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Abstract

Ultrasound images provide the clinician with non-
invasive, low cost, and real-time images that can help them
in diagnosis, plannnig and therapy. However, although the
human eye is able to derive the meaningful information from
these images, automatic processing is very difficult because
of the noise and artefacts present in the image. In this work,
we propose to extend the current anisotropic diffusion tech-
nique to deal with the speckle noise present in the Ultra-
sound images. To this end, we use a previously derived
model of the noise, and we write the restoration scheme as
a energy minization constrained by the noise model and pa-
rameters. This approach leads to a new data attachment
term whose optimal weight can be automatically estimated.

1. Introduction

Ultrasound is a low cost, non-invasive imaging modal-
ity that has proved popular for many medical applications.
However, the coherent nature of ultrasound results in im-
ages that are corrupted by speckle noise which reduces the
utility of ultrasound for less than highly trained users and
also complicates image processing tasks such as feature
segmentation. Different approaches have been proposed to
reduce the speckle, rencent works include wavelet-based
filtering [5], and modifications of the standard anisotropic
diffusion filter [1, 2], but none of them includes an explicit
model of the noise distribution as part of the restoration pro-
cess. We first give a background on the noise properties in
ultrasound images, and on the restoration technique that we
use for noise reduction. In section 2, we describe the noise-
contrained diffusion proposed by Rudin et al. and we ex-
tend this approach to deal with the characteristics of speckle
noise. In Section 3, our numerical scheme, the main algo-
rithm and the different parameters are presented. Finally,
experiments on both a synthetic and a real datasets are de-

picted, which show the behavior of our method.

1.1. Model of the speckle in ultrasound images

The speckle noise is known to have a Rayleigh distribu-
tion. However, the displayed images from the ultrasound
device have different properties. One property of the im-
age is the logarithmic compression. The analytic study of
log compressed Rayleigh signals in medical ultrasound has
been addressed for example in [6, 3]. Loupas [9] shows that
the linear relationship between the mean and the standard
deviation valid for Rayleigh distributed speckle no longer
holds for ultrasound images. Experimental measurements
show that displayed ultrasonic images can be modeled as
corrupted with signal-dependent noise of the form:

u0 = u +
√

un, (1)

where u is the original signal, u0 is the observed signal, and
n is a zero-mean Gaussian variable with standard deviation
σn. In the scope of this work, we use equation (1) as a
model to describe the noise in ultrasound images.

1.2. Anisotropic Diffusion

A general expression of the anisotropic diffusion equa-
tion can be written as:{

u(x, 0) = u0
∂u
∂t = div(F) + β(u0 − u),

(2)

where F is the diffusion flux and β is a data attachment
coefficient.

If β = 0, particular cases of this equation are: 1) the heat
diffusion equation F = ∇u which is equivalent to a Gaus-
sian convolution. 2) the Perona and Malik equation [13]
with F = g(‖ ∇u ‖)∇u where g is a diffusion function.
This function has the effect of reducing the diffusion for
’high’ gradients, based on a threshold δ on the norm of the
gradient. 3) the matrix diffusion proposed in [17], which



uses a diffusion matrix noted D with a flux F = D∇u.
The matrix D can be expressed in a diagonal form, with
eigenvectors (v0,v1,v2) and eigenvalues λ0, λ1, λ2. Then
the flux can be expressed as F = D∇u =

∑2
i=0 λiuvi

vi

where uvi
= ∇u.vi is the first order derivative of the inten-

sity in the direction of vi. In this paper, we will adapt for
ultrasound a particular case of the matrix diffusion, where
the flux is decomposed in the basis of the gradient (v0)
and the maximal (v1) and minimal (v2) curvature direc-
tions, as proposed in [8]. This diffusion was especially de-
signed to preserve small tubular structures like blood ves-
sels. The gradient and the principal curvature directions are
computed on the smoothed image u∗, where the smoothing
is obtained by convolution with a Gaussian of standard devi-
ation σ. The principal curvature directions are computed as
two eigenvectors of the matrix PHσP where Hσ is the Hes-
sian matrix of the image u∗ and P is the projection matrix
orthogonal to the gradient direction, that is H ′ = PHσP

with P = I −
(

∇u∗
|∇u∗|

)
.
(

∇u∗
|∇u∗|

)t

, where I is the identity

matrix in 3D. The eigenvalues of the diffusion matrix are
chosen as functions of the first order derivative of the inten-
sity in the corresponding eigenvector direction, and can be
written in the form λi(uvi

) = uvi
.gi(uvi

). The diffusion
in the gradient direction, g0(x), is chosen as Perona and

Malik’s diffusion function, i.e g0(x) = e−
x2

δ2 where δ is a
threshold on the intensity derivative in the smoothed gradi-
ent direction, and 0 < g1 ≤ g2 <= 1 weight the diffusion
in the principal curvature directions.

The data attachment term was first introduced by Nord-
ström [12], who proposed to unify the variational methods
of energy minimization [4, 11] with the anisotropic diffu-
sion equation introduced by Perona and Malik. This term
allows a convergence of the diffusion scheme to an image
that remains close to the initial data. It regularizes the equa-
tion, allows to express it as an optimal solution and obviates
the need to choose a diffusion time for stopping the equa-
tion.

2. Noise-Constrained Diffusion

The data attachment coefficient β can be optimally es-
timated from the image in the case of Gaussian noise with
zero mean and a known standard deviation σn as shown in
[15]. Note that, if the standard deviation of the noise is not
known a priori, it can be estimated from the initial image by
selecting a region of interest containing a single structure
and estimating its standard deviation. An alternative is also
to run the filter twice, using a first estimate of the standard
deviation of the noise, and then using the filtered image to
obtain a better estimate of σn for a second improved restora-
tion. We first describe the technique proposed by Rudin et
al. in the case of Gaussian noise, and then we propose an

extension for the noise model in ultrasound images.

2.1. Optimization for a Gaussian noise [15]

Let u0(x) denote the voxel values of the observed noisy
image for x = (x, y, z) ∈ Ω; and u(x) denote the desired
restored image. The additive Gaussian noise n is given by
u0(x) = u(x) + n(x). The idea proposed in [15] is to
write the restoration process as a constrained minimization,
where the constraint is defined by the characteristics of the
noise, in this case its zero mean and its standard deviation
σn. This minimization is written min

∫
Ω
‖ ∇u ‖ dΩ, with

the two constraints:∫
Ω

u dΩ =
∫

Ω

u0 dΩ, and
1
|Ω|

∫
Ω

(u − u0)2 dΩ = σ2
n,

(3)
which means that the white noise n is of zero mean, and has
a given standard deviation σn > 0. This second constraint
uses a priori information that the standard deviation of the
noise n is σn. The Euler-Langrange equations lead:

∂u

∂t
= div

( ∇u

‖ ∇u ‖
)
− λ(t)(u − u0) (4)

in Ω, and ∂u
∂n = 0 on the boundary of Ω = ∂Ω. From these

equations, the value of the coefficient λ(t) is deduced by
multiplying (4) by (u − u0) and integrating by part over Ω:
λ(t) = −1

σ2
n|Ω|

∫
Ω
∇(u(t)−u0).

∇u(t)
‖∇u‖ dΩ, where ∇(u−u0)

is the gradient of the difference between the image being
restored and the original noisy image, and ’.’ denotes the
scalar product operator. This gives a dynamic value λ(t),
which appears to converge as t → ∞. According to [15],
this approach is based on the gradient projection method of
Rosen [14]. In this case the diffusion flux F of equation
(2) is the normalized gradient of the image F = ∇u

‖∇u‖ , the
equation above can be generalized for any diffusion flux,
leading λ(t) = −1

σ2
n|Ω|

∫
Ω
∇(u − u0).F dΩ. This last equa-

tion is also equivalent to:

λ(t) =
1

σ2
n|Ω|

∫
Ω

(u − u0).div(F) dΩ (5)

2.2. Optimization for Speckle Noise

We use equation (1) as a model for speckle noise, where
the standard deviation σn of the Gaussian noise n is known.
Adapting the work of Rudin et al.[15] to this noise model,
the constraint given by equation (3) becomes:

E1(u) =
1
|Ω|

∫
Ω

(u − u0)2

u
dΩ = σ2

n, (6)

and its gradient is given by ∇E1(u) = u2−u2
0

u2 , leading:

∂u

∂t
= div(F) − λ(t)

u2 − u2
0

u2
in Ω (7)



and ∂u
∂n = 0 on the boundary of Ω = ∂Ω. To compute λ(t),

we multiply equation (7) by u−u0
u+u0

u and integrate over the
Ω. When steady state has been reached, the left side of (7)
vanishes, and we have:

λ(t) =
1

σ2
n|Ω|

∫
Ω

u − u0

u + u0
u.div(F) dΩ, (8)

3. Numerical Scheme

To improve the computation time and stability, we
use a stationary iterative scheme for solving the partial
differential equation. Other options include adapting the
numerical scheme proposed by Weickert [16, 17], or using
the conjugate gradient method as proposed in [7]. The
image with N points (pixels or voxels), is represented as
vector of R

N , denoted u. The diffusion equation (4) or
(7) is written in the form ∂u

∂t = A u − b, where A if a
N × N matrix and b is a vector of R

N depending on the
initial image u0. We are looking for the fixed point of the
equation A u = b. To this end, we use the Jacobi or the
Gauss-Seidel method. The Gauss-Seidel method consumes
little memory because it uses the same image for computing
and storing the resulting image. The Gauss-Seidel methods
converges faster than the Jacobi method, but it introduces
some asymmetry in the numerical scheme, than can be
compensated by alterning two reverse orders of scanning
the image. However, because the Gauss-Seidel technique
is recursive, it is difficult to parallelize, while the Jacobi
technique is naturally structured for parallel implementa-
tion. The description and algorithm below apply to both
schemes, the only difference been either to use two images
uk and uk+1 for the Jacobi method, or to use the same
image for the current and the next iteration in the case
of the Gauss-Seidel technique. Details of our numerical
scheme and implementation are given below. Our equation

is expressed as div(F) − λ
u2−u2

0
u2 = 0.

3.1. Discretization of div(F)

We discretize the divergence operator, at a given voxel
x:

div(F)(x) =
2∑

n=0

∂Fn

∂xn

=
2∑

n=0

Fn(x + dxn/2) − Fn(x − dxn/2),

where F = (F0, F1, F2)t, and (dx0,dx1,dx2) are the
unit vectors along each coordinate. In order to simplify, let
us consider the first component of F. As stated in section

1.2, our flux is written F = D∇u =
∑2

i=0 λiuvi
vi,

where (v0,v1,v2) are the gradient vector, and the
direction of maximal and minimal curvatures com-
puted on the smoothed image. Our diffusion flux
is F =

∑2
i=0 uvi

gi(uvi
)vi, and each component is

Fn =
∑2

i=0 uvi
gi(uvi

)vin where vin is the component
number n of the vector vi. In order to get the central
coefficient that applies to u(x), we need to discretize
uvi

= ∇u.vi at the positions (x ± dxn/2)n∈{0,1,2}.
Let us consider the case n = 0. The linear part comes
only from the gradient vector ∇u, which is com-
puted at x + dxn/2 using the following discretization:
ux(x + 1/2, y, z) = u1,0,0 − u0,0,0,
uy(x+1/2, y, z) = (u1,1,0 + u0,1,0 − u1,−1,0 − u0,−1,0) /4,
and
uz(x+1/2, y, z) = (u1,0,1 + u0,0,1 − u1,0,−1 − u0,0,−1) /4,
with ua,b,c = u(x + a, y + b, z + c). Isolating the term
u0,0,0 leads:

F0(x + dx0/2) = α+
0 (u1,0,0 − u0,0,0) + γ+

0 (9)

with α0 =
2∑

i=0

gi(uvi
)(vi0)

2 (10)

and γ0 =
2∑

i=0

(uyvi1 + uzvi2)gi(uvi
)vi0 (11)

and α±
n = αn(x± dx0/2) (same for γ±

n ). We define in the
same manner α−

0 and γ−
0 , which have the same expressions

but estimated at x−dx0/2 and we define the same variables
for y and z components (αn and γn with n = 1, 2). The
discretization of div(F) is then written:

div(F) = R u0,0,0 + S (12)

with R = −
2∑

n=0

(α+
n + α−

n ) (13)

and S =
2∑

n=0

[α+
n u(x + dxn)

+α−
n u(x − dxn) + γ+

n − γ−
n ] (14)

3.2. Overall scheme

Thus, we get the following iterative scheme, starting
from u0 = u0:

R(uk) uk+1 + S(uk) − λkf(uk+1, u0) = 0 (15)

For Gaussian noise, f(x, y) = x − y and the iterative

scheme becomes uk+1 = S(uk)+λku0
λk−R(uk)

. In the case of

speckle noise, f(x, y) = x2−y2

x2 and uk+1 is the real solu-
tion to the third order polynomial equation (R < 0 because



α±
i > 0):

X3 +
(S(uk) − λk)

R(uk)
X2 +

λku2
0

R(uk)
= 0. (16)

This equation has only one real strictly positive solution,

because the constant term λku2
0

R(uk)
is strictly negative. By

solving this equation instead of using f(uk, u0) in equation
(15), we considerably improve the stability of the numerical
scheme.
Main Algorithm
We can save computation time by storing the values of the
coefficients γ+

n and α+
n and deducing the coefficients γ−

n

and α−
n from the previous neighbors: α−

n (x) = α+
n (x −

dx). It only requires storing one coefficient for α0, one line
of coefficients for α1 and one plane of coefficients for α2

(and the same for γn).
Algorithm 1 (Iteration k + 1).
begin
∀(x, y), α−

0 = α−
1 (x) = α−

2 (x, y) = 0
∀(x, y), γ−

0 = γ−
1 (x) = γ−

2 (x, y) = 0
Sλ = 0
Compute smoothed image uk

σ = uk ∗ Gσ

for x = (x, y, z) ∈ Ω
for n ∈ {0, 1, 2} and position x + dxn/2:

Compute gradient of the current image ∇uk

Compute gradient ∇uk
σ and Hessian matrix H(uk

σ)
Compute principal curvature directions
Set (vi)i∈{0,1,2} as gradient and principal curvature

directions
Compute α+

n and γ+
n using (11).

end for
Compute R and S using (13) and (14).
Set uk+1(x) as the real strictly positive solution

of equation (16)
Update integral of equation (8) using equation (12):
Sλ = Sλ + (Ruk + S)uk−u0

uk+u0
.uk

α−
0 = α+

0 ; α−
1 (x) = α+

1 ; α−
2 (x, y) = α+

2 (x, y)
γ−
0 = γ+

0 ; γ−
1 (x) = γ+

1 ; γ−
2 (x, y) = γ+

2 (x, y)
end for
λk+1 = Sλ

σ2
n|Ω|

end.
The parameters of the algorithm are σ, δ, g1, g2,

the number of iterations, the type of noise (Gaussian or
speckle), the standard deviation σn of the noise. The value
of σ is usually chosen between 0.8 and 1.5 depending on
the noise level in the original image. The threshold δ is cho-
sen as low as possible in order to preserve small structures,
but still being able to remove the noise. The coefficient of
smoothing in the maximal and minimal curvature directions
g1 and g2 are usually set to 0.1 and 0.5 for angiograms and
1 and 1 for restoration bigger structures. The typical num-
ber of iterations used is between 10 and 40 iterations, and

the method either reaches convergence, or small structures
start to dissapear which means than some of the previous
parameters should be decreased. The standard deviation of
the noise is estimated automatically by selecting areas in-
side structures within the original image.

4. Experiments and Results

4.1. Synthetic image

We created a synthetic 3D image representing a Y-
junction of a vessel. The main vessel of radius 4 voxels
splits into two branches forming an angle of 90 degrees
and of radii 2 and 3 voxels. To make the image similar
to an ultrasound acquisition, the intensity of the vessel is
set to 25 and the intensity of the background is set to 50.
The binary image is then convolved with a Gaussian ker-
nel of standard deviation 0.7 in order to simulate partial
volume effect, and a multiplicative noise is added follow-
ing the model of equation (1), with a standard deviation
1 and 2 for the noise, as shown in figure 1. We use the

Figure 1. One slice display from the 3D synthetic Y-junction im-
age. From left to right and top to bottom, initial image, initial im-
age with additional noise σn = 1 and the corresponding filtered
image, initial image with noise σn = 2 and its filtered result.

following definition of the Signal To Noise Ratio (SNR):
SNR(Ib, Ir) = 10 log10

var(Ir)
var(Ib−Ir) , where Ir is the im-

age to evaluate, Ib is the initial image without noise, and
var(I) denotes the variance of the intensity in the image I .
The SNR improved from 1 to 9.8 for the image corrupted
by a noise of standard deviation 1, and from 0.3 to 7.1 for
the image corrupted by a noise of standard deviation 2. The
parameters used in these experiments are: σ = 0.8, δ = 2,
g1 = 0.1, g2 = 0.5, 40 iterations, speckle noise, σn = 1 for
the first noisy image; and the same parameters with δ = 3
and σn = 2 for the second noisy image.



4.2. Ultrasound of the liver

A 3D ultrasound of a liver was acquired using a freehand
system that consisted of a Lynx ultrasound unit (BK Med-
ical Systems, Wilmington, MA) and a miniBIRD tracking
device (Ascension Technology, Burlington, VT). The 3D
ultrasound was generated using the Stradx software (Cam-
bridge University, Cambridge, UK). The image dimensions
are 201×193×142 with isotropic voxel resolution. After se-
lecting several areas both in the liver tissue and in the blood
vessels, we estimated that, for our noise model, the stan-
dard deviation of the noise σn is approximatively equal to
1. We ran our filter with the following parameters: σ = 0.8,
δ = 3, g1 = 0.1, g2 = 0.5, 30 iterations, speckle noise,
σn = 1. The processing time was about 15 minutes on
a Pentium Centrino processor running at 1.7 GHz. In the
filtered image of figure 2, we can appreciate the noise re-
duction while most structures are still present in the image.
Figure 3 shows, on selected area, the difference between

Figure 2. Left, region of interest of a 3D ultrasound dataset of a
liver. Right, result of the our filter.

the original and the restored images, and the estimated noise
given our noise model. A close inspection should reveal that
the latter is more uncorrelated to the different tissues (in this
case liver and vessels), which can justify, a posteriori, our
multiplicative noise model.

u0 ur u0 − ur
u0−ur√

ur

Figure 3. Visual comparison of the noise texture between vessel
and liver tissues. From left to right, observed signal, restored sig-
nal, their difference, estimated noise.

5. Summary and Conclusions

We presented a new image restoration technique, which
takes into account a model of the speckle noise in ultra-
sound images. This new technique combines an anisotropic
diffusion method specially designed for preserving and en-
hancing small vessel structures [8], with a constrained filter-
ing [15] initially proposed for Gaussian noise, and adapted
and extented for the noise characteristics of ultrasound im-
ages. We detailled the numerical scheme to allow repro-
ducibility of the results. Our first results are promising.
Future work includes evaluting the performance of the fil-
ter as a pre-processing tool for automatic segmentation al-
gorithms. We plan in particular to use a level set tech-
nique for automatic segmentation of the blood vessels in the
liver. Another interesting opportunity is to run intensity cor-
rection algorithms like the Expectation-Maximization al-
gorithm proposed in [18], or algorithms based on entropy
minimization[10], and ideally to include an intensity cor-
rection within our noise reduction technique. Finally, our
technique runs in parallel using the Jacobi method, which
could lead to real-time noise reduction and segmentation of
ultrasound images to better guide interventional and surgi-
cal therapies, where the primary skill of the caregiver may
not be ultrasound image interpretation.
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