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Region-Based Transform Coding
of Multispectral Images

Marco Cagnazzo, Giovanni Poggi, and Luisa Verdoliva

Abstract—We propose a new efficient region-based scheme for
the compression of multispectral remote-sensing images. The
region-based description of an image comprises a segmentation
map, which singles out the relevant regions and provides their
main features, followed by the detailed (possibly lossless) descrip-
tion of each region. The map conveys information on the image
structure and could even be the only item of interest for the user;
moreover, it enables the user to perform a selective download of
the regions of interest, or can be used for high-level data mining
and retrieval applications. This approach, with the multiple pieces
of information required, may seem inherently inefficient. The goal
of this research is to show that, by carefully selecting the appro-
priate segmentation and coding tools, region-based compression
of multispectral images can be also effective in a rate-distortion
sense, thus providing an image description that is both insightful
and efficient. To this end, we define a generic coding scheme, based
on Bayesian image segmentation and on transform coding, where
several key design choices, however, are left open for optimization,
from the type of transform, to the rate allocation procedure, and so
on. Then, through an extensive experimental phase on real-world
multispectral images, we gain insight on such key choices, and
finally single out an efficient and robust coding scheme, with
Bayesian segmentation, class-adaptive Karhunen–Loève spectral
transform, and shape-adaptive wavelet spatial transform, which
outperforms state-of-the-art and carefully tuned conventional
techniques, such as JPEG-2000 multicomponent or SPIHT-based
coders.

Index Terms—Lossy coding, multispectral images.

I. INTRODUCTION

MULTISPECTRAL1 images are becoming more and more
important for a large number of remote-sensing applica-

tions. The growing interest is motivated by several concurring
reasons, one of the most important being the improved quality
of state-of-the art sensors which deliver images with very high
spatial, spectral, and radiometric resolution. However, together
with this wealth of information comes the problem of managing
such a huge amount of data which must be transmitted to the
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1In the following, unless otherwise stated, we use “multispectral” also in place
of “hyperspectral,” irrespective of the number of component bands.

ground station on limited-capacity channels, archived for long
periods of time, and finally disseminated to the end users on
common transmission facilities. Therefore, suitable compres-
sion algorithms are highly desirable in all the phases of the
data lifetime and can play a central role for the success of re-
mote-sensing applications, as is testified by the growing bulk of
related scientific literature, and by the attention paid to this topic
by national space agencies.

General-purpose compression algorithms, like the JPEG,
JPEG2000, or MPEG standards, usually do not provide sat-
isfactory results for multispectral data, because they are not
tailored to their statistical behavior. For this reason, several
ad hoc compression techniques have been proposed in the last
few years. Most of them rely on transform coding because of
its simplicity and good results. Early techniques, e.g., [1]–[3],
focused on various combinations of the Karhunen–Loève
transform (KLT), discrete cosine transform (DCT), and dif-
ferent types of quantization. More recently, compression based
on wavelet transform (WT) has gained popularity [4]–[11],
showing in this field the same interesting performance exhibited
in other contexts.

Even the specific techniques cited above, however, fail to
take full advantage of the peculiar nature of multispectral data.
Such images, in fact, portray exactly the same portion of the
Earth in all component bands, only in different spectral win-
dows. The fact that the same “objects” appear consistently in
all the bands of the image, although with different properties,
is an extremely valuable information which should be exploited
to improve compression performance. A step in this direction is
represented by the use of techniques [12]–[15] based on vector
quantization (VQ) [16] which is able, in theory, to exploit all
interband dependencies, not just the linear ones (that is, corre-
lation). Unfortunately, VQ has a complexity that grows expo-
nentially with the vector size, forcing practical coding schemes
to deal with vectors that span only the spectral dimension, thus
neglecting all spatial dependencies.2 As a consequence, trans-
form coding techniques keep providing better results.

An interesting compromise between VQ and transform
coding is region-based coding, in which the image is seg-
mented in a number of disjoint regions, based prevalently
on their spectral features, which are then transform encoded
independently from one another. A general coding scheme is
depicted in Fig. 1: segmentation singles out the elementary
component regions so that each one is statistically homoge-
neous; the segmentation map is then encoded (usually without
losses) and sent as a side information, while the region textures

2To be more precise, some constrained VQ techniques have been proposed
[12], [14] to exploit spatial dependencies, but with mixed results.
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Fig. 1. General region-based coding scheme.

are lossy coded, independently from one another, and possibly
with the help of information drawn from the segmentation
process.

Region-based techniques offer several advantages with re-
spect to conventional or “flat” techniques, both for low-level
(e.g., compression, denoising) and high-level (e.g., classifica-
tion, data-mining) processing tasks. At the lower level, advan-
tages arise from the ability of segmenting the image in a rela-
tively small number of regions, with the pixels of each region
having similar statistics, which are in turn different from those
of neighboring regions. As a consequence:

• the boundaries between different regions (which draw sig-
nificant coding resources in flat image compression) are
conveyed by the segmentation map and need not be en-
coded;

• the elementary regions, which are statistically homoge-
neous, can be compressed more efficiently;

• resources can be allocated adaptively to each region to op-
timize performance, and even the encoding technique itself
can vary from region to region according to local statistics
(dynamic coding [17]);

• since region boundaries are known in advance, denoising
techniques can operate more effectively, region by region,
without the risk of smearing or deleting important edges.

It must be underlined that the cost of coding the segmentation
map, which is an obvious drawback of region-based coding, is
very low with multispectral images since a single map is used
for a large number of bands.

At a higher level, the advantages of a region-based descrip-
tion of the image are even more compelling, as testified by the
interest in the video coding community, for example:

• the user is automatically provided with a segmentation map
(obtained on the original data) which gives the basic struc-
ture of the image, and might even be the only product of
interest if image classification/segmentation is pursued;

• the user can single out just one or a few regions of interest
(because of their shape, their statistics or else) and down-
load just those regions, with huge bandwidth saving;

• region-based description can help retrieve the images of
interest in a large database, that is perform data mining.

Given all these potential advantages, there has been sur-
prisingly little work on region-based compression of re-
mote-sensing images, probably because of the inherent diffi-
culty of carrying out a reliable segmentation and of encoding

the texture in arbitrarily shaped regions. A first simple approach
is proposed in [18] where the the image is segmented in fixed
blocks of 64 64 pixels, on which statistics are computed to
carry out a block-adaptive KLT in the spectral domain. With
homogeneous blocks, the adaptive KLT guarantees a much
better energy compaction, but no improvement is observed for
the quite common mixed blocks. A more flexible solution is
proposed in [19], where a variable-size quad-tree segmentation
is carried out so us to obtain more homogeneous elementary
blocks. Both in [18] and [19], segmentation is extremely simple
but quite inaccurate, and its benefits are only marginal. In [20]
and [21], and successively in [22] and [23], the approach is
significantly refined by resorting to point-wise image segmen-
tation by means of a minimum-distance classifier operating on
the pixel spectral signatures. As a consequence, the subsequent
transforms deal with subsources that are really stationary, and
provide an energy compaction and eventually a performance
that is much superior to that of previous work. It must be
underlined, however, that this is a class-based rather than a
region-based technique: pixels belonging to a given class are
highly homogeneous, but can be scattered over the whole
image in small clusters or even as isolated points. The conse-
quence is that spatial encoding of a class is rather cumbersome
and not very efficient, not to mention that the region-based
description of the image is lost. In [24], a truly region-based
coder is proposed which, in addition, has the ability to switch
coding techniques depending on the region statistics. Despite
the interesting approach, implementation presents several weak
points that limit its performance and overall value, notably,
the manual segmentation of images, and the use of region
coding techniques far from the state of the art. A more in-
teresting technique is proposed in [7] for the compression of
oceanographic images. The problem of segmentation is not
addressed (data are already available only in the ocean area),
but a state-of-the-art shape-adaptive coding algorithm is pro-
posed, based on stack-run coding, which provides significant
improvements over existing techniques used for the same task.

In this paper, we investigate in depth the region-based ap-
proach for multispectral image coding, and try to take full ad-
vantage of its potential by resorting to what, in our view, are the
most appropriate and powerful tools currently available. As a re-
sult of this effort, we propose a new region-based coding scheme
which, on all test images considered, provides an excellent rate-
distortion performance, often superior to the best comparable
flat technique. The keys to such good results are a reliable seg-
mentation algorithm, based on a tree-structured Markov random
field model [25], the use of region/class adaptive KLT in the
spectral domain, and shape-adaptive wavelet-based transform
and coding tools in the spatial domain with proper rate alloca-
tion. After the Introduction, Section II describes the segmenta-
tion and coding tools, explaining the rationale for our choices,
and often proposing several alternative solutions for the same
task, to be later tested experimentally. Section III describes a
sequence of experiments that guide us toward the choice of the
best region-based coding algorithm, and others that compare its
performance with that of the most relevant reference techniques
for several test images and quality criteria. Section IV draws
conclusions and outlines future work.
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Fig. 2. (a) Sample image and (b) its segmentation by K-means, (c) TSMRF,
and (d) TSMRF with removal of small regions.

II. SEGMENTATION AND CODING TOOLS

In this section, we examine in detail the various blocks of the
general region-based coding scheme of Fig. 1 and for each one
discuss one or more techniques to be later implemented and as-
sessed experimentally. The region coder, in particular, will be
based on transform coding, and, hence, we will discuss sepa-
rately the transform and the actual coding engine. Therefore,
the following subsections will examine in turn segmentation,
map coding, spectral and spatial transforms, region coding by
shape-adaptive SPIHT, and rate allocation.

A. Segmentation

A meaningful segmentation of the image is of central impor-
tance for the success of a region-based coding scheme, but it is
also quite a complex problem, to begin with its very same def-
inition. In our application, we have two requirements: on one
hand, we want each region to be formed by pixels of the same
type, so as to exhibit homogeneous statistics and increase the ef-
ficiency of subsequent encoding. On the other hand, we would
like to segment the image in a small number of large regions, in
order to have a simple map to encode, and to use shape-adaptive
transforms on nice regular shapes.

To help gain insight about the following discussion, let us
consider as a case study the 256 256 section of a larger hy-
perspectral image, shown in false colors in Fig. 2(a). Given the
wealth of spectral information available with this kind of data, it
might seem that a simple clustering in the spectral domain could
provide a satisfactory segmentation. The map of Fig. 2(b), how-
ever, obtained by means of vector quantization (also known as
K-means clustering) makes clear that such a strategy cannot pro-
duce by itself a segmentation useful for our purposes, because
of the very large number of small regions and isolated points,

also due to the effects of noise. In more detail, we can highlight
three drawbacks.

1) The map is not really suited to a region-based approach
since compact regions are not singled out; hence, it cannot
be used for application-driven rate allocation, dynamic
coding, or data mining.

2) Most regions are too small and have busy contours: to be
efficient, the transform-based region coding algorithms (to
be discussed later on) must operate on reasonably large and
compact regions.

3) The encoding cost of such a detailed map is not negligible,
and at low bit rates can become a significant fraction of the
overall cost.

In summary, a map like this cannot really be used for efficient
region-based coding,3 and, therefore, we turn to contextual seg-
mentation techniques, where the label of a pixel depends not
only on its spectral signature but also on the neighboring pixels,
and, hence, more compact regions are singled out. More specif-
ically, we use a Bayesian segmentation algorithm [25] based on
the tree-structured Markov random field (TS-MRF) model [26].

The maximum a posteriori probability (MAP) Bayesian ap-
proach to segmentation amounts to selecting the map which
has the maximum probability of occurrence given the observed
data

Note that the optimum map depends not only on data likelihood
that is the spectral information, but also on the prior term

which takes into account some reasonable constraints on
the spatial regularity of the map itself.

If the prior term is discarded, one implicitly assumes that all
maps are equally likely, thus neglecting all spatial dependencies,
and trusting only the spectral data, no matter how noisy they are.
This amounts to using a maximum likelihood rule

or, with further and commonly accepted simplifications, a
simple minimum distance clustering, implemented for example
by VQ. This kind of segmentation is adopted frequently in order
to simplify matters under both theoretical and computational
points of view, but results are not very accurate.

To improve the quality of segmentation, the prior term should
be taken into account through a meaningful, yet manageable,
probabilistic model. This problem has been solved by the theory
of random Markov fields (MRFs) [27], [28], which allows one
to model the map, or label field, in a reasonably simple way
and yet take into account spatial dependencies through a few
parameters that specify local interactions among pixels. By se-
lecting a suitable model for , one can design a segmentation
algorithm which is able to provide more regular maps and to re-
duce the annoying effects of random noise. In this paper, we use
the algorithm developed in [25], based on a tree-structured MRF

3In this case, one could resort to class-based coding instead [22], [23], where
all pixels of the same class (color) are considered to form an “object.” This is
also an interesting approach in terms of rate-distortion performance but does not
preserve the high-level advantages of region-based coding.
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(TSMRF) model,4 which, for our example image, provides the
segmentation map shown in Fig. 2(c). As a result, much fewer
regions are now present, and they are more compact and present
more regular boundaries.

Even so, some isolated points and small fragments remain,
typically in correspondence of mixed cells near region bound-
aries where two land covers are present at the same time. These
small regions, however, can be merged with any of the neigh-
boring large regions without altering significantly the statistical
homogeneity of the region but improving the readability and
compactness of the segmentation. Therefore, we proceed to the
elimination of small regions (merged with the dominant neigh-
boring region) up to a size of pixels. The final result for
our example is shown in Fig. 2(d). At this point, much fewer
regions remain, which are large, smooth, and compact enough
to serve in high-level applications such as data mining, and are
also statistically homogeneous, so as to guarantee a good com-
pression efficiency. In addition, a map like this can be encoded
with very little cost.

B. Map Coding

The additional coding cost associated with the segmentation
map is one of the drawbacks of region-based coding, so it must
be carefully assessed, and an efficient map coding algorithm
must be used. It must be observed, however, that this cost is quite
limited in our coding scheme, both because the segmentation al-
gorithm provides smooth maps, amenable to high compression,
and because a single map is used for all image bands.

The literature on this topic is rather scant, also because object-
based video coding focuses on foreground/background segmen-
tation and, hence, on bi-level maps (for which a large number
of tools exist). However, we can draw from techniques designed
for the compression of palette images which share many char-
acteristics with our segmentation maps.

A popular approach to the lossless coding of palette images
has been to adapt some universal techniques, like GIF Compress
or PNG Deflate, to a 2-D source, with results that are arguably
far from optimal. Also, the adaptation of a truly 2-D technique,
such as JPEG-LS, proposed in [29], turns out to be ineffective,
because the indexes which form a palette image (or our maps)
do not exhibit any native correlation to be exploited in linear
predictive coding.

Better results are provided by ad hoc techniques, such as the
PPM2D [30], based on prediction by partial matching, or the
PWC [31] (piece-wise constant image model), based on a bi-
nary arithmetic coder with multiple contexts that exploits the
simplicity of palette images for coding separately boundaries
and colors. Here, we use the RAPP (runs of adaptive pixel pat-
terns) algorithm [32], a simple and effective predictive coding
technique in which the prediction is always one of the four pixels
in the causal neighbors, chosen so as to form the most probable
pattern. In particular, we use a variant of RAPP including the
“skip innovation,” originally introduced by Ausbeck for PWC,
which allows one to encode uniform rows with a single bit, and
almost uniform rows with just a few bits.

4A detailed description of the TSMRF-based algorithm is out of the scope of
this paper, and we refer the reader to the literature for more information.

C. Spectral and Spatial Transforms

In our coding scheme, we decided to compress the regions by
means of transform coding, because this is a well understood
approach, with good performances in all application fields, and
because there are plenty of coding tools available. By no means,
however, do we write off the use of different approaches, like,
for example, polynomial approximation for smooth areas, or
model-based parametric description of textured areas. As a
matter of fact, the freedom to use different techniques for
different regions [24] is an important advantage of region-based
coding, and we want to explore its potential in future research.

In accordance with the different nature of spectral and spatial
dependencies, we use a 1-D spectral transform first, and then a
further 2-D (shape-adaptive) transform in the spatial domain.

As for the spatial transform, we turn to the shape-adaptive
wavelet transform (SA-WT) algorithm proposed by Li and
Li [33], which was also adopted with some variations in the
MPEG-4 standard. In fact, it allows one to retain most of the
advantages of DWT while dealing with regions of arbitrary
shape: it treats whole regions at once, unlike the block-based
shape-adaptive DCT, guarantees a good compaction ability,
and preserves the spatial relations among transform coef-
ficients, a properties that can be exploited by zerotree-based
encoding algorithms. On the down side, the SA-WT is markedly
nonorthogonal, which renders very difficult to assess its actual
compaction ability, but through an experimental analysis [34].

Unlike for the spatial transform, where SA-WT seems a nat-
ural choice at this moment, several alternatives appear equally
appealing for the spectral transform. First of all, one can re-
sort again to WT, which is computationally light, does not re-
quire side information, and lends itself to implement simple
shape-adaptive variations of well-known zerotree coding algo-
rithms. On the opposite side stands the KLT which, being data
dependent, allows one to adapt the transform to the data to be
encoded, but requires significant computation and calls for the
transmission of some side information. DCT is a third option,
but we did not experiment with it since its properties lie halfway
between the former two.

Therefore, we implemented various coding schemes, based
both on WT and KLT as a spectral transform, and assessed their
performance on several test images, as reported in Section III.
Our main focus, however, is on KLT-based solutions because
they fit much better the region-based approach.5 In fact, there
are at least three possible ways to use the KLT in this context:

1) use a single transform for the whole image;
2) use a different transform for each region;
3) use a different transform for each class.

In the first case, KLT is used almost like a fixed transform, but
for the fact that it is adapted to the image statistics, and it takes
little advantage of image segmentation. On the contrary, using
a different KLT for each region is fully in the spirit of the re-
gion-based approach, since the transform is now adapted to the
local statistics of the region, which might be markedly different
from those of other regions. As a consequence, one obtains
a better energy compaction, but also a heavier computational

5Also, looking ahead at the results, because they provide consistently superior
performance.
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burden and increased side information, since the transform ma-
trices must be computed and sent for each region together with
coded data. The third option is a compromise between the first
two, which exploits the fact that our segmentation algorithm
works on classes, characterized by similar spectral characteris-
tics, and only in the final stage it extracts the elementary regions.
Therefore, we can use a single KLT matrix for all regions that
belong to the same class, with an obvious advantage in terms of
computation and side information, but also with a good adapta-
tion to the local statistics. Of course, the actual merits of these
solutions must be assessed via numerical experiments.

To summarize, all coding schemes implemented will use sep-
arate transforms in the spectral and spatial domain, the former
will be either a WT, a global KLT, a class-adaptive KLT, or a re-
gion-adaptive KLT, while the latter will always be a shape-adap-
tive WT. Of course, in the reference flat coding schemes used
for comparison purposes only conventional (that is, nonshape
adaptive) transforms will be used.

D. Region Coding and Shape-Adaptive SPIHT

After spectral and spatial transforms, the energy of each re-
gion is compacted in a relatively small number of coefficients
that must be eventually quantized and coded. In recent years,
several algorithms have been proposed for coding SA-WT co-
efficients. All of them are based on Li and Li’s or similar [35]
SA-WT techniques, and all belong to the class of embedded
bit-plane coders, but differ in how they approach the compres-
sion of significance maps for each plane. Some of them, like the
EZT algorithm adopted in the MPEG-4 standard, are suitable
variations of the well-known EZW [36] and SPIHT [37] algo-
rithms and rely on the zerotree concept. Others use a quad-tree
or k-d tree-based approach [38], [39], or even resort to run-
length coding [40]. A comparison among these algorithms, with
reference to simple foreground/background scenes, is reported
in [39], based on the Qcc library [41] freely available at [42].

Here, we will consider a straightforward extension of SPIHT
to encode 2-D or 3-D regions of arbitrary shapes. SPIHT
(set partitioning in hierarchical trees) is a well-known ze-
rotree-based algorithm for the progressive quantization of
wavelet transform coefficients. It is simple, intrinsically scal-
able, and very efficient, which is why it is one of the most
popular techniques for the compression of images and, more
recently, video. Especially important for our needs, it can be
readily modified to encode images of arbitrary geometry after
a shape-adaptive WT. In our own implementation [43] (similar
to that formerly proposed in [44] and further refined in [45]),
we introduce only two major changes with respect to the basic
algorithm. First, only active nodes, that is nodes belonging to
the support of the SA-WT of the object, are considered while
scanning a spatial orientation tree. This information is available
at the decoder thanks to the segmentation map. The second
modification concerns the baseband, where coefficients are not
grouped anymore in 2 2 squares, as in the original SPIHT,
since these might not belong entirely to the region of interest
and a single root is considered instead. Further modifications
can be considered when 3-D regions are coded, since the 3-D
trees can be defined in various ways [46] depending on how the
spectral transform is performed.

E. Rate Allocation and Choice of Objects

Rate allocation, either explicit or implicit (like in bit-plane
coders), is a critical part of any transform coding technique.
When dealing with region-based coding, it becomes even more
important, since there are now different sources, possibly with
different semantic value or interest for the user, among which
resources must be optimally allocated to reach the desired goal.
However, we do not consider here the case in which some re-
gions are intrinsically more important than others: in such a sit-
uation, in fact, there is no doubt that region-based coding would
outperform flat coding, since it allows one to devote more re-
sources to the only regions of interest to the users. On the con-
trary, we want to show that the region-based approach can be
convenient in a rate-distortion sense, even for the compression
of the whole image. In this case, rate allocation has the goal of
obtaining the least possible overall distortion for the assigned re-
sources. By formulating the problem as a Lagrangian optimiza-
tion, it can be shown that an optimal allocation is reached when
each new encoding bit produces the same decrease in distortion
on any object. More formally, if is the curve that gives
distortion as a function of rate for the th object, we want to op-
erate at rates such that

and

that is, the slope of the rate-distortion curve, is the same for all
objects,6 while all resources are consumed.

To this end, we implement a postcompression resource al-
location algorithm similar to that of JPEG-2000 [47], that is,
we first compute the rate-distortion (RD) curve of each object
by encoding it at high rate, and then deallocate resources pro-
gressively, acting each time on the object with the lowest RD
slope so as to keep an approximate equi-slope condition while
reaching the desired overall coding rate. Using the SPIHT algo-
rithm, which provides a naturally embedded coding, it is quite
easy to develop one such algorithm. Some caution is neces-
sary, however, because the SA-WT is not a unitary transform,
and, hence, a strictly optimal allocation cannot be obtained by
working only in the transform domain.

Note that in this paragraph we made always reference to ob-
jects rather than regions. This is because all previous consid-
erations hold for any set of objects, whatever their nature, di-
mensionality and spatial shape, and this generality leaves open
a wide range of different options. In particular, in the spatial do-
main we can work with the whole image, or the elementary re-
gions, while in the spectral domain we can work with the whole
set of bands or with each single band individually, obtaining the
following cases.

1) Image: All transform coefficients are treated as a single
object, and bit allocation is left to the SPIHT coder.

2) Image bands: Each transform band of the whole image is
treated as a separate object, and therefore bit allocation
among bands is explicit.

3) Regions: All transform coefficients of a region are treated
as a single object, bit allocation is explicit among different

6As is well known, this is not always possible in practice, especially at low
rates.
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Fig. 3. Design alternatives within the general coding scheme.

Fig. 4. Test images (in false colors): (a) Landsat TM; (b) AVIRIS.

regions, but implicit (left to the SPIHT coder) among the
transform bands of the same region.

4) Region bands: This is the most detailed bit allocation, each
transform band of each region is treated as a separate ob-
ject, with explicit bit allocation.

The first two cases are very simple, and appropriate for flat
coding algorithms, with or without explicit bit allocation among
the bands, while the others are appropriate for region-based
coding, with or without explicit spectral bit allocation, and call
for a more complex management of the data stream.

III. EXPERIMENTAL ANALYSIS

In Section II, we have considered several alternatives for each
step of the general coding scheme, the most relevant of which
are synthetically reported in Fig. 3.

For example, by selecting each time the first option we ob-
tain 3-D SPIHT, originally proposed in [48], a coding scheme
with no segmentation, WT both in space and along the bands,
with a 3-D version of SPIHT used to encode the whole set of
transform coefficients, with no explicit form of rate allocation.
On the contrary, by selecting always the last option we obtain a
new region-based coding scheme, where the image is segmented

by the TSMRF-based algorithm (not shown, the map is coded
by the RAPP algorithm) there is a different spectral KLT trans-
form for each region, and SA-WT is used in the spatial domain,
followed by SA-SPIHT encoding with an explicit rate alloca-
tion for all bands of all regions. In the middle, there is a large
number of viable combinations, most of which have been actu-
ally implemented and tested experimentally in order to single
out the most interesting schemes. In the following, we present
and comment the most significant results.

Experiments have been conducted on several images with dif-
ferent characteristics. Here, we will present results for two test
images:

• a Landsat TM image of a region near Lisbon: six bands,
512 512 pixels, 8 bit/sample;

• the AVIRIS “Low Altitude” image available at [49]: 32
bands7 512 512 pixels, 16 bit/sample;

which differ significantly in terms of spatial and spectral reso-
lution. In Fig. 4, we show both images in a false color represen-
tation.

Most experimental results will be in terms of rate-distortion
(RD) curves, where rates are in bit/sample (bps), that is, number
of coding bits divided by number of image rows, columns and
bands, and distortion are measured by the mean-square-error,
although the curves report the more widespread signal-to-noise
ratio (SNR), defined as the ratio between image variance and
error variance, in decibels. It is important to underline that we
normalize all bands to zero mean and unit variance before en-
coding. This preprocessing is especially important when the
bands have wildly different dynamics (often the case with hy-
perspectral images) since it guarantees that all bands receive a
fair amount of coding resources. Without the normalization, the
rate allocation procedure gives most resources to high-power
bands, neglecting the remaining ones, often equally informa-
tive, thereby maximizing the SNR but also impairing the overall
image quality.

A. Rate Allocation

A first set of experiments concerns the use of explicit versus
implicit rate allocation (RA) among the bands, and, therefore,
the use of 3-D or 2-D SPIHT. To investigate this point, we im-
plemented two quite different coding schemes, one completely
flat (no segmentation, spectral KLT, spatial WT), and the other
region-based (TSMRF segmentation, region-adaptive spectral
KLT, spatial SA-WT). Then, for both schemes, we considered
two different options for the rate allocation by using either 3-D
SPIHT (hence, implicit RA) or 2-D SPIHT on each band with
explicit RA for each band.

Results in terms of RD curves are reported in Fig. 5 for the
Landsat TM image and Fig. 6 for the AVIRIS image. It clearly
appears that the explicit rate allocation guarantees a consistent
performance improvement in all cases, more than 1 dB for the
TM image and between 0.5 and 1 dB for the AVIRIS image, for
the medium-high rates that are of actual interest in the applica-
tions. Since the same behavior is observed with all other coding

7The original image comprises 224 bands, but we use a more manageable
32-band datacube obtained through regular band sampling. RD curves; there-
fore, we do not refer to the original image, even though all coding appear to
behave in a similar way on both datacubes.
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Fig. 5. RD performance for the Landsat TM image with implicit and explicit
rate allocation.

Fig. 6. RD performance for the AVIRIS image with implicit and explicit rate
allocation.

schemes, we will always use explicit RA from now on. It goes
by itself that this requires some side information, but its cost
turns out to be always negligible.

B. Spectral Transform

Another unambiguous result regards the use of WT as spectral
transform. As before, we implemented various coding schemes
in which, once fixed the other blocks, the spectral transform was
either WT or KLT. We consider only the AVIRIS image now be-
cause WT would be intrinsically inefficient on the TM image,
which comprises only six bands. In Fig. 7, we report the RD
curves obtained with a completely flat coder (no segmentation,
spectral KLT or WT, spatial WT, SPIHT) and a region-based one
(TSMRF segmentation, spectral KLT or WT, spatial SA-WT
followed by SA-SPIHT). In both cases, the coder-based using
KLT as a spectral transform provides a huge gain, about 5 dB,
w.r.t. the corresponding one based on WT as a spectral trans-
form. This behavior was observed in all our experiments (with
an even larger gap for the Landsat TM image, as expected) and
is also in agreement with recent findings in the literature [10],
[11], [50] where gains of similar entities have been observed
when KLT replaces WT. Therefore, we will not consider WT
anymore as a possible spectral transform.

At this point, it is clear that KLT is the spectral transform of
choice, so we go on to investigate the impact of a global versus

Fig. 7. RD performance for the AVIRIS image with KLT and WT as spectral
transform.

region-adaptive KLT on the overall performance. We consider
only region-based coding schemes for the time being, in which
the image is first segmented, then each object undergoes spectral
KLT, spatial SA-WT, and is finally coded by SA-SPIHT with
explicit rate allocation. Therefore, the various coding schemes
differ only in the spectral transform, which can be global, re-
gion-adaptive or class-adaptive, with this latter option consid-
ered in order to limit the cost of side information, since the
same KLT matrix is used for all regions of the same class. The
segmentation maps used in this experiment are shown in Fig. 8
(top), while Figs. 9 and 10 report the rate-distortion curves for
the Landsat TM and the AVIRIS image respectively. Results
show unambiguously that the use of a KLT adapted to the re-
gion statistics guarantees a significant performance gain over
a global KLT, despite the increased cost of the side informa-
tion due to the need to transmit the segmentation map, and the
region means and covariances. Turning to the comparison be-
tween class-based and region-based adaptivity, it is clear that
the side information, especially for the covariance matrices, has
a significant weight at low bit-rates, speaking in favor of the
class-based solution. At higher bit-rates the gap reduces and
even vanishes for the TM image, while it remains significant,
about 0.7 dB, for the 32-band AVIRIS image, where sending the
covariance matrices for a large number of regions represents a
real burden. A suitable compression of such matrices (we use
simple nonuniform quantization) could very likely reduce this
overhead, but the class-based solution seems preferable at this
point.

C. Flat Versus Region-Based Coding

We are now ready to compare the best region-based tech-
nique, using class-based KLT, with the best flat reference tech-
nique, using global KLT. In both cases, rate allocation is carried
out explicitly, band-by-band. Results are reported in Fig. 11 for
the TM image and Fig. 12 for the AVIRIS image, and show a
consistent lead of the region-based technique, about 1 dB in the
first case and almost as much in the second, except for the very
low bit-rates where the cost of side information plays a non-neg-
ligible role. In the figures, we also report the results obtained by
two “standard” reference techniques, that is JPEG-2000 multi-
component [51], with KLT as a decorrelating spectral transform,
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Fig. 8. Segmentation maps used in the experiments: (left) Landsat TM; (right)
AVIRIS.

Fig. 9. RD performance for the Landsat TM image with global KLT, class-
based KLT, and region-based KLT.

Fig. 10. RD performance for the AVIRIS image with global KLT, class-based
KLT, and region-based KLT.

and simple 3-D SPIHT. It appears that JPEG-2000 performs
about as well as our best region-based technique, although it is

Fig. 11. RD performance comparison between best region-based technique and
reference flat techniques for the Landsat TM image.

Fig. 12. RD performance comparison between best region-based technique and
reference flat techniques for the AVIRIS image.

worth underlining that we use no arithmetic coding at present,8

while 3-D SPIHT is clearly inferior, especially when the spec-
tral WT is used (AVIRIS image). Other “hybrid” reference tech-
niques have also been implemented and tested, e.g., class-adap-
tive KLT followed by flat WT and SPIHT, but their performance
turned out not to be competitive and are not reported for clarity.
Although these are only partial results, it seems safe to say,
based on this evidence, that region-based coding has the po-
tential for an excellent rate-distortion performance, competitive
with the best (and carefully engineered) flat techniques, which
comes on top of the more obvious advantages for high-level ap-
plications already described in the Introduction. It is also ob-
vious that such gains come at a computational cost (segmen-
tation, computation of KLT matrices, multiple encodings, rate
allocation) but there are many applications where such a cost is
fully affordable in view of the ensuing benefits.

We have accumulated enough evidence, by now, about the
rate-distortion potential of region-based coding. All our experi-
ments, however, have been carried out with a single segmenta-
tion map for each image, and, hence, it would be interesting to
explore the impact of segmentation on the overall performance.

8Actually, we already implemented a version of this coder with AC, which
provides an improvement of about 0.5 dB at low and medium rates, but present
results without AC to guarantee a meaningful performance comparison among
all proposed techniques.
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Fig. 13. RD performance using detailed (five classes) or rough (three classes)
segmentation maps.

A good segmentation, valuable for subsequent higher-level ap-
plications, typically unknown in advance, aims at providing re-
gions that are both spatially smooth and spectrally homoge-
neous, but these goals are typically conflicting, since spectral
homogeneity leads to very fragmented maps, while smooth re-
gions tend to lack spectral purity. By adjusting some segmenta-
tion parameters one can bend towards one extreme or the other,
but what is the ultimate impact on the RD performance of re-
gion-based coders? A thorough analysis of this topic would be
exceedingly complex and out of the scope of this paper.9 To shed
some light on this point, however, we evaluate the performance
of our region-based coder with class-based KLT using two new
maps (shown in Fig. 8, bottom) characterized by a very small
number of classes and just a few large regions. Despite the lim-
ited scope of this experiment, results are quite telling: the RD
curves, all reported in Fig. 13 to save space, are almost indistin-
guishable, with a slight advantage for the more detailed maps at
medium-to-high rates, and a more marked gain for the simpler
maps at low rates. Such results suggest that the proposed coder
is quite robust w.r.t. the segmentation map provided it is reason-
ably accurate and smooth (isolated points and small regions are
erased in all cases).

D. Classification Results

Up to this point, we have used mean-square-error (and re-
lated SNR) to measure quality since it is widespread, objec-
tive, and usually in good agreement with perceived quality. In
the remote-sensing community, however, a large SNR is not
seen a sufficient guarantee about the diagnostic value of im-
ages after compression. Therefore, to strengthen our point, we
assess again the techniques considered above using the classifi-
cation error as distortion measure. The images are compressed
at various rates, with the proposed and reference algorithms,
and classified using a simple N-class minimum-distance clus-
tering; then the misclassification rate is computed, that is, the
fraction of erroneously labeled pixels w.r.t. a reference classifi-
cation. Lacking ground truth data, the reference is taken as the
segmentation of the original uncompressed image, even though

9We are currently working on RD-driven segmentation, though.

TABLE I
LANDSAT TM, PERCENT ERROR WITH 4-CLASS AND 8 CLASS K-MEANS

TABLE II
AVIRIS, PERCENT ERROR WITH 4-CLASS AND 8-CLASS K-MEANS

this introduces a small pessimistic bias because of the distur-
bances which affect the reference itself. Results with 4-class
and 8-class clustering are reported in Table I (Landsat TM) and
Table II (AVIRIS), and show a generally good performance for
all coding schemes already at medium bit-rates, showing that
compression, at an appropriate coding rate, can be a viable op-
tion for many remote-sensing applications. The region-based
coder provides often, although not always, the best results, con-
firming its performance advantage. Of course, the error is larger
for the Landsat image, where less spectral information is avail-
able, and grows with the number of classes. This latter phenom-
enon is especially evident with the AVIRIS image, since eight
classes are more than the actual land covers, and, hence, two of
them, hardly distinguishable from one another, are associated
with the same woods region.

To get rid of the bias induced by the unreliable reference map,
we repeated the experiments after deleting from the sample all
pixels that, in the original uncompressed image, are “too close to
call,” i.e., such that where is the distance
in the feature space between the pixel and the closest [second
closest] template vector, and is a free threshold. By setting

, about 5% and 1% of the pixels are not classified in the
Landsat and AVIRIS image respectively, but percent errors drop
dramatically: for the region-based coder, they decrease from
1.49 to 0.16 (four classes) and from 3.00 to 0.56 (eight classes)
for the Landsat TM image at 1 bps, and from 0.18 to 0.003 (four
classes) and from 1.37 to 0.42 (eight classes) for the AVIRIS
image at 0.5 bps. In other words, except for pixels that have al-
ready a dubious meaning in the original image, often mixtures
of several land covers, classification of compressed images is
extremely reliable.

E. Visual Inspection

We conclude this analysis by presenting some visual results
which, though not conclusive under any respect, help gaining
insight about the quality of the compressed images. In Fig. 14,
we show (a) the Landsat TM image and (b) the AVIRIS image, in
the same false color representation as Fig. 4, after compression
with the best region-based coder at 0.6 and 0.3 bps, respectively.
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Fig. 14. Landsat TM image compressed at (a) 0.6 bps and (b) AVIRIS image
compressed at 0.3 bps.

Despite the large compression ratios, exceeding 10:1 and 50:1,
respectively, no significant impairment is visible.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new region-based coding
scheme for multispectral images with a performance that is
aligned or even superior to that of state-of-the-art conventional
techniques. This result is certainly relevant for the applications,
but even more because it shows that a region-based description
of such images, besides enabling a number of high-level ap-
plications, can be effective in a rate-distortion sense. Another
valuable result of this paper is the wealth of experimental
evidence gathered about some key design choices, such as the
type of spectral transform, or the rate allocation strategy.

Although the selected scheme provides the best performance,
and appears to be quite robust on the class of images of in-
terest, several further improvements are certainly possible. First
of all, the connection between segmentation and coding, which
has been only briefly touched upon in this paper, is definitely
worth exploring. An interesting option, that we are bound to
study in future research, is the use of an RD-driven segmen-
tation technique, with a split-and-merge procedure where each
step is guided by the actual RD performance gain/loss measured
on the image to be coded. Also, segmentation should take into
explicit account the problem of mixed cells, especially relevant
for low-resolution images, so as to obtain regions that are more

statistically homogeneous. Another topic that deserves attention
is the use of a dynamic coding approach, where the different re-
gions of the image are coded by means of different techniques,
based on their statistics. For example, one could consider poly-
nomial approximation for very smooth areas, and techniques
based on texture analysis and synthesis for textured areas, which
are quite common in remote-sensing images.

In conclusion, region-based coding seems, under several
points of view, the most appropriate approach to the compres-
sion of multispectral images. This paper, by proposing an actual
coding scheme with competitive performance, provides some
support to this thesis, but we believe that much of the potential
of this approach is yet to be exploited.
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