μ(xi)
xi

≤ c ≤ μ. We
derive η1

δ
μ(xi )
xi

(μ) ≥ c.

Let ν be in H1 such that δ
μ(xi )
xi

≤ ν ≤ μ. Thus we have
∀(x, y) ∈ X2, c1

ν(x, y) = min(ν(x), ν(y)). Since c1
h(x, y) is
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increasing according to h and ν ≤ μ, we obtain c1
μ(x, y) ≥

min(ν(x), ν(y)). If we choose y = xi , we obtain c1
μ(x, xi) ≥

min(ν(x), ν(xi)) and since ν(x) ≤ ν(xi) (see the first part of
this proof), the property c ≥ ν is fulfilled for all elements ν

that belong to H1 and such that δ
μ(xi)
xi

≤ ν ≤ μ. Therefore
we have η1

δ
μ(xi )
xi

(μ) ≤ c, which completes the proof. �

Proof of Proposition 5 Let xm be a point for which the
global maximum of μ is reached. Since X is bounded and
finite, the existence of xm is guaranteed. We want to prove
that:

∀(x, y) ∈ X2, c2
μ(x, y) ≥ min(c2

μ(x, xm), c2
μ(y, xm)).

Let x and y be any two points in X. By definition:

c2
μ(x, y) = 1 − min(μ(x),μ(y)) + c1

μ(x, y)

≥ 1 − min(μ(x),μ(y))

+ min(c1
μ(x, xm), c1

μ(xm,y))

(since c1
μ is max-min transitive)

≥ min(1 − min(μ(x),μ(y)) + c1
μ(x, xm),

1 − min(μ(x),μ(y)) + c1
μ(xm,y))

≥ min(1 − min(μ(x),μ(xm)) + c1
μ(x, xm),

1 − min(μ(xm),μ(y)) + c1
μ(xm,y))

(since μ(xm) ≥ max(μ(x),μ(y)))

≥ min(c2
μ(x, xm), c2

μ(xm,y)). �

Proof of Proposition 6 Let μ ∈ F . We want to show that
c2
μ(x, y) reaches its minimum for x being a point for which

the global maximum of μ is reached and y belonging to a
regional maximum of μ. Let xm be a point for which the
global maximum of μ is reached. Proposition 5 guarantees
that:

∀(x, y) ∈ X2, c2
μ(x, y) ≥ min(c2

μ(x, xm), c2
μ(y, xm)).

We thus have:

min
(x,y)∈X2

c2
μ(x, y) ≥ min

x∈X
c2
μ(x, xm),

and since xm ∈ X :
min

(x,y)∈X2
c2
μ(x, y) = min

x∈X
c2
μ(x, xm).

This proves that c2
μ(x, y) reaches its minimum for x or y

being a point for which the global maximum of μ is reached.
Let us now show that if xm is a point for which the global

maximum of μ is reached, then c2
μ(xm,x) reaches its mini-

mum for x belonging to a regional maximum of μ. Let x be

any point in X. Let xi be a point that belongs to a regional
maximum of μ such that there exists an increasing digital
path from x to xi in μ (we have in particular μ(x) ≤ μ(xi)).
The existence of this local maximum is guaranteed since X

is bounded and finite. We have to prove that:

c2
μ(x, xm) ≥ c2

μ(xi, xm), or equivalently

c1
μ(x, xm) − μ(x) ≥ c1

μ(xi, xm) − μ(xi), or

c1
μ(x, xm) + μ(xi) ≥ c1

μ(xi, xm) + μ(x).

Let us prove the last inequality. Since c1
μ is max-min tran-

sitive, we have:

c1
μ(x, xm) ≥ min(c1

μ(x, xi), c
1
μ(xi, xm)). (10)

• If c1
μ(xi, xm) ≥ c1

μ(x, xi):

10 ⇒ c1
μ(x, xm) ≥ c1

μ(x, xi)

⇒ c1
μ(x, xm) ≥ μ(x)

(there exists an increasing path

in μ from x to xi)

⇒ c1
μ(x, xm) + μ(xi) ≥ c1

μ(xi, xm) + μ(x)

(since μ(xi) ≥ c1
μ(xi, xm)).

• If c1
μ(x, xi) ≥ c1

μ(xi, xm):

10 ⇒ c1
μ(x, xm) ≥ c1

μ(xi, xm).

As c1
μ is max-min transitive, we have:

c1
μ(xi, xm) ≥ min(c1

μ(xi, x), c1
μ(x, xm))

≥ min(μ(x), c1
μ(x, xm))

≥ c1
μ(x, xm).

Therefore we obtain:

c1
μ(x, xm) = c1

μ(xi, xm)

⇒ c1
μ(x, xm) + μ(xi) ≥ c1

μ(xi, xm) + μ(x)

since μ(xi) ≥ μ(x).

The property c1
μ(x, xm) + μ(xi) ≥ c1

μ(xi, xm) + μ(x) is
therefore always fulfilled and thus:

∀x ∈ X, c2
μ(x, xm) ≥ c2

μ(xi, xm),

where xi belongs to a regional maximum of μ and xm to a
global maximum of μ. �

Proof of Proposition 7 We first show that the mapping as-
sociating c1

μ(x, y) with μ is Lipschitz for any fixed points
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x and y. Let μA and μB be two fuzzy sets and η =
dF (μA,μB). We want to prove that dF

X2 (c
1
μB

, c1
μA

) ≤ η

(where dF
X2 (f1, f2) = sup(x,y)∈X2 |f1(x, y) − f2(x, y)|).

Let x and y be any two points in X. Let LA and
LB be two paths from x to y such that c1

μA
(x, y) =

minxi∈LA μA(xi) and c1
μB

(x, y) = minxi∈LB μB(xi) (since
X is bounded and finite, the existence of those paths is guar-
anteed). In addition dF (μA,μB) = η ⇒ ∀z ∈ X, |μA(z) −
μB(z)| ≤ η. Let xa be a point in LA such that
minxi∈LA μA(xi) = μA(xa) and xb be a point in LA such
that minxi∈LA μB(xi) = μB(xb). As dF (μA,μB) = η, we
have:
{ |μA(xa) − μB(xa)| ≤ η,

|μA(xb) − μB(xb)| ≤ η

⇒
{−η + μB(xa) ≤ minxi∈LA μA(xi) ≤ η + μB(xa),

−η + μA(xb) ≤ minxi∈LA μB(xi) ≤ η + μA(xb)

⇒
{−η + minxi∈LA μB(xi) ≤ minxi∈LA μA(xi),

−η + minxi∈LA μA(xi) ≤ minxi∈LA μB(xi)

⇒
∣
∣
∣ min
xi∈LA

μA(xi) − min
xi∈LA

μB(xi)

∣
∣
∣ ≤ η.

In the same way we derive:
∣
∣
∣ min
xi∈LB

μA(xi) − min
xi∈LB

μB(xi)

∣
∣
∣ ≤ η.

So:
{ |minxi∈LB μA(xi) − minxi∈LB μB(xi)| ≤ η,

|minxi∈LA μA(xi) − minxi∈LA μB(xi)| ≤ η

⇒
{ |minxi∈LB μA(xi) − c1

μB
(x, y)| ≤ η,

|c1
μA

(x, y) − minxi∈LA μB(xi)| ≤ η

⇒
{

c1
μB

(x, y) ≤ minxi∈LB μA(xi) + η,

c1
μA

(x, y) ≤ minxi∈LA μB(xi) + η.

The definition of c1
μ guarantees that:

{
minxi∈LB μA(xi) ≤ c1

μA
(x, y),

minxi∈LA μB(xi) ≤ c1
μB

(x, y),

from which we derive, ∀(x, y) ∈ X2:

{
c1
μB

(x, y) ≤ c1
μA

(x, y) + η,

c1
μA

(x, y) ≤ c1
μB

(x, y) + η

⇒ |c1
μB

(x, y) − c1
μA

(x, y)| ≤ η.

Therefore we obtain dF
X2 (c

1
μB

, c1
μA

) ≤ η and the mapping

associating c1
μ(x, y) with μ is Lipschitz.

Let us now prove that the mapping associating c2
μ(x, y)

with μ is 2-Lipschitz for given x and y. Let μA and μB be

two fuzzy sets, η = dF (μA,μB) and (x, y) ∈ X2. Since c1
μ

is Lipschitz:

|c1
μB

(x, y) − c1
μA

(x, y)| ≤ η

⇒ −η + c1
μB

(x, y) ≤ c1
μA

(x, y) ≤ η + c1
μB

(x, y). (I1)

In addition:

∀z ∈ X, |μA(z) − μB(z)| ≤ η

⇒ ∀z ∈ X,−η + μB(z) ≤ μA(z) ≤ η + μB(z)

⇒
{−η + μB(x) ≤ μA(x) ≤ η + μB(x),

−η + μB(y) ≤ μA(y) ≤ η + μB(y)

(for z = x and z = y respectively)

⇒
{−η + min(μB(x),μB(y)) ≤ min(μA(x),μA(y)),

min(μA(x),μA(y)) ≤ η + min(μB(x),μB(y))

⇒

⎧
⎪⎪⎨

⎪⎪⎩

1 − η − min(μB(x),μB(y))

≤ 1 − min(μA(x),μA(y)),

1 − min(μA(x),μA(y))

≤ 1 + η − min(μB(x),μB(y))

⇒

⎧
⎪⎪⎨

⎪⎪⎩

−2η + 1 − min(μB(x),μB(y)) + c1
μB

(x, y)

≤ 1 − min(μA(x),μA(y)) + c1
μA

(x, y),

1 − min(μA(x),μA(y)) + c1
μA

(x, y)

≤ 2η + 1 − min(μB(x),μB(y)) + c1
μB

(x, y)

(adding (I1) and (I2))

⇒ |c2
μA

(x, y) − c2
μB

(x, y)| ≤ 2η. (I2)

Consequently the mapping associating μ with c2
μ(x, y) is

2-Lipschitz. �

Proof of Proposition 8 We show that the mapping c2(μ)

is 2-Lipschitz. Let μA and μB be two fuzzy sets and
η = dF (μA,μB). Let xA and yA be two points in X such
that c2(μA) = c2

μA
(xA, yA) and (xB, yB) ∈ X2 such that

c2(μB) = c2
μB

(xB, yB).
As c2

μ is 2-Lipschitz:

{ |c2
μA

(xA, yA) − c2
μB

(xA, yA)| ≤ 2η,

|c2
μA

(xB, yB) − c2
μB

(xB, yB)| ≤ 2η

⇒
{

c2
μB

(xA, yA) ≤ 2η + c2
μA

(xA, yA),

c2
μA

(xB, yB) ≤ 2η + c2
μB

(xB, yB)

⇒
{

c2
μB

(xA, yA) ≤ 2η + c2(μA),

c2
μA

(xB, yB) ≤ 2η + c2(μB)

⇒
{

c2(μB) ≤ 2η + c2(μA),

c2(μA) ≤ 2η + c2(μB)
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(as c2(μB) ≤ c2
μB

(xA, yA) and

c2(μA) ≤ c2
μA

(xB, yB))

⇒ −2η + c2(μB) ≤ c2(μA) ≤ 2η + c2(μB)

⇒ |c2(μA) − c2(μB)| ≤ 2η.

The mapping c2 is therefore 2-Lipschitz. �

Proof of Proposition 9 To prove that H2
τ is a hyperconnec-

tion on F for the overlap mapping ⊥2
τ , we have to show

that:

– 0F ∈ H2
τ ,

– H2
τ contains a sup-generating family S of F ,

– for any family {μi} of elements of H2
τ such that

⊥2
τ ({μi}) = 1, then

∨

i

μi ∈ H2
τ .

(1) As ∀(x, y) ∈ X2 , c1
0F

(x, y) = 0, we have ∀(x, y) ∈
X2, c2

0F
(x, y) = 1 and thus c2(0F ) = 1. This shows that

∀τ ∈ [0,1],0F ∈ H2
τ .

(2) ∀x ∈ X, ∀t ∈ [0,1], c2(δt
x) = 1 and so ∀x ∈ X, ∀t ∈

[0,1], ∀τ ∈ [0,1], δt
x ∈ H2

τ . In addition the family
{δt

x | x ∈ X, t ∈ [0,1]} is sup-generating in F .
(3) Let {μi} be a family of elements of H2

τ such that
⊥2

τ ({μi}) = 1. We denote by μ the supremum of this
family: μ = ∨

i μi . We have to show that c2(μ) ≥ τ .

Let xm be a point for which the global maximum of μ

is reached, μm be an element of the family {μi} such that
μ(xm) = μm(xm) and y be a point that belongs to a regional
maximum of μ such that c2(μ) = 1−μ(y)+ c1

μ(xm,y) (the
existence is guaranteed by Proposition 6). Let k be such that
μk(y) = μ(y), then:

c2(μ) = 1 − μk(y) + c1
μ(xm,y).

As c1
μ is max-min transitive we have:

c1
μ(xm,y) ≥ min(c1

μ(xm,xk), c
1
μ(xk, y)), (11)

where xk is a point for which the global maximum of μk is
reached.

⊥2
τ ({μi}) = 1

⇒ ∀α ∈ [0,1],
⋂

i

{(η1
δ
hi
xi

(μi))α | α ≤ hi − 1 + τ } �= ∅

where hi = max
x∈X

μi(x) = μi(xi)

⇒ ∀α ∈ [0,1], α ≤ min(μm(xm),μk(xk)) − 1 + τ,

(η1
δ
hm
xm

(μm))α ∩ (η1
δ
hk
xk

(μk))α �= ∅

(considering only indices associated

with μk and to μm)

⇒ ∃l ∈ Lxk,xm, l = {x0 = xk, x1, . . . , xn = xm}
such that min

0≤i≤n

(
η1

δ
hk
xk

(μk) ∨ η1
δ
hm
xm

(μm)
)
(xi)

≥ min(μm(xm),μk(xk)) − 1 + τ,

where Lxk,xm is the set of discrete paths from xk to xm, ac-
cording to the discrete connectivity cd defined on X. Indeed
according to Proposition 3, η1

δ
hk
xk

(μk) ∈ H1 and η1
δ
hm
xm

(μm) ∈
H1 and so according to Proposition 1, all their α-cuts are
connected in the sense of the discrete connectivity cd . If we
choose α0 = min(μm(xm),μk(xk)) − 1 + τ , the α-cuts of
η1

δ
hk
xk

(μk) and of η1
δ
hm
xm

(μm)(xi) at level α0 are connected and

intersect. Their union is thus connected. This guarantees the
existence of the path l. Since

c1
μ(x, y) = max

l∈Lx,y

l={x0=x,x1,...,xn=y}
min

0≤i≤n
μ(xi),

we obtain:

c1
η1

δ
hk
xk

(μk)∨η1

δ
hm
xm

(μm)
(xm, xk) ≥ μk(xk) − 1 + τ

⇒ c1
μ(xm,xk) ≥ μk(xk) − 1 + τ

(as c1
μ is increasing according to μ)

⇒ c1
μ(xm,xk) ≥ μk(y) − 1 + τ

(as μk(xk) ≥ μk(y)).

In addition:

μk ∈ H2
τ

⇒ c2(μk) ≥ τ

⇒ 1 − min(μk(xk),μk(y)) + c1
μk

(xk, y) ≥ τ

(since ∀(x1, x2) ∈ X2 , c2
μk

(x1, x2) ≥ c2(μk))

⇒ 1 − μk(y) + c1
μk

(xk, y) ≥ τ

⇒ c1
μk

(xk, y) ≥ μk(y) − 1 + τ

⇒ c1
μ(xk, y) ≥ μk(y) − 1 + τ

(as c1
μ is increasing according to μ).

Therefore we obtain:

11 ⇒ c1
μ(xm,y) ≥ min(c1

μ(xm,xk), c
1
μ(xk, y))

⇒ c1
μ(xm,y) ≥ μk(y) − 1 + τ
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Fig. 23 A 1D fuzzy set μ. μR

associated with a regional
maximum. ν1 belongs to H1

and μR ≤ ν1. ν2 /∈ H1

⇒ 1 − μk(y) + c1
μ(xm,y) ≥ τ

⇒ 1 − μ(y) + c1
μ(xm,y) ≥ τ

(as μ(y) = μk(y))

⇒ 1 − min(μ(xm),μ(y)) + c1
μ(xm,y) ≥ τ

(as μ(y) ≤ μ(xm))

⇒ c2(μ) ≥ τ

⇒ μ ∈ H2
τ . �

Proof of Proposition 11 According to Proposition 3, if xi

belongs to a regional maximum of μ, then η1

δ
μ(xi )
xi

∈ H1 and

Proposition 10 guarantees that η1

δ
μ(xi )
xi

∈ H1(μ).

We still have to prove that the set of 1-hyperconnected
components H1(μ) of μ according to H1 is isomorphic to
the regional maxima {Ri} of μ. To this aim let us show that
the elements of H1(μ) are exactly the connected openings
η1

μR
whose origins are associated with the regional maxima

of μ. Let R ⊆ X be a regional maximum of μ. Let μR(x) =
μ(x) = hR if x ∈ R and 0 otherwise, hR being the height of
this fuzzy set. Let us show that η1

μR
(μ) belongs to H1(μ)

and that the mapping η1
μR

(μ) : {Ri} → H1(μ) is bijective.
The connected opening of origin μR can be expressed as:

η1
μR

(μ) = ∨{ν ∈ H1 | μR ≤ ν ≤ μ}. The set of elements ν

that fulfills those conditions intersect (at least) for all lev-
els α ∈ [0, hR] since all of them include μR . In addition all
those elements are such that maxx∈X ν(x) = hR (cf. proof
of Proposition 3). Indeed otherwise the set ν would have
at least two regional maxima and would not belong to H1

(Fig. 23 illustrates the notations used here. ν2 is a fuzzy
set such that maxx∈X ν2(x) > hR but ν2 /∈ H1). We can
conclude that ⊥1({ν ∈ H1 | μR ≤ ν ≤ μ}) = 1 and there-
fore that η1

μR
(μ) ∈ H1. Proposition 10 then guarantees that

η1
μR

(μ) ∈ H1(μ).
Let us now show that the mapping η1

μR
(μ) : {Ri} →

H1(μ) is surjective and thus that each 1-hyperconnected
component of μ is associated with a regional maximum
of μ. Let μi ∈ H1(μ) and xi be a point for which the global
maximum of μi is reached (note that we have μi(xi) =
μ(xi)). If xi belongs to a regional maximum Ri of μ, then
μi = η1

μRi
(μ) and therefore μi is associated with Ri . Let

us assume that xi does not belong to a regional maximum
of μ. Let xm belonging to a regional maximum of μ such
that there exists an increasing path from xi to xm in μ.
We consider the fuzzy set ν such that ν(x) = μ(x) for x

in that path and ν(x) = 0 otherwise. We can show that
⊥1(μi, ν) = 1 and thus that μi ∨ ν ∈ H1. In addition the
property μi < μi ∨ ν ≤ μ derives from definition of ν.
This contradicts the property �ν ∈ H1,μi < ν ≤ μ (since
μi ∈ H1(μ)). Therefore this case cannot occur et xi always
belongs to a regional maximum of μ and μi = η1

μRi
(μ).

We still have to prove that η1
μR

(μ) : {Ri} → H1(μ) is
injective. Let Ri and Rj be two regional maxima of μ, μi =
η1

μRi
(μ) and μj = η1

μRj
(μ). Let us assume that μi = μj .

This leads to μi ≥ μRi
∨ μRj

. As μi ≤ μ and as Ri and Rj

are distinct regional maxima, μi has at least two regional
maxima, which contradicts μi ∈ H1(μ). μi and μj are thus
distinct.

H1(μ) and the set of regional maxima of μ are thus iso-
morphic. �

Proof of Proposition 12 Let μ be a fuzzy set and
H1(μ) = {μi}. Proposition 11 guarantees that each μi is
associated with one regional maximum of μ. We denote
by xi a point that belongs to the regional maximum asso-
ciated with μi and xj a point that belongs to the regional
maximum associated with μj . Let us prove that:

c1
μ(xi, xj ) = max

x∈X
min(μi(x),μj (x)).

First we will show that:

c1
μ(xi, xj ) ≥ max

x∈X
min(μi(x),μj (x)).

The measure c1
μ is max-min transitive and so:

c1
μi∨μj

(xi, xj ) ≥ max
x∈X

min(c1
μi∨μj

(xi, x), c1
μi∨μj

(x, xj )).

In addition c1
μi∨μj

(xi, x) ≥ c1
μi

(xi, x), since c1
μ is increasing

according to μ. As by definition μi ∈ H1 and as xi is a point
for which the global maximum of μi is reached, we have
the equality: c1

μi
(xi, x) = min(μi(xi),μi(x)) = μi(x). We

thus obtain c1
μi∨μj

(xi, x) ≥ μi(x) and in the same manner

c1
μi∨μj

(x, xj ) ≥ μj (x).
So:

c1
μi∨μj

(xi, xj ) ≥ max
x∈X

min(c1
μi∨μj

(xi, x), c1
μi∨μj

(x, xj ))

⇒ c1
μi∨μj

(xi, xj ) ≥ max
x∈X

min(μi(x),μj (x))

⇒ c1
μ(xi, xj ) ≥ max

x∈X
min(μi(x),μj (x))

(as c1
μ is increasing according to μ).
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We will now prove by contradiction that: c1
μ(xi, xj ) ≤

maxx∈X min(μi(x),μj (x)). Let us assume that c1
μ(xi, xj ) >

maxx∈X min(μi(x),μj (x)) and let xa be the point for which
the max-min criterion in c1

μ(xi, xj ) is reached. We thus have
μ(xa) > maxx∈X min(μi(x),μj (x)) and so μ(xa) > μi(xa)

or μ(xa) > μj (xa). In addition the 1-hyperconnected com-
ponents μi (∈ H1) are such that ∀x ∈ X, μi(x) = c1

μ(x, xi)

(cf. Propositions 3 and 11). We obtain μi(xa) = c1
μ(xa, xi),

and since c1
μ(xa, xi) = μ(xa) (considering the path used to

compute c1
μ(xi, xj )), we have μi(xa) = μ(xa). In the same

way we have μj (xa) = c1
μ(xa, xj ) = μ(xa), which contra-

dicts μ(xa) > μi(xa) or μ(xa) > μj (xa). �

Proof of Proposition 13 As the set of leaves L of the tree
T = T (μ) is isomorphic to the regional maxima {Ri} of μ,
Proposition 11 guarantees that L is isomorphic to H1(μ).

Let us now show that each connected component μi is ex-
actly represented by the branch P li (h(li)) of the tree. We de-
note by E(G)(x) = maxv∈G |x∈P t(v) h(v) the function that
returns the fuzzy set associated with a sub-tree G of T (μ).
We recall that the quantification of membership degrees
and tree’s levels are similar and thus ∀μ ∈ F ,μ = E(V ),
where V is the set of vertices of the tree T (μ) associated
with μ. We will first show that E(P li ) ∈ H1. By defin-
ition a vertex of the tree T (μ) of height h is associated
with a connected component of the α-cut of μ of height
h and edges are induced by the inclusion relation between
connected components for successive values of h. In addi-
tion, since P li is a branch of the tree, all vertices of P li

have at most one child vertex in P li . Therefore if v ∈ P li ,
all vertices v′ ∈ P li whose height is higher than h(v) are
descendants of v and P t(v′) ⊆ P t(v). Let α be a fixed
level and vm be the vertex of P li such that h(vm) = α. We
have ∀x ∈ (E(P li ))α, ∃v ∈ P li such that x ∈ P t(v) and
h(v) ≥ α. Since for any vertex v of P li such that h(v) ≥ α

we have P t(v) ⊆ P t(vm), we obtain ∀x ∈ (E(P li ))α, x ∈
P t(vm). In addition ∀x ∈ P t(vm), x ∈ (E(P li ))α . Therefore
(E(P li ))α is the connected component P t(vm) represented
by vm and all α-cuts of E(P li ) are connected. According to
Proposition 1, E(P li ) belongs to H1.

We still have to show that there does not exist a fuzzy set
ν ∈ H1 such that E(P li ) < ν ≤ μ. Suppose that such a fuzzy
set ν exists. ν is such that ∃α ≤ h(li), (E(P li ))α ⊂ (ν)α . By
definition (E(P li ))α = P t(v), where h(v) = α and P t(v)

is a connected component of (μ)α . Therefore (ν)α presents
two connected components and ν /∈ H1. This contradicts the
hypothesis and we obtain ∀li ∈ L,E(P li ) ∈ H1(μ). In ad-
dition since H1(μ) is isomorphic to the leaves of the tree,
we obtain that all 1-hyperconnected components of μ are
represented by a branch of the tree. �

Proof of Proposition 14 Let us show that:

c2(μ) = 1 − max
(l1,l2)∈L2

(min(h(l1), h(l2)) − il1,l2).

We recall that il1,l2 = h(P l1(h(l1)) ∧ P l2(h(l2))).
Proposition 6 guarantees that the degree of connectivity

c2(μ) = min(x,y)∈X2 c2
μ(x, y) of a fuzzy set μ is reached

when x and y belong to regional maxima of μ. If x1

and x2 belong to two regional maxima, they are associ-
ated with two 1-hyperconnected components of μ according
to Proposition 11. We denote by μ1 and μ2 those compo-
nents and by l1 and l2 the leaves of the tree associated with
x1 and x2. We can reformulate c2

μ(x1, x2) as c2
μ(x1, x2) =

1 − min(h(l1), h(l2)) + c1
μ(x1, x2).

Let us show that c1
μ(x1, x2) = il1,l2 . According to Propo-

sition 12, we have c1
μ(x1, x2) = maxx∈X min(μ1(x),μ2(x))

and according to Proposition 13, we have μ1 = E(P l1) and
μ2 = E(P l2). Moreover we have:

E(P l1 ∧ P l2)(x) = max
v∈P l1∧P l2 |x∈P t(v)

h(v).

Since x cannot belong to two nodes that are not either linked
by an edge (or a connected series of edges) or equal, we
have:

max
v∈P l1 |x∈P t(v)

h(v) ≤ max
v∈P l1∧P l2 |x∈P t(v)

h(v) or

max
v∈P l2 |x∈P t(v)

h(v) ≤ max
v∈P l1∧P l2 |x∈P t(v)

h(v).

Therefore we obtain:

E(P l1 ∧ P l2)(x)

= min
(

max
v∈P l1 |x∈P t(v)

h(v), max
v∈P l2 |x∈P t(v)

h(v)
)

= (μ1 ∧ μ2)(x)

and thus

il1,l2 = h(P l1(h(l1)) ∧ P l2(h(l2)))

= max
x∈X

min(μ1(x),μ2(x)) = c1
μ(x1, x2).

We obtain c2
μ(x1, x2) = 1−min(h(l1), h(l2))+ il1,l2 . The

connectivity degree c2(μ) is then obtained considering all
leaves of the tree:

c2(μ) = min
(l1,l2)∈L2

(1 − min(h(l1), h(l2)) + il1,l2)

= 1 − max
(l1,l2)∈L2

(min(h(l1), h(l2)) − il1,l2). �

Proof of Proposition 15 Let μ be a fuzzy set and G a subtree
belonging to ST (μ) (we recall that a subtree is assimilated to
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Fig. 24 A tree T (μ) that
presents four leaves l1, l2, l3
and l4. A sub-tree G of T (μ) is
shown in red. Its tree leaves are
denoted by lG1 , lG2 and lG3

its set of vertices). We denote by E(G) the fuzzy set associ-
ated with G. We will show that:

c2(E(G)) = min
(

1, min
(l1,l2)∈L2

(1 − min(h
l1
G,h

l2
G) + i

l1,l2
T (μ))

)
,

where h
li
G is the maximal height of the vertices of G on the

branch associated with the leaf li . In addition we specify
here the tree in which il1,l2 is computed, and we note i

l1,l2
T (μ).

Considering the illustration in Fig. 24, we have for instance
h

l1
G = 0.4, for the subtree G in red.

Proposition 14 guarantees that:

c2(E(G)) = min
(lG1 ,lG2 )∈LG

2
(1 − min(h(lG1 ), h(lG2 )) + i

lG1 ,lG2
G )

(we specify in that case that we consider the leaves of G and
not the leaves of T (μ)).

Let lGa and lGb be leaves of G for which this minimum is

reached: c2(E(G)) = 1 − min(h(lGa ), h(lGb )) + i
lGa ,lGb
G (those

leaves are lG1 and lG2 in Fig. 24). Whatever the leaf lG

of G, there exists at least one leaf l of T (μ) such that
lG ∈ P l(h(l)) and hl

G = h(lG) (the leaf l4 satisfies those
conditions for lG3 in Fig. 24). l is the leaf of a branch of
T (μ) that contains lG. If we denote by la and lb the two
leaves associated with lGa and lGb , we obtain: c2(E(G)) =
1 − min(h

la
G,h

lb
G) + i

lGa ,lGb
G .

If the leaves lGa and lGb are distinct, we have i
lGa ,lGb
G =

i
la,lb
T (μ). In fact we have i

lGa ,lGb
G = h(P la (h

la
G) ∧ P lb (h

lb
G)) and

i
la,lb
T (μ) = h(P la (h(la)) ∧ P lb (h(lb))). Since the leaves lGa

and lGb are distinct, we have h(P la (h
la
G) ∧ P lb (h

lb
G)) <

min(h
la
G,h

lb
G) and therefore P la (h

la
G) ∧ P lb (h

lb
G) =

P la (h(la)) ∧ P lb (h(lb)). For instance in Fig. 24 we have

i
lG2 ,lG3
G = 0.2 = i

l2,l4
T (μ).

If lGa and lGb are actually the same leaf, we have i
lGa ,lGb
G =

h(lGa ) = h(lGb ) and i
la,lb
T (μ) ≥ min(h

la
G,h

lb
G) = h

la
G = h

lb
G. There-

fore we obtain 1 − min(h(lGa ), h(lGb ))+ i
lGa ,lGb
G = 1 = min(1,

1 − min(h
la
G,h

lb
G) + i

la,lb
T (μ)).

So in all cases, c2(E(G)) = min(1,1 − min(h
la
G,h

lb
G) +

i
la,lb
T (μ)).

Let l1 and l2 be any two leaves of T (μ). We denote by
v1 the vertex of G associated with l1 (v1 ∈ P l1(h(l1)) and

h(v1) = h
l1
G) and by v2 the vertex of G associated with l2 (in

Fig. 24, we show the vertex v3 associated with the leaf l3.
The other leaves of the tree are associated with leaves of G:
lG1 is associated with l1, lG2 to l2 and lG3 to l4). We denote
by lG1 and lG2 two leaves of G such that v1 and v2 belong to
associated branches (in Fig. 24, v3 is associated with lG2 ).

1 − min(h
l1
G,h

l2
G) + i

l1,l2
T (μ)

= 1 − min(h(v1), h(v2)) + i
l1,l2
T (μ)

≥ 1 − min(h(v1), h(v2)) + i
v1,v2
G (see below ∗1)

≥ 1 − min(h(lG1 ), h(lG2 )) + i
lG1 ,lG2
G (see below ∗2)

≥ 1 − min(h(lGa ), h(lGb )) + i
lGa ,lGb
G

(since the minimum of 1 − min(h(lG1 ), h(lG2 )) + i
lG1 ,lG2
G

is reached for the leaves lGa and lGb )

≥ 1 − min(h
la
G,h

lb
G) + i

la,lb
T (μ).

The minimum is thus reached by the leaves la and lb . There-
fore:

c2(E(G)) = min
(l1,l2)∈L2

(min(1,1 − min(h
l1
G,h

l2
G) + i

l1,l2
T (μ)))

can be rewritten as

c2(E(G)) = min
(

1, min
(l1,l2)∈L2

(1 − min(h
l1
G,h

l2
G) + i

l1,l2
T (μ))

)
.

∗1:

i
l1,l2
T (μ) = h(P l1(h(l1)) ∧ P l2(h(l2)))

= h(P l1(h(l1)) ∧ P l2(h(l2)))

≥ h(P l1(h(v1)) ∧ P l2(h(v2)))

since h(v1) ≤ h(l1) and h(v2) ≤ h(l2). Therefore
P l1(h(v1)) ∧ P l2(h(v2)) ≤ P l1(h(l1)) ∧ P l2(h(l2)). In addi-

tion P l1(h(v1)) = P lG1 (h(v1)) and P l2(h(v2)) = P lG2 (h(v2)).
Thus we derive:

i
l1,l2
T (μ) = h(P lG1 (h(v1)) ∧ P lG2 (h(v2))) = i

v1,v2
G .

∗2: Let us show that if v1 and v2 are two vertices that
belong to the same branch such that h(v1) ≤ h(v2), we have
∀v ∈ T (μ):

min(h(v1), h(v)) − i
v1,v
T (μ)

≤ min(h(v2), h(v)) − i
v2,v
T (μ)

.

If i
v1,v
T (μ) < h(v1), we have i

v1,v
T (μ) = i

v2,v
T (μ) as v1 and v2 be-

long to the same branch of the tree. Since h(v1) ≤ h(v2),
the inequality is thus satisfied. If i

v1,v
T (μ)

= h(v1), we have



130 J Math Imaging Vis (2009) 34: 107–136

Fig. 25 (Color online) (a) A tree T (μ) and a sub-tree G in red. In
blue and red δT (μ)(G, 0.2). (b) In blue and red, a sub-tree G. In red
εT (μ)(G, 0.2)

min(h(v1), h(v)) − i
v1,v
T (μ) = 0 and since min(h(v2), h(v)) −

i
v2,v
T (μ) ≥ 0, the inequality is also satisfied in that case. �

Proof of Proposition 16 We denote by E(G) the fuzzy set
associated with a sub-tree G ∈ ST (μ) of T (μ).

Let us prove that for any sub-tree G ∈ ST (μ):

c2(E(G)) ≥ τ ⇒ c2(E(δT (μ)(G, r))) ≥ max(0, τ − r),

c2(E(G)) ≥ τ ⇒ c2(E(εT (μ)(G, r))) ≥ min(1, τ + r).

An example is presented in Fig. 25. The dilation of a
subtree G (in red), δT (μ)(G, 0.2) is displayed in blue and
red (a). The contraction εT (μ)(G , 0.2) (b) of this sub-tree is
displayed in red. According to Proposition 15, the connec-
tivity degree of G is: c2(E(G)) = 1−min(h

l1
G,h

l2
G)+ il1,l2 =

1 − 0.4 + 0 = 0.6. The connectivity degree of δT (μ)(G, 0.2)

(presented in blue and red) is c2(E(δT (μ)(G, 0.2))) = 1 −
min(h

l1
δ , h

l2
δ ) + il1,l2 = 1 − 0.6 + 0 = 0.4. Therefore the in-

equality c2(E(δT (μ)(G, 0.2))) ≥ max(0, c2(E(G))−0.2) is
satisfied.

Let us first prove the property for the dilation. We denote
by δ the dilation:

δT (μ)(G, r) =
∨

l∈L
P l(min(h(l), hl

G + r)),

c2(E(G)) ≥ τ

⇒ ∀(l1, l2) ∈ L2, 1 − min(h
l1
G,h

l2
G) + il1,l2 ≥ τ

⇒ ∀(l1, l2) ∈ L2,

1 − min(h
l1
G + r, h

l2
G + r) + il1,l2 ≥ τ − r

⇒ ∀(l1, l2) ∈ L2, 1 − min(min(h(l1), h
l1
G + r),

min(h(l2), h
l2
G + r)) + il1,l2 ≥ τ − r

⇒ ∀(l1, l2) ∈ L2,

1 − min(h
l1
δ , h

l2
δ ) + il1,l2 ≥ τ − r

(as hl
δ = min(h(l), hl

G + r) (see below ∗1))

⇒ c2(E(δ)) ≥ max(0, τ − r).

Let us now prove the property for the contraction.
An example is presented in Fig. 25 (b). The sub-tree G

is displayed is blue and red and its connectivity degree
according to c2 is 0.6. The connectivity degree c2 of
εT (μ)(G, 0.2) presented in red is c2(E(εT (μ)(G, 0.2))) =
1 − min(h

l1
ε , h

l2
ε ) + il1,l2 = 1 − 0.2 + 0 = 0.8. We obtain

c2(E(εT (μ)(G, 0.2))) ≥ min(1, c2(E(G)) + 0.2).
We denote by ε the contraction:

εT (μ)(G) = ∨l∈LP l(max(0, hl
G − r))

c2(E(G)) ≥ τ

⇒ ∀(l1, l2) ∈ L2, 1 − min(h
l1
G,h

l2
G) + il1,l2 ≥ τ

⇒ ∀(l1, l2) ∈ L2,

1 − min(h
l1
G − r, h

l2
G − r) + il1,l2 ≥ τ + r

⇒ ∀(l1, l2) ∈ L2,

min(1,1 − min(h
l1
G − r, h

l2
G − r) + il1,l2)

≥ min(1, τ + r)

⇒ ∀(l1, l2) ∈ L2,

1 + il1,l2 + min(−il1,l2 ,−min(h
l1
G − r, h

l2
G − r))

≥ min(1, τ + r)

⇒ ∀(l1, l2) ∈ L2,

1 + il1,l2 + min(0,−min(h
l1
G − r, h

l2
G − r))

≥ min(1, τ + r)

(as il1,l2 ≥ 0)

⇒ ∀(l1, l2) ∈ L2,

1 + il1,l2 − max(0,min(h
l1
G − r, h

l2
G − r))

≥ min(1, τ + r)

⇒ ∀(l1, l2) ∈ L2,

1 + il1,l2 − min(max(0, h
l1
G − r),max(0, h

l2
G − r))

≥ min(1, τ + r).

In general hl
ε ≥ max(0, hl

G − r) (in the example of

Fig. 25(b), we have for instance h
l3
ε = 0.6 and max(0, h

l3
G −

0.2) = 0.4). However if hl
ε > max(0, hl

G − r), the branch of
ε associated with the leaf l does not contain a leaf of ε (since
there exists another leaf l′ such that P l(max(0, hl

G − r)) <

P l′(max(0, hl′
G − r))), and this branch is not associated with

a regional maximum of E(ε). The minimum in c2(E(ε)) =
min(l1,l2)∈L2(1 − min(h

l1
ε , h

l2
ε ) + il1,l2) is reached for l1 and

l2 such that hl
ε = max(0, hl

G − r).
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∀(l1, l2) ∈ L2,

1 + il1,l2 − min(max(0, h
l1
G − r),max(0, h

l2
G − r))

≥ min(1, τ + r)

⇒ min
(l1,l2)∈L2

(1 + il1,l2 − min(hl1
ε , hl2

ε )) ≥ min(1, τ + r)

⇒ c2(E(ε)) ≥ min(1, τ + r).

∗1: Let us show that hl
δ = min(h(l), hl

S + r), where S is a
subtree of T (μ), l is a leaf of T (μ) and δ = δT (μ)(S, r).
Since by definition δ = ∨

l′∈L P l′(min(h(l′), hl′
S + r)),

we have hl
δ ≥ min(h(l), hl

S + r). Let us show that for

any leaf l′ ∈ L, the height of P l′(min(h(l′), hl′
S + r)) on

the branch associated with l is smaller than or equal to
min(h(l), hl

S + r). This height can be written as hl′ =
h(P l′(min(h(l′), hl′

S + r)) ∧ P l(h(l))) and we have hl′ ≤
h(P l′(h(l′))∧P l(h(l))) = il,l

′
and hl′ ≤ min(h(l′), hl′

S + r).

If hl′
S + r < il,l

′
, then branches of S associated with l and

l′ are equal and hl′
S = hl

S . Therefore hl′ ≤ min(h(l′), hl′
S +

r) = hl′
S + r = min(h(l), hl

S + r) (since hl′
S + r < il,l

′ ≤
min(h(l′), h(l))).

If hl′
S + r ≥ il,l

′
, then we have also hl

S + r ≥ il,l
′

(since
the branches of S associated to l and l′ are equal below the
level il,l

′
) and hl′ ≤ il,l

′ ≤ min(h(l), hl
S + r).

Therefore we obtain hl
δ = min(h(l), hl

S + r). �

Proof of Proposition 17 To simplify the notations, a fuzzy
set and its associated tree or sub-tree will be denoted by the
same variable in this proof.

We will prove that the set of τ -hyperconnected compo-
nents of μ (H2

τ (μ)) is isomorphic to the set of 1-hyper-
connected components of ε1−τ

μ (μ) (H1(ε1−τ
μ (μ))), where

ε1−τ
μ (μ) = εT (μ)(T (μ),1 − τ). Let us first prove that the

mappings δ1−τ
μ and ε1−τ

μ can respectively be defined as
mappings from H1(ε1−τ

μ (μ)) to H2
τ (μ) and from H2

τ (μ) to
H1(ε1−τ

μ (μ)). We will then prove that those mappings are
bijective.

Let us first show that the contraction of size 1 − τ of a
fuzzy set in H2

τ (μ) belongs to H1(ε1−τ
μ (μ)). Let μi be a

τ -hyperconnected component of μ. According to Proposi-
tion 16, ε1−τ

μ (μi) is min(1, τ + (1 − τ))-hyperconnected.
Therefore it belongs to H1 and we will prove that it is a
1-hyperconnected component of ε1−τ

μ (μ) (thus maximal).
ε1−τ
μ (S) and δ1−τ

μ (S) are increasing with respect to the sub-
tree S (since they are expressed as the supremum over in-
creasing operators of the height of the branches of S) and
therefore ε1−τ

μ (μi) ≤ ε1−τ
μ (μ).

Suppose that ν ∈ H1(ε1−τ
μ (μ)) be such that:

ε1−τ
μ (μi) ≤ ν ≤ ε1−τ

μ (μ)

⇒ δ1−τ
μ ε1−τ

μ (μi) ≤ δ1−τ
μ (ν) ≤ δ1−τ

μ ε1−τ
μ (μ) = μ

(justification 1)

⇒ μi ≤ δ1−τ
μ (ν) ≤ μ (justification 2)

⇒ μi = δ1−τ
μ (ν) (justification 3)

⇒ ε1−τ
μ (μi) = ν (justification 4).

The contraction of size 1 − τ of a τ -hyperconnected com-
ponent of μ is thus a 1-hyperconnected component of the
contraction of μ.

Let us now show that the dilation of size 1 − τ of a 1-
hyperconnected component of the contraction of size 1 − τ

of μ is a τ -hyperconnected component of μ. Let εi be a 1-
hyperconnected component of ε1−τ

μ (μ). We want to prove
that δ1−τ

μ (εi) is a τ -hyperconnected component of μ. Ac-
cording to Proposition 16, δ1−τ

μ (εi) is max(0,1 − (1 − τ))-
hyperconnected and therefore it belongs to H2

τ . We still
have to prove that it is a τ -hyperconnected component (i.e.
that it is maximal). Suppose that ν ∈ H2

τ (μ) is such that
δ1−τ
μ (εi) ≤ ν ≤ μ. As the contraction is increasing we have:

ε1−τ
μ δ1−τ

μ (εi) ≤ ε1−τ
μ (ν) ≤ ε1−τ

μ (μ)

⇒ εi ≤ ε1−τ
μ (ν) ≤ ε1−τ

μ (μ) (justification 4)

⇒ εi = ε1−τ
μ (ν) (as εi is a 1-hyperconnected

component of ε1−τ
μ (μ))

⇒ δ1−τ
μ (εi) = δ1−τ

μ ε1−τ
μ (ν)

⇒ δ1−τ
μ (εi) = ν (justification 2).

Therefore we obtain δ1−τ
μ (εi) ∈ H2

τ (μ).
We consider now the mappings δ1−τ

μ : H1(ε1−τ
μ (μ)) →

H2
τ (μ) and ε1−τ

μ : H2
τ (μ) → H1(ε1−τ

μ (μ)). Those are bijec-
tive and inverse of each other. Indeed if μi ∈ H2

τ (μ), we can
show that δ1−τ

μ ε1−τ
μ (μi) = μi (justification 2). Conversely

if εi ∈ H1(ε1−τ
μ (μ)), we have ε1−τ

μ δ1−τ
μ (εi) = εi (justifica-

tion 4).
Justification 1: The mapping δτ

μετ
μ is extensive. In fact if

we rewrite the fuzzy set a, its contraction and the dilation of
it as:

a =
∨

l∈L
Pl(h

l
a),

ετ
μ(a) =

∨

l∈L
Pl(h

l
ε),

δτ
μετ

μ(a) =
∨

l∈L
Pl(min(hl, h

l
ε + τ)),

we have the following inequalities:

hl
ε ≥ max(0, hl

a − τ),
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hl
δ = min(hl, h

l
ε + τ).

Therefore we obtain:

hl
δ ≥ min(hl,max(0, hl

a − τ) + τ)

⇒ hl
δ ≥ min(hl,max(τ, hl

a)) ≥ hl
a,

since hl ≥ hl
a . The mapping δτ

μετ
μ is therefore extensive.

Note that this property is not always satisfied by the map-
ping ετ

μδτ
μ.

Justification 2: According to justification 1, the map-
ping δ1−τ

μ ε1−τ
μ is extensive. We have thus μi ≤ δ1−τ

μ ·
ε1−τ
μ (μi) ≤ μ. Since δ1−τ

μ ε1−τ
μ (μi) is τ -hyperconnected

and μi is a τ -hyperconnected component of μ, we have
δ1−τ
μ ε1−τ

μ (μi) = μi .
Justification 3: μi is a τ -hyperconnected component of

μ and by definition �υ ∈ H2
τ ,μi < υ ≤ μ. Since δ1−τ

μ (ν) ∈
H2

τ , we have μi = δ1−τ
μ (ν).

Justification 4: if a fuzzy set ν is such that ν ≤ ε1−τ
μ (μ),

we have ε1−τ
μ δ1−τ

μ (ν) = ν. In fact if we rewrite ν, δ1−τ
μ (ν)

and ε1−τ
μ δ1−τ

μ (ν) as:

ν =
∨

l∈L
P l(hl

ν),

δ1−τ
μ (ν) =

∨

l∈L
P l(hl

δ),

ε1−τ
μ δτ

μ(ν) =
∨

l∈L
P l(hl

ε),

we have the following inequalities between the heights of
the branches:

hl
δ = min(hl, h

l
ν + 1 − τ),

hl
ε ≥ max(0, hl

δ − 1 + τ).8

We can conclude that:

hl
ε ≥ min(max(0, hl − 1 + τ), hl

ν).

As ν ≤ ε1−τ
μ (ν), we have hl

ν ≤ max(0, hl − 1 + τ) and we
obtain: hl

ε ≥ hl
ν. The mapping ε1−τ

μ δ1−τ
μ is thus in that case

extensive: ν ≤ ε1−τ
μ δ1−τ

μ (ν). In addition since the mapping
δ1−τ
μ is increasing, we have δ1−τ

μ (ν) ≤ δ1−τ
μ ε1−τ

μ (μ) ≤ μ

and since ε1−τ
μ is increasing: ε1−τ

μ δ1−τ
μ (ν) ≤ ε1−τ

μ (μ).
As ν is a 1-hyperconnected component of ε1−τ

μ (μ) and
as ε1−τ

μ δ1−τ
μ (ν) is 1-hyperconnected, we obtain:

ε1−τ
μ δ1−τ

μ (ν) = ν. �

Proof of Proposition 18 Let μC : F → [0,1] be a Lip-
schitz mapping. Let us show that the mapping associat-

ing the fuzzy set μ with ξμC
(μ) = ∨{ν ∈ H2

τ | ν ≤
μ and maxx∈X ν(x) ≤ μC(ν)} is Lipschitz.

Let μ1 and μ2 be two fuzzy sets and η = supx∈X |μ1(x)−
μ2(x)|. ∀x ∈ X,∃ν1 ∈ H2

τ such that: ξμC
(μ1)(x) = ν1(x),

ν1 ≤ μ1 and maxx∈X ν1(x) ≤ μC(ν1). Let ν2 be a fuzzy set
defined as ν2 = max(0, ν1 − η). We have ν2 ∈ H2

τ , ν2 ≤ μ2

and supx∈X ν2(x) ≤ max(0 , μC(ν1) − η). Since μC is Lip-
schitz, |μC(ν2) − μC(ν1)| ≤ supx∈X |ν2(x) − ν1(x)|. In ad-
dition we have supx∈X |ν2(x) − ν1(x)| ≤ η, thus μC(ν1) −
η ≤ μC(ν2). We derive supx∈X ν2(x) ≤ μC(ν2) and so:

ξμC
(μ2)(x) ≥ ξμC

(μ1)(x) − η.

In the same way we derive:

ξμC
(μ1)(x) ≥ ξμC

(μ2)(x) − η.

Therefore we have:

∀x ∈ X, |ξμC
(μ2)(x) − ξμC

(μ1)(x)| ≤ η. �

Proof of Proposition 19 We want to prove that the filter de-
fined by (7) can be computed over the τ -hyperconnected
components of μ if the criterion μC is increasing. Accord-
ing to (7), ξμC

(μ) is defined as:

ξμC
(μ) =

∨
{ν ∈ H2

τ | ν ≤ μ and max
x∈X

ν(x) ≤ μC(ν)}.

Since ∀ν ∈ H2
τ such that ν ≤ μ, the property ν ≤ μi with

μi ∈ H2
τ (μ) always holds, we can rewrite ξμC

(μ) as:

ξμC
(μ) =

∨

μi∈H2
τ (μ)

∨
{ν ∈ H2

τ | ν ≤ μi and

max
x∈X

ν(x) ≤ μC(ν)}.

Sorting the fuzzy sets according to their height m, we
obtain: ξμC

(μ) = ∨
μi∈H2

τ (μ)

∨
m∈[0,1]

∨{ν ∈ H2
τ | ν ≤

μi and maxx∈X ν(x) = m and m ≤ μC(ν)}.

For m ∈ [0,maxx∈X μi(x)],9 the following equality
holds:
∨

{ν ∈ H2
τ | ν ≤ μi and max

x∈X
ν(x) = m} = min(μi,m).

Indeed min(μi,m) ∈ H2
τ (since μi ∈ H2

τ ),10 min(μi,m) ≤
μi and maxx∈X min(μi,m)(x) = m.

8In Sect. 3.4, we have shown that this inequality between the heights
of the branches is satisfied by the contraction and dilation. Moreover
we have an equality of the heights of the branches in the dilation case.
9For m > maxx∈X μi(x), there is no ν such that ν ≤ μi and
maxx∈X ν(x) = m.
10Let μ ∈ H2

τ , we have ∀(x, y) ∈ X2,1 − min(μ(x),μ(y)) +
c1
μ(x, y) ≥ τ . Let μ′ = min(μ,m) and (x, y) ∈ X2, we have
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As μC is increasing, we obtain:

ξμC
(μ) =

∨

μi∈
H2

τ (μ)

∨

m∈[0,hi ]
{min(μi,m) |

m ≤ μC(min(μi,m))},
where hi = maxx∈X μi(x). �

Proof of Proposition 20 Let A be a fuzzy set and α be
its height: α = maxx∈X A(x). We will show that ξ1

A(A) =
∨{ν ∈ H2

τ (A) | A ≤ ν} is α − 1 + τ -hyperconnected.
All elements ν in {ν ∈ H2

τ (A) | A ≤ ν} also belong to
H2

α−1+τ (as they belong to H2
τ and as α − 1 ≤ 0). We will

show that all those elements overlap according to the overlap
mapping ⊥2

α−1+τ .
Let ν be a fuzzy set such that ν ∈ H2

τ (A) and A ≤ ν.
Let xm be a point for which ν reaches its global maximum,
h = ν(xm) and xa be a point for which A reaches its global
maximum (we have α ≤ h and ν(xa) ≤ ν(xm)).

ν ∈ H2
τ

⇒ 1 − min(ν(xm), ν(xa)) + c1
ν(xm, xa) ≥ τ

⇒ 1 − τ + c1
ν(xm, xa) ≥ ν(xa) ≥ A(xa) = α

⇒ c1
ν(xm, xa) ≥ α − 1 + τ ≥ h − 1 + (α − 1 + τ),

as h− 1 ≤ 0. According to Proposition 3, for all ν satisfying
the conditions we have η1

δh
xm

(ν)(xa) ≥ h − 1 + (α − 1 + τ).

The elements of {ν ∈ H2
τ (A) | A ≤ ν} overlap according to

⊥2
α−1+τ . The supremum over this set is therefore α − 1 + τ -

hyperconnected. �

Proof of Proposition 21 Let us show that the mapping asso-
ciating A with ξ2

A(A) = ∨{ν ∈ H2
τ | ν ≤ A and maxx∈X ν(x)

≤ μ≤(A, ν)} is Lipschitz, as well as the mapping associating

A with ξ2
A(A). For the second one, according to Propo-

sition 18, if the mapping associating ν with μ≤(A, ν) is
Lipschitz, then the mapping associating A with ξ2

A(A) is

c1
μ′ (x, y) = min(m, c1

μ(x, y)) and thus 1 − min(μ′(x),μ′(y)) +
c1
μ′ (x, y) = 1 − min(m,min(μ(x),μ(y))) + min(m, c1

μ(x, y)).

If c1
μ(x, y) ≥ m, we have 1 − min(μ′(x),μ′(y)) +

c1
μ′ (x, y) = 1 − m + m ≥ τ (as min(μ(x),μ(y)) ≥ c1

μ(x, y)).

If c1
μ(x, y) ≤ m and min(μ(x),μ(y)) ≥ m, we have

1 − min(μ′(x),μ′(y)) + c1
μ′ (x, y) = 1 − m + c1

μ′ (x, y) ≥
1 − min(μ(x),μ(y)) + c1

μ(x, y) ≥ τ . Finally if c1
μ(x, y) ≤ m and

min(μ(x),μ(y)) ≤ m, we obtain 1 − min(μ′(x),μ′(y)) + c1
μ′ (x, y) =

1 − min(μ(x),μ(y)) + c1
μ(x, y) ≥ τ . Therefore we obtain

∀(x, y) ∈ X2, 1 − min(μ′(x),μ′(y)) + c1
μ′ (x, y) ≥ τ and thus

min(μ,m) ∈ H2
τ .

Lipschitz. As μ≤(A, ν) = minx∈X min(1,1 − A(x), ν(x))

is Lipschitz, the mapping associating A with ξ2
A(A) is Lip-

schitz.
Let A1 and A2 be two fuzzy sets and η be such that η =

supx∈X |A1(x)−A2(x)|. Let ν1 ∈ H2
τ such that ξ2

A1
(A)(x) =

ν1(x), ν1 ≤ A and maxx∈X ν1(x) ≤ μ≤(A1, ν1). We denote
by h1 the height of ν1: maxx∈X ν1(x). Let ν2 be a fuzzy set
defined as ν2 = min(ν1,max(0, h1 − η)). We have ν2 ∈ H2

τ

and ν2 ≤ A. In addition:

max
x∈X

ν1(x) ≤ μ≤(A1, ν1)

⇒ max
x∈X

ν1(x) ≤ min
x∈X

min(1,1 − A1(x) + ν1(x))

⇒ max(0,max
x∈X

ν1(x) − η)

≤ max
(

0,min
x∈X

min(1,1 − A1(x) + ν1(x)) − η
)

⇒ max
x∈X

ν2(x)

≤ max
(

0,min
x∈X

min(1,1 − A1(x) + ν1(x) − η)
)

⇒ max
x∈X

ν2(x)

≤ max
(

0,min
x∈X

min(1,1 − A2(x) + ν1(x))
)
.

If x ∈ X is such that ν1(x) > h1 − η, we have ν2(x) = h2.
Since the inequality h2 ≤ 1 − A2(x) + h2 is always sat-
isfied, we obtain ν2(x) ≤ 1 − A2(x) + h2. Otherwise we
have ν2(x) = ν1(x) and the inequality h2 ≤ min(1,1 −
A2(x) + ν2(x)) is fulfilled. We obtain maxx∈X ν2(x) ≤
minx∈X min(1, 1 −A2(x)+ ν2(x)) and therefore ξ2

A2
(A)(x)

≥ ξ2
A1

(A)(x)− η. In the same way we can obtain ξ2
A1

(A)(x)

≥ ξ2
A2

(A)(x)− η. The mapping associating A with ξ2
A(A) is

therefore Lipschitz. �

Proof of Proposition 22 Let A be a fuzzy set. We de-
note by α its height: α = maxx∈X A(x). We will prove that
ξ2
A(A) = ∨{ν ∈ H2

τ | ν ≤ A and maxx∈X ν(x) ≤ μ≤(A, ν)}
is max(0, α − 1 + τ)-hyperconnected.

To this aim let us show that all elements ν ∈ H2
τ that ful-

fill the criteria ν ≤ A and maxx∈X ν(x) ≤ μ≤(A, ν) overlap
according to ⊥2

α−1+τ .
Let ν be a fuzzy set in H2

τ such that maxx∈X ν(x) ≤
μ≤(A, ν) and ν ≤ A. Let xa be a point such that A(xa) = α,
xm a point such that ν(xm) = h where h = maxx∈X ν(x). We
have:

max
x∈X

ν(x) ≤ μ≤(A, ν)

⇒ h ≤ min
x∈X

min(1,1 − A(x) + ν(x))

⇒ h ≤ 1 − α + ν(xa).
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In addition ν is τ -hyperconnected so:

1 − min(ν(xa), ν(xm)) + c1
ν(xa, xm) ≥ τ

⇒ 1 − τ + c1
ν(xa, xm) ≥ ν(xa).

We obtain:

h ≤ 1 − α + 1 − τ + c1
ν(xa, xm)

⇒ h − 1 + α − 1 + τ ≤ c1
ν(xa, xm).

Since according to Proposition 3, c1
ν(xa, xm) = η1

δh
xm

(ν)(xa),

all the fuzzy sets η1
δh
xm

(ν) intersect in xa at least for all levels

below h−1+α−1+τ . Therefore the set of elements ν (that
satisfy the criteria of the filter) overlap according to ⊥2

α−1+τ .
Since all those fuzzy sets are (α − 1 + τ)-hyperconnected,
ξ2
A(A) is max(0, α − 1 + τ)-hyperconnected. �

Proof of Proposition 23 Let us finally prove that the map-
ping that associates A to ξ2

μSmin
(A) is Lipschitz, as well as

the mapping that associates μSmin to ξ2
μSmin

(A).
According to Proposition 18, if μC(ν) is Lipschitz, then

the mapping associating A with ξμC
(A) is Lipschitz. We

will prove that the criterion μC(ν) = maxs∈R+
min(μS(ν)(s), μSmin(s)) (with μS(ν)(s) = supS(να)≥s α)
is Lipschitz. Let ν1 and ν2 be two fuzzy sets such that
maxx∈X |ν1(x) − ν2(x)| = η. Since ∀α ∈ [0,1], ν1(x) ≥
α ⇒ ν2(x) ≥ max(0, α − η), we can derive the fol-
lowing inclusions: (ν1)α ⊆ (ν2)max(0,α−η) and (ν2)α ⊆
(ν1)max(0,α−η). We thus have S(ν1α1(s)) ≥ s and S(ν2α2(s)) ≥
s, where α1(s) = μS(ν1)(s) and α2(s) = μS(ν2)(s). Ac-
cording to the inclusion property given above, we can de-
duce that S(ν2max(0,α1(s)−η)) ≥ s and that
S(ν1max(0,α2(s)−η)) ≥ s. Therefore we obtain α2(s) ≥
max(0, α1(s) − η) and α1(s) ≥ max(0, α2(s) − η).

Thus:

∀s ∈ R
+, α1(s) − η ≤ α2(s) ≤ α1(s) + η

⇒ ∀s ∈ R
+, min(μS(ν1)(s),μSmin(s)) − η

≤ min(μS(ν2)(s),μSmin(s))

≤ min(μS(ν1)(s),μSmin(s)) + η,

⇒ μC(ν1) − η ≤ μC(ν2) ≤ μC(ν1) + η.

We can conclude that the mapping that associates A to
ξ2
μSmin

(A) is Lipschitz.

Let us now prove that the mapping that associates
μSmin to ξ2

μSmin
(A) is Lipschitz. Let μS1

min
and μS2

min
such

that sups∈R∗+ |μS1
min

(s) − μS2
min

(s)| = η. Let x ∈ X and

ν1 such that ξ2
μ

S1
min

(A)(x) = ν1(x), ν1 ∈ H2
τ , ν1 ≤ A and

maxy∈X ν1(y) ≤ maxs∈R+ min(μS(ν1)(s),μS1
min

(s)). Let ν2

a fuzzy set such that ∀y ∈ X, ν2(y) = max(0, ν1(y)−η). We
have ν2 ≤ A and ν2 ∈ H2

τ . Moreover let α1(s) = μS(ν1)(s)

and α2(s) = μS(ν2)(s). Thus we have S(ν1α1(s)) ≥ s and
S(ν2α2(s)) ≥ s. Since ∀α ∈ [0,1], ν1α ⊆ ν2max(0,α−η), we
obtain S(ν2max(0,α1(s)−η)) ≥ s and therefore:

∀s ∈ R
+, μS(ν1)(s) ≤ μS(ν2)(s) + η

⇒ ∀s ∈ R
+,

min(μS(ν1)(s),μS1
min

(s))

≤ min(μS(ν2)(s) + η,μS2
min

(s) + η)

(since μS1
min

(s) ≤ μS2
min

(s) + η),

⇒ ∀s ∈ R
+,

min(μS(ν1)(s),μS1
min

(s))

≤ min(μS(ν2)(s),μS2
min

(s)) + η,

⇒ max
s∈R+ min(μS(ν1)(s),μS1

min
(s))

≤ max
s∈R+ min(μS(ν2)(s),μS2

min
(s)) + η,

⇒ max
y∈X

ν1(y) ≤ max
s∈R+ min(μS(ν2)(s),μS2

min
(s)) + η,

⇒ max
(

0,max
y∈X

ν1(y) − η
)

≤ max
s∈R+ min(μS(ν2)(s),μS2

min
(s)),

⇒ max
y∈X

ν2(y) ≤ max
s∈R+ min(μS(ν2)(s),μS2

min
(s)).

Therefore we obtain ξ2
μ

S2
min

(A)(x) ≥ ξ2
μ

S1
min

(A)(x) − η. In

the same way we derive ξ2
μ

S2
min

(A)(x) ≤ ξ2
μ

S1
min

(A)(x) + η.

The mapping that associates μSmin to ξ2
μSmin

(A) is thus Lip-
schitz. �
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