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Example-based image inpainting [Efros-Leung 1999, Wexler 2005]

Input: Visible part of the image u|Oc

Output: reconstruction of the occluded part u|O via

min
u|O

X

m2O

kpm(u)� p'(m)(u)k2

where
'(m) = arg min

n2Oc
kpm(u)� pn(u)k2

is the nearest neighbour of pm(u):
patches in Images and videos:

pm(u)

u
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Example-based image inpainting [Arias-Caselles-Facciolo 2012]

Input: Visible part of the image u|Oc

Output: reconstruction of the occluded part u|O via

min
w,u|O

X

m2O, n2Oc

w(m, n)kpm(u)� pn(u)k2 � T
X

m
H(w(m, ·))

under the constraint
P

n w(m, n) = 1, 8m 2 O

where H(f ) = �
P

n f (n) log(f (n)) is the entropy of the probability
density distribution f .

pm(u)

u
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Example-based image inpainting [Arias-Caselles-Facciolo 2012]

Input: Visible part of the image u|Oc

Output: reconstruction of the occluded part u|O via

min
w,u|O

X

m2O, n2Oc

w(m, n)kpm(u)� pn(u)k2 � T
X

m
H(w(m, ·))

under the constraint
P

n w(m, n) = 1, 8m 2 O

where H(f ) = �
P

n f (n) log(f (n)) is the entropy of the probability
density distribution f .

pm(u)

u

Non-convex problem
Alternated minimisation of convex problems

w-minimization (Learn local distribution)

w(m, n) =
1
Z

e� 1
T kpm(u)�pn(u)k2

u-min: (a posteriori expectation)

p̂m = E [p | pm(u)] =
X

n
w(m, n)pn

Aggregation: u(m) =
P

n p̂n[n � m]

Challenges
Computation of w truncated and
approximated by Patch Match [Barnes
2009] Other alternatives? non-structured
data?

Non-convexity: Multi-scale

Patch similarity: `2 is ambiguous for fine
textures
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Example-based vs. model-based image inpainting

Example based
w-minimization (Learn local
distribution)

w(m, n) =
1
Z

e� 1
T kpm(u)�pn(u)k2

u-min: (a posteriori expectation)

p̂m = E [p | pm(u)] =
X

n
w(m, n)pn

Aggregation: u(m) =
P

n p̂n[n � m]

Model based
w-minimization (Learn local model)

w(m, ·) ⇠ N(µm,⌃m) that fits

{pn(u) : kpm(u)� pn(u)k2 < T}

u-minimization: estimate p̂n by:

I EAP (blurry), or...
I MAP, or...
I Random synthesis near

pm(u) based on N(µm,⌃m)

Aggregation: u(m) =
P

n p̂n[n � m]

fast algorithms on unstructured data
(CovTree)

synthesize vs. copy



Model-based image inpainting [Raad-Desolneux-Morel 2014]

Fig. 3: Comparison with various other texture synthesis methods. From left to right: texture sample, position map (each pixel
q in the texture sample is associated to a different color from a continuous colormap), synthesis results of [16], [17], [5], [11],
synthesis map of [11], our algorithm and its synthesis map, our algorithm and its synthesis map forcing the nearest neighbors
to be at least r pixels away from the best neighbor (r = 3). The synthesis map shows for each synthesized patch its position
in the original image. It allows then to identify exactly the verbatim copy regions (continuous color areas of the map). For our
algorithm the synthesis maps are computed using the barycenter of the N best neighbors of each simulated patch. For all the
examples N = 10, ps = 30 except for the third row where ps = 10. For a correct visual comparison we recommend a 4⇥
zoom in.

Figure 3 compares several state of the art texture synthe-
sis methods. We can observe that for statistics-based methods
(three first columns) the quality of our algorithm’s visual re-
sults is considerably superior. However, when the size of the
patch ps is too big compared to the texture’s structure (last
row in Figure 3) blurring artifacts can appear in our results.
On the other hand, like for the Efros-Freeman algorithm [11]
our method maintains a spatial coherence between patches.
We obtain similar visual results and most important avoid ver-
batim copies from the input sample, as can be seen with the
synthesis maps in Figure 3.

5. CONCLUSION

In this paper we have presented a method that synthesizes tex-
tures by stitching patches that are samples of a local Gaussian
model in the patch space. This model is learnt for each patch
from a set of similar patches in the textures. The algorithm
synthesizes a texture that is perceptually equivalent to the
sample image, but not composed of patches existing in the in-
put texture. Our method overcomes some of the drawbacks of
the statistics-based and the patch-based methods. The stitch-

ing procedure is a bit complex and could be replaced by Pois-
son editing [23]. Like the Efros-Leung or the Efros-Freeman
methods, the algorithm remains dependent on the choice of ps
and N , that may have to be adjusted for each texture sample.
In our opinion the texture samples used in the literature are
too small, particularly for macro-textures like the ones pre-
sented here and in most papers. Thus, our local Gaussian
model is forced to use only 10 to 20 degrees of freedom be-
cause only some 10 to 20 patches are similar enough. This
estimate should improve with larger texture samples. Our al-
gorithm is complex, as we estimate a Gaussian model for each
patch. This complexity is nevertheless comparable to clas-
sic patch-based denoising algorithms [21], [24]. A multiscale
version of the algorithm should also be considered. Unlike
the statistics-based algorithms, but like the other patch-based
methods, our algorithm is not forced to respect the global
statistics of the texture sample. This can be observed in the
second row of Figure 3 where our result correctly reproduces
an image of petals but fails to insert a correct proportion of
the leaves in the synthetic image. Future work should focus
on using larger texture samples to better catch the variability
of large patches, and on estimating automatically ps and N .

Fig. 3: Comparison with various other texture synthesis methods. From left to right: texture sample, position map (each pixel
q in the texture sample is associated to a different color from a continuous colormap), synthesis results of [16], [17], [5], [11],
synthesis map of [11], our algorithm and its synthesis map, our algorithm and its synthesis map forcing the nearest neighbors
to be at least r pixels away from the best neighbor (r = 3). The synthesis map shows for each synthesized patch its position
in the original image. It allows then to identify exactly the verbatim copy regions (continuous color areas of the map). For our
algorithm the synthesis maps are computed using the barycenter of the N best neighbors of each simulated patch. For all the
examples N = 10, ps = 30 except for the third row where ps = 10. For a correct visual comparison we recommend a 4⇥
zoom in.

Figure 3 compares several state of the art texture synthe-
sis methods. We can observe that for statistics-based methods
(three first columns) the quality of our algorithm’s visual re-
sults is considerably superior. However, when the size of the
patch ps is too big compared to the texture’s structure (last
row in Figure 3) blurring artifacts can appear in our results.
On the other hand, like for the Efros-Freeman algorithm [11]
our method maintains a spatial coherence between patches.
We obtain similar visual results and most important avoid ver-
batim copies from the input sample, as can be seen with the
synthesis maps in Figure 3.
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In this paper we have presented a method that synthesizes tex-
tures by stitching patches that are samples of a local Gaussian
model in the patch space. This model is learnt for each patch
from a set of similar patches in the textures. The algorithm
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sample image, but not composed of patches existing in the in-
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sented here and in most papers. Thus, our local Gaussian
model is forced to use only 10 to 20 degrees of freedom be-
cause only some 10 to 20 patches are similar enough. This
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Figure 3 compares several state of the art texture synthe-
sis methods. We can observe that for statistics-based methods
(three first columns) the quality of our algorithm’s visual re-
sults is considerably superior. However, when the size of the
patch ps is too big compared to the texture’s structure (last
row in Figure 3) blurring artifacts can appear in our results.
On the other hand, like for the Efros-Freeman algorithm [11]
our method maintains a spatial coherence between patches.
We obtain similar visual results and most important avoid ver-
batim copies from the input sample, as can be seen with the
synthesis maps in Figure 3.

5. CONCLUSION

In this paper we have presented a method that synthesizes tex-
tures by stitching patches that are samples of a local Gaussian
model in the patch space. This model is learnt for each patch
from a set of similar patches in the textures. The algorithm
synthesizes a texture that is perceptually equivalent to the
sample image, but not composed of patches existing in the in-
put texture. Our method overcomes some of the drawbacks of
the statistics-based and the patch-based methods. The stitch-

ing procedure is a bit complex and could be replaced by Pois-
son editing [23]. Like the Efros-Leung or the Efros-Freeman
methods, the algorithm remains dependent on the choice of ps
and N , that may have to be adjusted for each texture sample.
In our opinion the texture samples used in the literature are
too small, particularly for macro-textures like the ones pre-
sented here and in most papers. Thus, our local Gaussian
model is forced to use only 10 to 20 degrees of freedom be-
cause only some 10 to 20 patches are similar enough. This
estimate should improve with larger texture samples. Our al-
gorithm is complex, as we estimate a Gaussian model for each
patch. This complexity is nevertheless comparable to clas-
sic patch-based denoising algorithms [21], [24]. A multiscale
version of the algorithm should also be considered. Unlike
the statistics-based algorithms, but like the other patch-based
methods, our algorithm is not forced to respect the global
statistics of the texture sample. This can be observed in the
second row of Figure 3 where our result correctly reproduces
an image of petals but fails to insert a correct proportion of
the leaves in the synthetic image. Future work should focus
on using larger texture samples to better catch the variability
of large patches, and on estimating automatically ps and N .
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Non-Local Means denoising [Buades-Coll-Morel 2005]

Input: Noisy image ũ = u + n where n ⇠ N(0,�2Id).
Output: Estimated clean image û via

max
u

X

m, n

w(m, n)kpm(u)� pn(ũ)k2 � T
X

m

H(w(m, ·))

under the constraint
P

n w(m, n) = 1, 8m 2 O

Example based
w-minimization (Learn local distribution)

w(m, n) =
1
Z

e� kpm(u)�pn(ũ)k2�T
T

u-minimization: (a posteriori expectation)

p̂m =
X

n

w(m, n)pn

Aggregation: û(m) =
P

n p̂n[n � m]
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Non-Local Bayes denoising [Lebrun-Buades-Morel 2013]

Input: Noisy image ũ = u + n where n ⇠ N(0,�2Id).
Output: Estimated clean image û via

max
u

Pr [pm(u) | pn(ũ), N(µm,⌃m)]

s.t. N(µm,⌃m) fits {pn(u) : kpn(u)� pm(u)k < �}

Model based
w-minimization (Learn Local Gaussian Model)

µm =
1
Z

X

n
e� kpm(u)�pn(ũ)k2

�2 pn(ũ)

⌃m =
1
Z

X

n
e� kpm(u)�pn(ũ)k2

�2 p̄n(ũ)p̄n(ũ)T � �2Id

u-minimization: (MAP)

p̂m = arg min
q

1
�2 kq � pm(ũ)k2 + (q � µm)T⌃�1

m (q � µm)

Aggregation: û(m) =
P

n p̂n[n � m]
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Piecewise Linear Estimators [Yu-Mallat-Sapiro 2012]

Input: Perturbed image ũ = Au + n where n ⇠ N(0,�2Id).
Output: Restored image û via

max
u(m), k(m)

Pr
⇥
pm(u)

�� pn(ũ), N(µk(m),⌃k(m))
⇤

with k = 1, . . . ,20
s.t. N(µk(m),⌃k(m)) fits {pn(u) : k(m) = k(n)}

Model based
initialization: û0, (µ0

k ,⌃
0
k ), k(m)

Relearn Gaussian Models (µi
k ,⌃

i
k ) to fit {pm(u) : k(m) = k}

Signal estimation (p̂m) and model selection (k(m))

(p̂m, k(m)) = arg max
q,k

Pr [q | pm(ũ) , N(µk ,⌃k )]

Aggregation: ûi (m) =
P

n p̂n[n � m]
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Learning-based restoration [Zoran-Weiss 2011]

Offline learning
Input: a huge database of natural image patches pi 2 P.
Output: Gaussian Mixture Model {N(µk ,⌃k ) : k = 1, . . . ,250} fitting the data
(several days worth of computation)

Restoration
Input: Perturbed image ũ = Au + n where n ⇠ N(0,�2Id).

Gaussian Mixture Model {N(µk ,⌃k ) : k = 1, . . . , 250}
(representing the manifold of natural image patches)

Output: Restored image û via

max
u(m), k(m)

Pr
⇥
pm(u)

�� pn(ũ), N(µk(m),⌃k(m))
⇤



Covariance Tree [Guillemot-Almansa-Boubekeur 2014]

Learning
Input: a huge database of data points pi 2 P.
Output: pre-computed Local Gaussian Models
at several scales and locations

Query
Input: a query point q and a scale �
Output: accurate approximation of N(µ

q

,⌃
q

)
fitting P|B(q,�)

Bayesian Restoration
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q

,⌃
q

) q pi 2 P



Covariance Trees [Guillemot-Almansa-Boubekeur 2014]
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Covariance Trees [Guillemot-Almansa-Boubekeur 2014]

Challenges
Time-dependent data
Non-gaussian noise
Incomplete patches
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High Dynamic Range Imaging (HDR)

Capture a scene containing a large range of intensity levels...

Limited dynamic range of the camera ! loss of details in bright and/or
dark areas.
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HDR imaging - Multi-image approach










   



Challenges of Multi-image HDR Imaging
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Alternative: Single-image HDR






Alternative: Single-image HDR






SVE Single-image HDR

X No need for image alignment.

X No need for motion detection.

X No ghosting problems.

X No large saturated regions to fill.

⇥ Unknown pixels to be restored (over and under exposed pixels).

⇥ Noise.

⇥ Need to modify the standard camera.

Alternative without camera modification [Hirakawa and Simon,
2011].



SVE: Regular or Random?

Random pattern to avoid aliasing [Schöberl et al., 2012]



Single-image HDR - Problem to solve
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Our approach

Extension of Piecewise Linear Estimators (PLE) [Yu et al., 2012]
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Our approach

Extension of Piecewise Linear Estimators (PLE) [Yu et al., 2012]









PLE Patch Model
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Patch Model for Raw Data
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Patch Model for Raw Data

 








Patch Reconstruction

 


 

How to set Gaussian prior µ and ⌃?



Patch Reconstruction
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Patch Reconstruction


 

 





How to set Gaussian prior µ and ⌃?



Patch Reconstruction


 

 





How to set Gaussian prior µ and ⌃?



Gaussian models for image patches



Gaussian models for image patches



Gaussian models for image patches





Gaussian models for image patches



Class parameters estimation





How to choose the best class?

ˆk = argmax

k
(posterior probability p(f |y, µk,⌃k))



Summary: iterative procedure


















Initialization





Initialization











Initialization



















Results synthetic data



Results synthetic data

Ground-truth PLEV Schöberl et al. Nayar-Mits. Mask

29.1 dB 22.5 dB 18.5 dB

41.0 dB 34.4 dB 31.4 dB

30.6 dB 25.1 dB 31.3 dB



Improvement: Patch-based Bayesian restoration method
(on-going work)

Inspired from:

Piecewise Linear Estimators (PLE) [Yu et al., 2012] High

performance in interpolation of missing pixels.

Non Local Bayes (NLB) [Lebrun et al.,2013] State-of-the-art
denoising method.

General restoration method.



Patch Reconstruction

 





How to set Gaussian prior µ and ⌃?



Patch Reconstruction

 





How to set Gaussian prior µ and ⌃?



How to set Gaussian prior parameters µ and ⌃?










How to set Gaussian prior parameters µ and ⌃?












How to set Gaussian prior parameters µ and ⌃?














MAP to compute Gaussian parameters µ and ⌃







 




Iterative approach
















Initialization












Results HDR - Synthetic data



Results HDR - Synthetic data

Ground-truth HPNLB PLEV Schöberl Nayar-Mitsun

Input Di↵erences to ground-truth

PSNR: 33.1dB 29.7dB 30.4dB 29.4dB



Results HDR - Synthetic data

Ground-truth HPNLB PLEV Schöberl Nayar-Mitsun

Input Di↵erences to ground-truth

PSNR: 35.1dB 34.0dB 30.0dB 28.5dB



Results on other applications

70% missing pixels + additive Gaussian noise variance 5%



Results on other applications

Ground-truth HPNLB PLE

Input Di↵erences to ground-truth

PSNR: 30.5dB 28.6dB



Conclusions
Exemplar-based patch regularization: early self-similarity model
GMM, PLE: Extension to more inverse problems
Local Gaussian Models: finer details, continuous classification

Challenges ahead for local Gaussian models
Invert non-diagonal operators
Robust neighbors in ill-posed problems
Formal framework needed
More flexible learning/indexing over large databases



Thanks. Questions?


