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Abstract—One of the main problems related to unsupervised
change detection methods based on the “difference image” lies in
the lack of efficient automatic techniques for discriminating be-
tween changed and unchanged pixels in the difference image. Such
discrimination is usually performed by using empirical strategies
or manual trial-and-error procedures, which affect both the accu-
racy and the reliability of the change-detection process. To over-
come such drawbacks, in this paper, we propose two automatic
techniques (based on the Bayes theory) for the analysis of the dif-
ference image. One allows an automatic selection of the decision
threshold that minimizes the overall change detection error prob-
ability under the assumption that pixels in the difference image
are independent of one another. The other analyzes the difference
image by considering the spatial-contextual information included
in the neighborhood of each pixel. In particular, an approach based
on Markov Random Fields (MRF’s) that exploits interpixel class
dependency contexts is presented. Both proposed techniques re-
quire the knowledge of the statistical distributions of the changed
and unchanged pixels in the difference image. To perform an unsu-
pervised estimation of the statistical terms that characterize these
distributions, we propose an iterative method based on the Expec-
tation-Maximization (EM) algorithm. Experimental results con-
firm the effectiveness of both proposed techniques.

Index Terms—Change detection, change vector analysis, differ-
ence image, multitemporal images, remote sensing.

I. INTRODUCTION

I N THE past few years, there has been a growing interest in
the development of automatic change-detection techniques

for the analysis of multitemporal remote sensing images [1]–[6].
This interest stems from the wide range of applications in which
change detection methods can be used, like environmental mon-
itoring [7], agricultural surveys [5], urban studies [1], forest
monitoring [2], [8], [9], etc.

Usually, change detection involves the analysis of two regis-
tered multispectral remote sensing images acquired in the same
geographical area at two different times. Such an analysis aims
at identifying land cover changes that have occurred in the study
area between the two times considered. In the remote sensing lit-
erature, two main approaches to the change-detection problem
have been proposed: the supervised approach and the unsuper-
vised approach [5], [10]. The former is based on supervised clas-
sification methods, which require the availability of a multitem-
poral ground truth in order to derive a suitable training set for the
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learning process of the classifiers. The latter performs change
detection by making a direct comparison of the two multispec-
tral images considered, without relying on any additional infor-
mation. Although the supervised approach exhibits some advan-
tages over the unsupervised one (e.g., capability to explicitly
recognize the kinds of land cover transitions that have occurred,
robustness to the different atmospheric and light conditions at
the two acquisition times, ability to process multisensor/multi-
source images [5]), the generation of an appropriate multitem-
poral ground truth is usually a difficult and expensive task. Con-
sequently, the use of effective unsupervised change-detection
methods is fundamental in many applications in which a ground
truth is not available.

In this paper, we focus on one of the most widely used types
of unsupervised change-detection techniques, which are based
on the so-called “difference image” [10], [11]. These techniques
process the two multispectral images acquired at two different
dates (or vegetation indexes [10], principal components [10],
etc., derived from such images) in order to generate a further
image. The computed difference image is such that the values
of the pixels associated with land cover changes present values
significantly different from those of the pixels associated with
unchanged areas. Changes are then identified by analyzing (e.g.,
thresholding) the difference image. For example, the univariate
image differencing technique [10], [11] generates the difference
image by subtracting, pixel by pixel, a single spectral band of the
two multispectral images under analysis. The choice of the spec-
tral band depends on the specific type of change to be detected.
An analogous concept is applied by the widely used change
vector analysis (CVA) technique. In this case, several spectral
channels are used at each time. For each pair of corresponding
pixels, a “spectral change vector” is computed as the difference
between the feature vectors at the two times. Then, the pixel
values in the difference image are associated with the modules
of the spectral change vectors. It follows that unchanged pixels
present small gray-level values, whereas changed pixels present
rather large values. Other techniques, like image ratioing, pro-
duce the difference image by computing the ratio, instead of the
difference, between multitemporal images [10].

In spite of their relative simplicity and widespread use, the
aforementioned change-detection methods exhibit a major
drawback: a lack of automatic and nonheuristic techniques
for the analysis of the difference image. In fact, in classical
techniques, such an analysis is performed by thresholding
the difference image according to empirical strategies [12] or
manual trial-and-error procedures, which significantly affect
the reliability and accuracy of the final change-detection map.
In particular, the most widely used approach to the selection of
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the decision threshold is based on the assumption (reasonable
but not always verified) that only a few changes occurred in
the study area between the two dates considered. Under this
hypothesis, the density function of the pixel values in the
difference image can be confused with the density function
of the unchanged pixels. According to this assumption, pixels
having gray-level values significantly different from the mean
of the density function of the difference image are labeled as
changed. In particular, the decision threshold is fixed at
from the mean value of the difference image, being the
standard deviation of the density function of the pixel values
in the difference image and being a real number derived by
a trial-and-error procedure. In this context, the selection of
the parameter strongly depends on the end-user’s subjective
criteria, which may lead to unreliable change-detection results.
In addition, such a selection usually requires several trials and
hence, a nonnegligible computation time [13], [14].

In this paper, we define the problem of the analysis of the
difference image for unsupervised change detection in terms of
the Bayes decision theory. The application of this theory re-
quires the estimations of thea priori probabilities and of the
conditional density functions for the classes associated with the
unchanged and changed pixels in the difference image. To this
end, we present an approach (based on the Expectation-Maxi-
mization algorithm [15]–[17]) that allows such estimations to be
performed in an unsupervised way. Within this framework, two
automatic techniques for the analysis of the difference image are
presented that overcome the main problems inherent in classical
techniques. One assumes that the gray-level values of the pixels
in the difference image are independent of one another. Under
this assumption, the Bayes rule for minimum error is applied in
order to select, in an automatic way, the decision threshold that
minimizes the overall error probability in the change-detection
process. The other technique considers the spatial-contextual in-
formation contained in the difference image in order to increase
the accuracy of the final change-detection map. In particular, an
approach based on Markov Random Fields (MRF’s) is proposed
that exploits the interpixel class dependence to model the prior
probabilities of classes.

In order to assess the effectiveness of both proposed tech-
niques, we carried out experiments on two different data sets.
One was a real multitemporal data set composed of two multi-
spectral images acquired by the Thematic Mapper sensor of the
Landsat 5 satellite. The other was a synthetic data set generated
to evaluate the robustness of the proposed techniques against
different levels of noise.

This paper is organized into eight sections. The next section
introduces the formulation of the unsupervised change-detec-
tion problem in terms of the Bayes theory. In particular, an au-
tomatic method for the unsupervised estimation of the statis-
tical terms required by the Bayesian approach is presented. Sec-
tion III addresses the automatic selection of the minimum error
threshold, under the assumption that pixels in the difference
image are independent of one another. Section IV deals with the
context-based approach to the analysis of the difference image.
The data sets used in the experiments are detailed in Section V,
together with the experiments carried out. The results obtained
in the real and synthetic data sets are reported in Sections VI

and VII, respectively. Finally, conclusions are drawn in Section
VIII.

II. A PPROACH TO THEUNSUPERVISEDESTIMATION OF

STATISTICAL TERMS ASSOCIATED WITHCLASSES IN THE

DIFFERENCEIMAGE

Let us consider two multispectral images, and
of size acquired in the same geographical area at
two different times, and . Let us assume that such im-
ages have been coregistered [18], [19] and that the possible
differences in the light and atmospheric conditions at the
two times have been corrected [20]. Let be a random
variable in the range , and let it repre-
sent the values of the pixels in the difference image

obtained by applying
the CVA technique to and . For the sake of simplicity,
the two proposed techniques will be presented in the context of
the CVA method. However, a generalization to other methods
based on the difference image is straightforward.

A. Basic Rationale

Unlike classical unsupervised methods used in remote
sensing applications, our approach involves formulating the
problem of the analysis of the difference image for change
detection in terms of the Bayesian decision theory. Within this
framework, we aim at discriminating between two opposite
classes, and , associated with unchanged and changed
pixels, respectively. In order to analyze the difference image
on the basis of the Bayes theory, the main problems to be
solved are the estimations of both the probability density
functions and and thea priori probabilities

and of the classes and , respectively [21].
Generally, these terms are estimated by using supervised ap-
proaches that require the availability of a multitemporal ground
truth. However, as we deal with an unsupervised approach,
the estimation process cannot be performed on the basis of a
training set.

In this paper, we propose an unsupervised method for esti-
mating the aforesaid statistical terms. In particular, the method
assumes that the probability density function computed
on the pixel values in the difference image can be modeled
as a mixture density distribution consisting of two density com-
ponents associated with the classesand , respectively, i.e.,

(1)

Under this assumption, the unsupervised estimations of
, , , and can be performed by

using the EM algorithm.

B. Estimations of , , , and by
the EM Algorithm

The EM algorithm is a general approach to maximum-likeli-
hood (ML) estimation for incomplete data problems [15]–[17],
[22]. It consists of an expectation step and a maximization step,
which are iterated until convergence. The expectation step is
computed with respect to the unknown underlying variables,
using the current estimates of the parameters, and is conditioned
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by observations. The maximization step provides new estimates
of the parameters.

We propose using the EM algorithm to estimate the values of
the a priori probabilities and and the values of
the parameters that characterize the density functions
and . Let us assume that both and
can be modeled by Gaussian distributions (this is a reasonable
assumption for many applications involving images acquired by
passive sensors). In this context, the density function associated
with the class can be described by the meanand the vari-
ance . Analogously, the density function associated with the
class can be described by the meanand the variance . It
is possible to prove that the equations for estimating the afore-
mentioned statistical terms for the class are the following
[17]:

(2)

(3)

(4)

where the superscriptsand denote the values of the param-
eters at the current and next iterations, respectively. Analogous
equations are used to estimate the prior probability and the mean
and variance values of the conditional density function associ-
ated with the class .

The estimates are obtained by starting from initial values
of the considered statistical terms and by iterating the above
equations until convergence. It is possible to prove that, at
each iteration, the estimated parameters provide an increase
in the log-likelihood function , where

. At convergence, a local
maximum of the log-likelihood function is reached [15], [16].

The initial values of the estimates can be determined by ex-
ploiting the intrinsic characteristics of the difference image ob-
tained with the CVA technique. In particular, a subset of
pixels likely to belong to and a subset of pixels likely
to belong to can be obtained by applying two thresholds,
and , to the right and left extremes of the histogram of
the difference image (see Fig. 1). We expressand as

and , where is the middle
value of (i.e., ), and

is the initialization parameter that defines the range
around in which pixels cannot be easily identified as either
changed or unchanged. Then the sets

and are used to compute
the initial estimates of the statistical parameters associated with
the classes and , respectively.

Fig. 1. Schematic representation of the thresholding strategy applied to the
difference-image histogramh(X) for the initialization of the EM algorithm.

The previously described formulation of the EM algorithm
allows one to estimate the statistical parameters associated with
both classes and under the assumption of Gaussian dis-
tributions. However, it is worth noting that more general ap-
proaches to estimating the mixture component parameters might
be adopted. In particular, we recall the semiparametric and non-
parametric approaches presented in [22] and the generalized
mixture estimation technique proposed in [23].

The estimates obtained by the EM algorithm at convergence
can be exploited to analyze the difference image with the tech-
niques described in the next two sections.

III. A NALYSIS OF THE DIFFERENCEIMAGE UNDER THE

ASSUMPTION OFINDEPENDENTPIXEL VALUES

In this section, an automatic technique aimed at selecting the
decision threshold that minimizes the error probability in the
change-detection process is presented. This technique was de-
veloped under the assumption that pixel values are independent
of one another.

Under the hypothesis of interpixel independence and ac-
cording to the Bayes rule for minimum error, each pixel
in the difference image should be assigned to the class
that maximizes the posterior conditional probability, i.e.,

(5)

Applying this criterion to solve the change-detection problem
is equivalent to thresholding the difference image at the ML
boundary between the classes and . Therefore, on the
basis of the estimates of the statistical terms obtained by the EM
algorithm, the optimum threshold value can be estimated by
solving the following equation with respect to the variable:

(6)

which, in the Gaussian case, is equivalent to solving the fol-
lowing quadratic equation:

(7)
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It is worth noting that the accuracy of the threshold value
was obtained and therefore, the precision of the final change-de-
tection map depends on the accuracies of the estimates provided
by the EM algorithm.

IV. A NALYSIS OF THE DIFFERENCEIMAGE BY CONSIDERING

SPATIAL-CONTEXTUAL INFORMATION

In this section, we describe an automatic technique that, un-
like the most widely used approaches to change detection, ex-
plicitly considers spatial-contextual information for the analysis
of the difference image. Such a technique is based on the as-
sumption that the changes to be identified are large enough to
be detected by the sensor used. Under this hypothesis, a pixel
belonging to the class is likely to be surrounded by pixels
belonging to the same class. Therefore, an efficient use of this
interpixel class dependence may yield more reliable and accu-
rate change-detection results.

Let the set with be composed
of all the possible sets of labels in the difference image,
where with

is a generic set of labels in . By taking into account
the spatial-contextual information, the Bayes rule for minimum
error, as defined in (5), can be rewritten as the selection of a set

that maximizes the following rule:

arg max

arg max (8)

where is the prior model for the class labels, and
is the joint density function of the pixel values

in the difference image given the set of labels. The max-
imization of (8) requires the estimations of both and

, which are very complex tasks. A simplification of
the problem can be achieved if we model the spatial-contextual
information in a local spatial neighborhood. This is rather
a reasonable approach if we consider the interpixel class
dependence as the interactions between pixel classes decrease
rapidly as the distances between pixels increase. In this context,
we propose the use of an MRF approach to model the spatial
context in the prior model for the class labels . In
fact, MRF’s provide a methodological framework that allows
the interpixel class dependence to be fully exploited. As a
further simplification of the problem, we assume the following
conditional independence:

(9)

A. Description of the Considered MRF Model

In order to formulate the problem by using MRF’s, it is neces-
sary to introduce the concept of a spatial neighborhood system
defining set . Let us define the neighbor system of the pixel
with coordinates as , .
Although it is possible to use various spatial neighborhood sys-
tems, in this paper, we consider a second-order spatial neighbor-
hood system (see Fig. 2). Therefore, in our case, ,

, , and .

Fig. 2. Second-order neighborhood system defining set used by the considered
MRF approach.

The Markov modeling of the conditional distribution of the
pixel label given the pixel labels elsewhere, is expressed
as [24]–[26]

(10)

where is the Gibbs energy function, and is a normal-
izing factor. , is given
by [24]–[26]

(11)

where is the Kronecker delta function, which can be ex-
pressed as

if
if

(12)

and is a constant that tunes the influence of the spatial-con-
textual information on the change-detection process. It is worth
noting that (11) can be regarded as a simplification of the more
general clique potential notation adopted by many authors
[27]–[29]. For more detailed descriptions of MRF’s and of the
specific model adopted in this paper, we refer the reader to
[24]–[29].

B. Generation of the Change-Detection Map

According to (8), the generation of the final change-detec-
tion map involves the labeling of all the pixels in the difference
image so that, under the aforementioned assumptions, the pos-
terior probability is maximized. In terms of the Markovian ap-
proach, this is equivalent to the minimization of the following
energy function [24]–[26]:

(13)

On the one hand, the energy term describes the inter-
pixel class dependence, which is determined according to (11).
On the other hand, the term represents the statistics
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of the gray levels in the difference image under the assumption
of conditional independence, as defined in (9). In the Gaussian
case, the energy term can be written as

(14)

where and are the
estimates obtained by the EM algorithm under the assumption
of independence.

Generally, the minimization of (13) is carried out by using
an iterative algorithm (e.g., the simulated annealing algorithm
[27]). In this paper, we suggest using a simple and fast approach
based on Besag’s iterated conditional modes (ICM) algorithm,
which has been proved to converge to a local minimum of the
energy function [30]. According to this strategy, thethat min-
imizes (13) is obtained by the following algorithm.

1) For all pixels , initialize with the
class that minimizes the noncontextual energy function

.
2) For all pixels , update to the class

that minimizes (13).
3) Repeat step 2 until convergence is reached.

V. DESCRIPTIONS OFDATA SETS AND EXPERIMENTS

In order to assess the effectiveness of the proposed techniques
for the analysis of the difference image, we considered two dif-
ferent data sets: a real multitemporal data set corresponding to
the geographical area of the Island of Elba, Italy, and a syn-
thetic data set artificially generated to evaluate the robustness
of the proposed techniques to noise. In the following, both the
data sets and the carried out experiments are detailed.

A. Data Set Related to the Island of Elba

The first of the two data sets used in the experiments con-
sisted of two multispectral images acquired by the Landsat-5
Thematic Mapper (TM) sensor in the western part of the Island
of Elba in August 1994 and September 1994. The area selected
for the experiments was a section (414326 pixels) of the two
scenes acquired by the TM sensor. As an example of the im-
ages used, Fig. 3(a) and (b) show channel 4 of the August and
September images, respectively. As is readily apparent (see the
upper left parts of the images), a wildfire destroyed a notable
portion of the vegetation in the aforesaid area between the two
dates considered. The available ground truth concerning the lo-
cation of the wildfire was used to prepare a “reference map” [see
Fig. 3(c)] useful to assess change-detection errors. Such a map
was refined by a manual analysis of the remote sensing images
considered.

The September image was registered to the August one. The
analyses of the histograms of both images did not reveal any
significant difference in the light conditions at the times of the
two acquisitions. Therefore, no correction algorithms were ap-
plied. The noise affecting the intensity values of the images was
reduced by applying a simple running mean filtering (33
window size) to both images.

Fig. 3. Images of the Island of Elba, Italy, utilized in the experiments. (a) Band
4 of the Landsat TM image acquired in August 1994, (b) band 4 of the Landsat
TM image acquired in September 1994, and (c) ground-truth map of the changed
area used as a reference map in the experiments.

B. Synthetic Data Set

The second data set was artificially generated in order to con-
trol the noise affecting the difference image. This allowed us
to assess more accurately the robustness of the proposed tech-
niques against different levels of noise. The data set was ob-
tained by the procedure described in the following. An image ac-
quired by the Daedalus 1268 Airborne Thematic Mapper (ATM)
multispectral scanner [31] was used as the reference image. In
particular, a section (250 350 pixels) of a scene acquired in
an agricultural area near the village of Feltwell, U.K., was se-
lected (for the sake of simplicity, only band 5 of the ATM was
considered). This image was assumed to be theimage of the
data set (i.e., the image acquired at time). The image was
artificially generated from the reference one. In particular, a first
version of the image was obtained by inserting some changes
in the image in order to simulate land cover variations. Then
the histogram of the resulting image was slightly shifted to sim-
ulate different light conditions in the two images. Finally, five
versions of the image were generated by adding different re-
alizations of zero-mean Gaussian noise to theimage (the five
values of the SNR used were 10, 5, 2, 1, and 0 dB). For sim-
plicity, we assumed the spatial independence of the noise com-
ponents in the images.

According to the previously described procedure, we ob-
tained five pairs of images. Each pair was composed of the
image and one of the images (characterized by a specific
value of the SNR). As an example, Fig. 4(a) and (b) show the

image and the image for an SNR 0 dB, respectively.
The map of the areas with simulated changes is presented in
Fig. 4(c).
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TABLE I
TRUE VALUES OF THESTATISTICAL TERMS OF THEDIFFERENCEIMAGE AND ESTIMATES PROVIDED BY THE PROPOSEDAPPROACH FORDIFFERENTVALUES OF THE

INITIALIZATION PARAMETER � (DATA SET RELATED TO THE ISLAND OF ELBA)

Fig. 4. Synthetic data set utilized in the experiments. (a)t image, (b)t image
(for SNR = 0 dB), (c) map of the areas with simulated changes used as the
reference map in the experiments.

C. Description of the Experiments

Three different experiments were carried out to test the va-
lidity of the proposed techniques.

The first experiment allowed an evaluation of the accuracy
and stability of the proposed approach based on the EM algo-
rithm for the estimation of the statistical terms involved in (1).
To this end, the true values of thea priori probabilities
and , as well as the means and standard deviations of the
density functions and , were computed by
using the information available in the reference maps. These
values were then compared with the estimates obtained by the
proposed approach.

The second experiment aimed at assessing the effectiveness
of the technique for the analysis of the difference image under

the assumption of independent pixel values (see Section III).
In particular, the value of the decision threshold derived by
using the proposed technique was compared with the threshold
value that provided the minimum overall change-detection
error. The minimum-error threshold was obtained by per-
forming a nonautomatic evaluation of the change-detection er-
rors versus all possible values of the decision threshold. The
comparison was made in terms of both the overall change-de-
tection error and the number of false and missed alarms.

The third experiment made it possible to assess the capability
of the proposed technique that exploits the spatial-contextual
information (see Section IV) to improve the change-detection
accuracies provided by the classical thresholding approach. For
this evaluation, the results yielded by the application of the pre-
sented context-based technique were compared with the results
obtained by thresholding the difference image with the min-
imum error threshold value .

VI. EXPERIMENTAL RESULTS ON THEDATA SET RELATED TO

THE ISLAND OF ELBA

Preliminary trials were carried out in order to determine the
most effective spectral bands for detecting the burned area in
the considered data set. On the basis of the results of these trials
and in accordance with the literature [32], we applied the CVA
technique to spectral bands 4 and 7 of the images. In fact, such
bands turned out to be very effective in locating the burned area.

A. First Experiment: Estimation of the Statistical Terms
Associated with the Classes and

In order to assess both the accuracy and the stability of the
proposed approach to estimating , and

, different trials were carried out for different values of the
initialization parameter . In particular, we used values of
ranging from 0.3 to 0.7. The estimates obtained are presented
in Table I, in which the true values computed on the reference
map are also given to allow a comparison. From the analysis of
the table, one can deduce that the proposed technique provided
quite accurate estimates of the above statistical terms. In partic-
ular, despite the estimates of the meanand of the standard
deviation, are slightly different from the real values, and the
estimates of the prior probabilities and as well as
those of the mean and of the standard deviation are very
close to the corresponding true values. In addition, it is impor-
tant to point out the high stability of the estimates versus the
various values of the initialization parameter. This confirms
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Fig. 5. Histogram of the difference image corresponding to the data set
related to the Island of Elba. For the sake of comparison, the estimates of the
distributions of both classes! and! obtained by the EM algorithm are
superimposed(� = 0:7). The histogram was normalized in order to permit a
direct comparison with the estimated distributions of the classes.

that the initialization phase is not critical for the proposed ap-
proach.

Additional information about the accuracies of the estimates
obtained by the EM algorithm can be derived from the anal-
ysis of Fig. 5, which shows both the histogram of the difference
image and the density functions of the classesand for

(the histogram was normalized to allow a direct com-
parison with the estimated density functions). As can be seen,
the density functions of the classes derived by the EM algorithm
resulted in a fairly reasonable approximation of the distribution
of the difference image. This confirms the effectiveness of the
proposed technique. It is worth noting that a more accurate es-
timate of the density function of the class could be obtained
with nonparametric or semiparametric mixture density estima-
tion techniques [22], [23]. However, the levels of complexity
inherent in these approaches do not seem to be justified in the
present case.

A deeper insight into the behavior of the EM algorithm is
made possible by Fig. 6, which presents the trend of each esti-
mate provided by the proposed technique (for ) versus
the number of algorithm iterations for the class. As can be
seen, the estimates evolve from wrong initial values to accurate
final ones in only six iterations (similar behaviors were shown
by the estimates of the class .

B. Second Experiment: Analysis of the Difference Image
Under the Assumption of Independent Pixel Values

In this experiment, the decision threshold estimated by
the technique described in Section III was compared with the
minimum-error threshold derived by a manual trial-and-error
procedure. Thanks to the stability of the EM algorithm, the esti-
mates given in Table I for different values resulted in the same
value (i.e., 82) of the decision threshold. This value was very
close to the minimum-error threshold which, in this case, was
equal to 84. As a consequence, our technique involved an overall
change-detection error (i.e., 438 pixels) that was very close to
the minimum one (i.e., 424 pixels).

A better understanding of the results obtained can be
gained by the analysis of Fig. 7. In this figure, the trends of
the overall error, false alarms, and missed alarms versus the

Fig. 6. Estimates of the statistical terms provided by the proposed approach
(for � = 0:7) versus the number of iterations of the EM algorithm for the class
! (data set related to the Island of Elba).

Fig. 7. Behaviors of the change-detection errors (overall error, missed alarms,
and false alarms) versus the decision threshold for the data set related to the
Island of Elba. The minimum-error thresholdT was found for a gray-level
value equal to 84.

decision-threshold value are plotted. The optimum threshold
value corresponds to the point at which the curve of the overall
error reaches the minimum value. As one can see, the decision
threshold derived with the proposed technique corresponds
to a value on the overall-error curve that is very close to the
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Fig. 8. Change-detection map obtained for the data set related to the Island
of Elba by using (a) the proposed technique based on the assumption of
independent pixel values, (b) the optimal threshold value provided by a manual
trial-and-error procedure under the hypothesis of independent pixel values, and
(c) the proposed technique, which exploits the spatial context(� = 1:6).

minimum one. Concerning the error typology, the proposed
technique resulted in 218 false alarms and 220 missed alarms,
and the minimum overall-error threshold involved 142 false
alarms and 282 missed alarms.

The change-detection maps obtained by using the threshold
selected by the proposed technique and the minimum-error

threshold are shown in Fig. 8(a) and (b), respectively. A
comparison of such maps highlights the ability of our tech-
nique to generate, in an automatic way, a change-detection map
very similar to the best one that can be achieved by a manual
trial-and-error procedure.

C. Third Experiment: Analysis of the Difference Image by
Considering Spatial Contextual Information

The proposed technique that takes into account the spatial
contextual information in the analysis of the difference image
was tested by carrying out trials for different values of the pa-
rameter (11). The results obtained are summarized in Table II.
As one can see, for each trial carried out, our technique provided
a sharp reduction in the overall change-detection error, as com-
pared with the error resulting from the minimum-error threshold

(e.g., 176 versus 424 for . In particular, the numbers
of missed and false alarms were significantly reduced. As an
example, for , the number of missed alarms decreased
from 282 to only 38, and the number of false alarms reduced
from 142 to 138.

Fig. 8(c) shows the change-detection map obtained with the
proposed technique for . A comparison of Fig. 8(c) with
Fig. 8(b) confirms that our technique based on the spatial con-
text provided, in an automatic way, a change-detection map that

TABLE II
OVERALL ERROR, FALSE ALARMS, AND MISSEDALARMS RESULTING FROM

THE PROPOSEDCONTEXT-BASED TECHNIQUE FORDIFFERENTVALUES OF THE

PARAMETER � (DATA SET RELATED TO THE ISLAND OF ELBA). FOR THESAKE

OF COMPARISON, THE TABLE ALSO GIVES THE OVERALL ERROR, THE FALSE

ALARMS, AND THE MISSEDALARMS ASSOCIATED WITH THEMINIMUM

ERRORTHRESHOLDFOUND BY A NONAUTOMATIC PROCEDUREUNDER

THE ASSUMPTION OFPIXEL INDEPENDENCE

was significantly more accurate (see Fig. 3(c) for a comparison)
than the one achieved by using the minimum-error threshold
value .

VII. EXPERIMENTAL RESULTS ON THESYNTHETIC DATA SET

The experiments described in Section VI were repeated on
the synthetic data set in order to evaluate the performances of
the presented techniques versus variations in the level of noise.
To this end, for the five pairs of synthetic images considered,
the corresponding difference images were obtained by applying
the CVA technique. For all the trials carried out on this data set,
the initialization parameter was fixed at 0.5. In addition, when
the context-based technique was used, the parameterwas set
to 1.3.

A. First Experiment: Estimation of the Statistical Terms
Associated With the Classes and

Table III shows the results obtained in this experiment for the
five SNR values selected. As one can see, in all the trials, the es-
timates provided by the proposed technique accurately approx-
imate the true values of the considered statistical parameters. In
particular, even in the cases characterized by high levels of noise
(i.e., SNR 1 dB and SNR 0 dB), the obtained estimates
turned out to be very close to the corresponding true values (the
largest error concerns the estimate offor SNR 1 dB, for
which a value of about 168.00 was obtained, instead of the true
value of 163.78).

In Fig. 9, the histogram of the difference image is compared
with the estimates of the density functions of the classes derived
by the EM algorithm for SNR = 0 dB. As one can see, in spite
of the relative complexity of the problem (the histogram of the
difference image does not present two well-separated modes),
the estimates achieved with the proposed technique provide an
accurate approximation for the density function of the difference
image.

This experiment also gives some information about the con-
vergence capabilities of the EM algorithm. In particular, as one
can see in Fig. 10, the number of iterations necessary to reach
convergence increases with the level of noise affecting the im-
ages. In greater detail, for SNR10 dB, the algorithm reached
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TABLE III
TRUE VALUES OF THESTATISTICAL TERMS OF THEDIFFERENCEIMAGES AND ESTIMATES PROVIDED BY THE PROPOSEDAPPROACH FORDIFFERENTSNR VALUES

(SYNTHETIC DATA SET): (a) CLASS! PARAMETERS AND (b) CLASS! PARAMETERS

Fig. 9. Histogram of the difference image corresponding to the synthetic data
set (SNR = 0 dB). For the sake of comparison, the estimates of the distributions
of both classes! and! obtained by the EM algorithm are superimposed.
The histogram was normalized in order to permit a direct comparison with the
estimated distributions of the classes.

convergence in only three iterations, whereas the number of it-
erations increased up to 26 for SNR0 dB.

B. Second Experiment: Analysis of the Difference Image
Under the Assumption of Independent Pixel Values

Thanks to the accuracy of the estimates provided by the pro-
posed technique in the previous experiment, all the trials carried
out for the different SNR values considered resulted in a deci-
sion threshold value very close to the corresponding min-
imum-error threshold . In particular, the largest error was in-
curred for SNR 0 dB, for which the estimated threshold was
equal to 144, whereas the minimum-error threshold was found
to be equal to 142. As a consequence, the overall change-detec-
tion error involved in the proposed technique (i.e., 940 pixels)
was comparable to the minimum one (i.e., 899 pixels). In greater

Fig. 10. Number of iterations of the EM algorithm to reach convergence versus
the SNR.

detail, the proposed technique (for SNR0 dB) resulted in 839
and 101 missed and false alarms, respectively, whereas the min-
imum overall error involved 733 missed alarms and 166 false
alarms.

Fig. 11(a) and (b) show the change-detection maps achieved
by using the decision threshold (selected with the proposed
technique) and the minimum-error threshold, respectively,
for SNR 0 dB. A comparative analysis of these images points
out that, as occurred for the data set related to the Island of Elba,
the two maps are very similar also for this data set. This confirms
the reliability of the proposed automatic technique.

C. Third Experiment: Analysis of the Difference Image by
Considering Spatial Contextual Information

The results obtained in this experiment (see Table IV) point
out the validity of the presented context-based technique. In par-
ticular, also on this data set and in all the trials carried out, the
overall change-detection error was reduced, as compared with
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TABLE IV
OVERALL ERROR, FALSE ALARMS, AND MISSEDALARMS RESULTING FROM THEPROPOSEDCONTEXT-BASED TECHNIQUE FORDIFFERENTSNR VALUES

(SYNTHETIC DATA SET). FOR THE SAKE OF COMPARISON, THE TABLE ALSO GIVES THE OVERALL ERROR, THE FALSE ALARMS, AND THE MISSEDALARMS

ASSOCIATED WITH THEMINIMUM -ERRORTHRESHOLDFOUND BY A NONAUTOMATIC PROCEDUREUNDER THEASSUMPTION OFPIXEL INDEPENDENCE

Fig. 11. Change-detection map obtained for the synthetic data set (SNR
= 0 dB) by using (a) the proposed technique based on the assumption of
independent pixel values, (b) the optimal threshold value provided by a manual
trial-and-error procedure under the hypothesis of independent pixel values, and
(c) the proposed technique that exploits the spatial context.

the one incurred when using the corresponding minimum-error
threshold under the pixel-independence assumption (the re-
duction is sharper for an increasing level of noise). For example,
for SNR = 0 dB, the overall error made with the context-based
technique was equal to 157 pixels, whereas the error made for
the minimum error threshold was found to be equal to 889
pixels. In greater detail, the number of missed alarms decreased
from 733 to 152, and the number of false alarms was reduced
from 166 to 5.

Fig. 11(c) shows the change-detection map resulting from the
application of the proposed context-based technique in the case
of SNR = 0 dB. A comparative analysis of Fig. 11(b) and (c) and
Fig. 4(c) confirms the effectiveness of this technique, which pro-
vides a change-detection map that is more accurate and signif-
icantly less noisy than the one achieved for the minimum-error
threshold .

VIII. C ONCLUSIONS

In this paper, two techniques for the analysis of the differ-
ence image in unsupervised change-detection problems have
been proposed. Such techniques, unlike classical ones, perform
an automatic analysis of the difference image by exploiting the-
oretically well-founded methods.

From a methodological viewpoint, the main innovation of this
paper lies in the formulation of the unsupervised change-detec-
tion problem in terms of the Bayesian decision theory. In partic-
ular, we have proposed an iterative technique (based on the EM
algorithm) that allows unsupervised estimations of thea priori
probabilities and density functions associated with changed and
unchanged pixels in the difference image. Such estimates make
it possible to apply supervised methods in the context of un-
supervised change detection. Within this framework, two auto-
matic techniques for the analysis of the difference image have
been presented.

The first technique is based on the assumption that the pixels
in the difference image are independent of one another. Under
this assumption, it allows the automatic selection of the deci-
sion-threshold value that minimizes the overall change-detec-
tion error probability. It is worth noting that, thanks to the avail-
ability of the estimates provided by the EM algorithm, other de-
cision strategies could also be adopted for the selection of the
threshold (e.g., the Bayes rule for minimum cost [33], [34]).

The second technique performs the analysis of the differ-
ence image by using an MRF approach that exploits the inter-
pixel class dependency context in order to improve the accuracy
of the final change-detection map. For the sake of simplicity,
a simple method for the MRF modeling has been used, even
though more complex MRF models might be exploited (e.g.,
hierarchical MRF’s [28] and detail-preserving MRF’s [35]). In
addition, more sophisticated MRF approaches might be adopted
in order to further increase the accuracy and the degree of au-
tomation (e.g., automatic selection of the parameter) of the
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presented technique [36], [37]. Further research should be con-
ducted to test the potential improvements associated with such
approaches.

The experimental results reported in this paper confirm the
effectiveness of both presented techniques. Such effectiveness
depends mainly on the accuracy and the stability provided by
the EM algorithm in estimating the statistical terms of the dif-
ference image. Thanks to this accuracy, the decision-threshold
values provided by the proposed technique based on the pixel-
independence assumption turned out to be very close to the
optimum ones for both considered data sets. This resulted in
change-detection maps comparable to those provided by the
corresponding minimum-error threshold. Further improve-
ments in the change-detection accuracies were obtained by the
proposed method, which exploits spatial-contextual information
in the change-detection process. This method proved very effec-
tive even on images affected by high levels of noise.

As a final remark, it is worth noting that we have formulated
the EM algorithm under the assumption that the conditional den-
sity functions of classes can be modeled by Gaussian distribu-
tions. In several change-detection applications involving the use
of images acquired by passive sensors, this assumption seems to
be a reasonable approximation. However, when the number of
different typologies of land cover changes to be identified in-
creases or when active sensors are used instead of passive ones,
the Gaussian model might turn out to be inappropriate. In these
cases, more general approaches to the mixture density estima-
tion problem [22], [23], [38] may represent powerful tools in
obtaining accurate estimates of the density functions associated
with changed and unchanged pixels.
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