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ABSTRACT

Image model plays a critical role in recovering diagnosis-relevant
information from noisy observation data. Unlike conventional de-
noising techniques based on local models, a patch-based nonlocal
image model is presented and its applications into restoring medi-
cal images are demonstrated. We introduce geometric resampling
techniques for obtaining redundancy representations which facili-
tate the exploitation of nonlinear manifold constraint in the patch
space. We extend existing locally linear embedding (LLE) into lo-
cally linear transform (LLT) to impose sparsity constraint on the
uncorrupted images. A nonlocal denoising algorithm based LLT
thresholding and adaptive fusion is proposed for removing Rician
noise from MRI data and speckle noise from ultrasound images.
Encouraging experimental results are achieved, which confirms
the value of nonlocal processing as a supplementary tool.

1. INTRODUCTION

Mathematical modeling of image signals is a fundamental task in
medical image processing. Although the content of medical im-
ages are constrained to human organs, there is still a great deal of
uncertainty due to the inherent variability (e.g., soft tissue vs. hard
bones). The modeling task is further complicated by the high di-
mensionality of image data especially when high-resolution imag-
ing is desirable. Moreover, noise contamination is often inevitable
due to the physical constraints of medical imaging. Sometimes
distinguishing noise from signal is tricky - e.g., speckle noise in
ultrasound images has been long thought of tissue microstructure
carrying useful information to diagnosis [1].

To overcome the curse of dimensionality, locality assumption
has been widely used during the modeling of image signals. In
statistical approaches [2], [3] [4], local statistics such as mean,
median or variance are essential tools for adapting the filtering
tasks. In PDE-based approaches [5], diffusion process is often
driven by local gradients calculated from the image intensity val-
ues. In wavelet-based approaches [6], [7], linear basis with good
space-frequency localization property is often used and local sta-
tistical models are developed for wavelet coefficients. Localized
models have found effective on removing a wide range of noise
for various imaging modalities.

Despite the popularity of localized models, nonlocal depen-
dency is also important to our understanding of images especially
under the context of medical imaging. Nonlocal dependency arises
from geometric symmetry of natural objects (e.g., self-similarity of
repeating patterns, rotation invariance of circular shapes). Nonlo-
cal dependency is particularly useful for medical images because
human subjects often approximately observe specific geometric

constraints (e.g., bilateral symmetry of human body). Existing lo-
cal models can not exploit such nonlocal dependency which could
be useful to suppress noise components especially in the presence
of heavy noise. The main objective of this work is to demonstrate
the potential of nonlocal models in restoring medical images.

In this work, we present a patch-based nonlocal denoising
scheme based on geometric resampling techniques. The redun-
dancy introduced by geometric resampling improves the sampling
density of local neighborhood of a patch, which facilitates the dis-
covery of local geometry on a manifold in the high-dimensional
space. Conceptually similar to locally linear embedding (LLE)
[8], we propose to exploit the nonlinear manifold constraint by lo-
cally linear transforms (LLT). Unlike existing 2D transforms, LLT
is a 3D transform whose third dimension codes the geometric re-
sampling information. Note that the locality concept in LLT is
NOT the same as that used in conventional local models and LLT
can be viewed as a “bilateral” transform defined on both geomet-
ric domain and photometric range [9]. It can be shown that such
bilateral property of LLT is particularly useful for exploiting ge-
ometric symmetry related constraints which are beyond the reach
of local models. We consider two applications of nonlocal model
here: removal of Rician noise from MRI images and removal of
speckle noise from ultrasound images.

2. NONLOCAL IMAGE REPRESENTATION IN THE
PATCH SPACE

Let I denote the collection of all images with a specified size
H × W . It has been widely recognized that I does not span
over the full space RH×W but forms a low-dimensional manifold.
To overcome the curse of dimensionality, one might consider a
patch-based representation which decomposes an image into over-
lapping patches (refer to Fig. 1a) [10], [11]. For simplicity, we
only consider patches of square shape (say P × P, P = 2T + 1)
in this paper. Due to the overlap among patches, the total number
of patches is in the same order as that of pixels (boundary exten-
sion is required). Such patch-based representation can be viewed
as the projection of I onto a lower-dimensional subspace RP×P

in which nonlinear manifold constraint is preserved.

In the seminal work of local linear embedding (LLE) [8], the
local geometry of a manifold is characterized by linear coefficients
that reconstruct each data point from its neighbors in the patch
space, i.e.,

x =
NX

i=1

wixi, (1)

where x is the data point (patch of interest) and {xi}N
i=1 denotes

its local neighborhood. Note that the locality in the patch space
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is NOT equivalent to that in the spatial domain where images are
acquired. Two neighboring points in RP×P would have small Eu-
clidean distance in photometric range (i.e., visually similar) but
large Euclidean distance in the geometric domain (i.e., spatially
distant). The idea of LLE is closely related to the celebrated bilat-
eral filtering [9] where the weighting coefficients are jointly deter-
mined by the distances of domain and range.

Fig. 1. a) Patch-based representation of image signals; b) nonlin-
ear manifold constraint still holds in the patch space Ip.

The motivations behind our approach are summarized into the
following two aspects. On one hand, we propose to generalize the
idea of linear prediction in Eq. (1) into linear transform. Such gen-
eralization is spiritually similar to the migration from predictive
models to transform models. However, since we are considering
patches instead of pixels here, the generalized transforms in the
patch space are 3D where the third dimension reflects the nonlo-
cal nature - i.e., we are packing patches far away from each other
into a 3D array. To maximize the sparsity, it is natural to order the
patches monotonically based on the photometric distance. We call
such 3D transform applied to packed patches “locally linear trans-
form” (LLT). Similar to LLE, our LLT is capable of exploiting
nonlocal dependency in image signals.

On the other hand, we propose to improve the sampling den-
sity of local neighborhood in the patch space by geometric resam-
pling. Specifically, geometrically resampled version of a given
image X is defined by Y = T [X] where T is the concatenation
of various geometric operators (e.g., translation, reflection, trans-
pose, rotation and scaling). For the convenience of implementa-
tion, we only consider lossless operators translation, reflection and
transpose in this work. It is easy to see that geometric resampling
generates a redundant representation of image signal (refer to Fig.
2). As the redundancy ratio increases, the manifold in the patch
space is better-sampled.

Putting things together, we argue that LLT powered by ge-
ometric resampling is capable of better exploiting the nonlinear
manifold constraint or nonlocal dependency than the existing 2D
linear transforms. Since geometric information of xi (i.e., how it is
related to patch x) is implicitly coded into the third dimension of
LLT, improved sparsity can be achieved. In other words, despite
the linearity of 3D LLT, its derived image representation is non-
linear due to the embedded geometric information. Moreover, the
redundancy brought by geometric resampling is beneficial to the
denoising task because it allows us to pool together statistical in-
ference results of the same pixel from multiple resampled signals
(a generalization of translation invariant denoising [12]).

Fig. 2. Illustration of geometric resampling (redundancy ratio of 4
is due to reflections along the x and y directions).

3. PATCH-BASED NONLOCAL DENOISING

Image denoising refers to the task of removing unwanted noise
from a given observation image. The priors of both image and
noise signals are important to the effectiveness of denoising algo-
rithm. In biomedical imaging, noise modeling is a challenging task
itself. However, if nonlocal image representation developed in the
previous section offers a powerful prior model for medical images
such as MRI and ultrasound, we conjecture that image denoising
can still be solved even with little assumption about the noise. In
other words, we attempt to show that nonlocal image models lead
to a fairly general class of blind denoising algorithms. Our patch-
based nonlocal denoising algorithm consists of two components:
1) how to denoise a single patch? 2) how to pool together the de-
noised result of a single pixel contained in multiple patches?

For the first question, we observe that sparseness of transform-
domain representations has been long recognized useful for de-
noising applications. In the classical wavelet shrinkage [13], sim-
ple nonlinear thresholding operation is shown effective on separat-
ing image structures from additive white Gaussian noise (AWGN).
The power of nonlinear thresholding lies in that it works as long
as noise signals do not produce significant coefficients in the trans-
form space. Therefore, although the noise model in practical imag-
ing is often more complex (e.g., non-Gaussian or signal-dependent),
wavelet filtering has still been successfully used in denoising MRI
images [6] and despeckling ultrasound images [7]. Similar to wavelet
thresholding, we can envision a LLT-based thresholding counter-
part, which can be viewed as an extension of existing patch-based
denoising algorithm [10]. Due to the blindness assumption made
about the noise, we opt to empirically adjust the threshold.

An ad-hoc solution to the second question is simple (uniform)
averaging. However, uniform weights are suboptimal because both
the location of a pixel within a patch (at the center or at the bor-
der) and the sparsity of 3D array affect the confidence of statisti-
cal inference result from the given patch. Loosely speaking, the
assigned weights in fusing multiple patches containing the same
pixel should be inversely proportional to the distance of that pixel
to the patch center and the sparsity of 3D array. In our current
implementation, a bell-shape window (e.g., Gaussian or Kaiser)
similar to bilateral filtering [9] is used to reflect the distance con-
sideration and the total number of nonzero LLT coefficients after
thresholding similar to [11] is adopted as the sparsity index. An-
other tricky issue related to the implementation is that geometric
resampling information of each patch Bk (i.e., how it is related to
B by translation, transpose and reflection) has to be recorded care-
fully because every denoised patch after LLT thresholding should
be placed back at the right position and orientation before weighted
fusion.

The proposed patch-based nonlocal denoising algorithm is sum-
marized as follows.

949



Patch-based Nonlocal Image Denoising
Input: noisy image Y (i, j), P = 2T + 1

Output: denoised image X̂(i, j)
• Apply geometric resampling to Y to obtain redundant rep-

resentation {T1[Y ], ..., TR[Y ]} and collect all patches into B;
• At the chosen locations (e.g., (i, j) = (4k + 1, 4l + 1)):

- formulate the patch B = Y (i− T, i + T, j − T, j + T )
and search its N nearest neighbors Bi in B;

- order Q = N + 1 patches in the order of monotonically
increasing distance and pack them into a noisy 3D array Y;

- denoise Y by LLT-based thresholding to obtain denoised

version Ŷ;
• Unpack the 3D array Ŷ to obtain denoised redundant repre-

sentation {T1[Ŷ ], ..., TR[Ŷ ]} and fuse them to obtain the denoised

image X̂ .

4. EXPERIMENTAL RESULTS

In our current implementation, geometric transform T contains the
concatenation of translation, transpose and reflections (both left-
right and up-down); LLT is chosen to be 3D fast Fourier transform
(similar to [11] which is developed for removing AWGN). The
thresholding parameter of LLT coefficients is empirically tuned
for each individual image and noise characteristics. The proposed
nonlocal denoising algorithm is tested for two types of noise: Ri-
cian noise in MRI and speckle noise in ultrasound. Our objective
is to show that the proposed nonlocal technique offers a unified
solution to handle different types of noise.

A. Rician Noise Removal from MRI images
In our first experiment, we compare the denoising performance

between local (PDE-based) and nonlocal algorithms on MRI im-
age. The Rician noise insertion is implemented by taking the FFT
of original, adding complex Gaussian white noise and then com-
puting the magnitude of inverse FFT [6]. To simulate low SNR
MRI, a relatively large variance of 30 is chosen. Figs. 3 and 4 in-
clude the comparison among original, noisy and denoised images
by different schemes for simulated and real MRI data. It can be
observed that nonlocal algorithm achieves lower MSE and com-
parable subjective quality to variational denoising [14]. Although
PDE-denoised image is arguably sharper (due to contrast enhanc-
ing capability), nonlocal denoised image contains less artifact es-
pecially around the contour and within the smooth region.

Fig. 3. From left to right: synthetic 128 × 128 phantom im-
age; noisy image (MSE=739); PDE scheme (MSE=305); nonlocal
scheme (MSE=299).

B. Speckle Noise Suppression from Ultrasound Images
Speckles generated by interference of subresolution scatters

in ultrasound imaging are more difficult to handle due to their en-
coded spatial information (note that from such perspective multi-

Fig. 4. Top-left: real 256 × 256 head mri image; top-right:
noisy image (MSE=724); bottom-left: PDE scheme (MSE=271);
bottom-right: nonlocal scheme (MSE=255).

plicative speckle noise model is no different from additive one up
to homomorphic transformation). In the second experiment, we
use the Field-II simulated phantom data provided by the authors
of [4] to test our nonlocal algorithm. To objectively evaluate the

performance of various despeckling schemes, a metric Q̂ called
ultrasound despeckling assessment index (USDSAI) was proposed

in [4]. A larger Q̂ value indicates a more desirable restoration or
enhancement result. We have found that our nonlocal denoising

algorithm produces similar Q̂ performance to SRAD [5] and SBF
[4]. However, when we concatenate nonlocal and local schemes
for the purpose of combining the strength of global smoothing and

local enhancement, superior Q̂ performance can be achieved. Fig.
5 includes the comparion among noisy image and despeckled im-
ages by different schemes. We have also tested the performance of
our nonlocal denoising algorithm on real ultrasound images. The
benchmarks used here are two local schemes: geometric filtering
[15] and Perona-Malik (PM) filtering [16]. Fig. 6 contains the
comparison of ultrasound images before and after different de-
speckling techniques. Note that thresholding parameter in PT is
manually adjusted to achieve a good tradeoff between noise sup-
pression and structure preservation. Subjective evalution suggests
that nonlocal despeckling gives better result than geometric filter-
ing and comparable performance to PM filtering.

5. CONCLUSION

In this paper, we attempt to demonstrate the potential of patch-
based nonlocal image models in restoring medical images. In con-
trast to existing local models such as PDE and wavelets, nonlocal
models are motivated by geometric symmetry of natural objects
and we introduce a new class of geometric resampling techniques
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Fig. 5. top-left: Field II simulation; top-right: denoised image by

SBF (Q̂ = 2.11); bottom-left: denoised image by our nonlocal

scheme (Q̂ = 2.02); bottom-right: denoised image by our com-

bined scheme (Q̂ = 2.40).

to obtain redundant representations. The introduced redundancy
is shown beneficial to exploit the nonlinear manifold constraint in
the high-dimensional patch space (because the manifold is better
sampled) and improve the statistical reference results by adaptive
fusion (because of the diversity from resampling). We extend LLE
into LLT whose third dimension encodes the geometric resampling
information, which contributes to its capability of exploiting non-
local dependency. Patch-based nonlocal denoising has achieved
highly encouraging results for removing Rician noise from MRI
images and reducing speckle noise from ultrasound images. We
have achieved better objective and comparable subjective perfor-
mance to known denoising schemes in the literature. More pow-
erful denoising techniques are expected by expanding the set of
lossless resampling operators into lossy and pursuing more sophis-
ticated fusion schemes.
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