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Abstract—Multiview video plus depths formats use view syn-
thesis to build intermediate views from existing adjacent views at
the receiver side. Traditional view synthesis exploits the disparity
information to interpolate an intermediate view by taking into
account inter-view correlations. However, temporal correlation
between different frames of the intermediate view can be used
to improve the synthesis. We propose a new coding scheme for
3D-HEVC that allows us to take full advantage of temporal
correlations in the intermediate view and improve the existing
synthesis from adjacent views. We use optical flow techniques to
derive dense motion vector fields from the adjacent views and
then warp them at the level of the intermediate view. This allows
us to construct multiple temporal predictions of the synthesized
frame. A second contribution is an adaptive fusion method that
judiciously selects between temporal and inter-view prediction
in order to eliminate artifacts associated with each prediction
type. The proposed system is compared against the state-of-the-
art VSRS-1DFast technique used in 3D-HEVC standardization.
3 intermediary views are synthesized. Gains of up to 1.21 dB
Bjontegaard Delta PSNR are shown, when evaluated on several
standard multiview video test sequences.

Index Terms—multiview video plus depth, 3DV, temporal and
inter-view prediction, view synthesis, 3D-HEVC.

I. I NTRODUCTION

RECENT advances in video acquisition, compression and
transmission technologies have brought significant mar-

ket potential for immersive communications. Common exam-
ples [1] [2] include immersive teleconference systems, 3D
video, holography and Free Viewpoint Television (FTV). A
typical format for some of these applications is the MultiView
Video (MVV) composed of a set of N video sequences
representing the same scene, referred to as views, acquired
simultaneously by a system of N cameras positioned under
different spatial configurations. An alternative representation
is the Multiview-Video-Plus-Depth format (MVD) [3], where
the depth information is used in addition to texture for each
viewpoint. This allows for a less costly synthesis of much
more virtual views, using for example Depth-Image-Based-
Rendering (DIBR) methods [4].

A. Purica is with Institut Mines-Telecom, Telecom-ParisTech, Paris, France
and LAPI, University Politehnica of Bucharest, 061071, Romania. E. Mora, B.
Pesquet-Popescu and M. Cagnazzo are with Institut Mines-Telecom, Telecom-
ParisTech, Paris, France. B. Ionescu is with LAPI, University Politehnica of
Bucharest, 061071, Romania.

Part of this work has been funded by the Sectoral OperationalProgramme
Human Resources Development 2007-2013 of the Ministry of European Funds
through the Financial Agreement POSDRU/159/1.5/S/132395.

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

View synthesis is the process of extrapolating or interpo-
lating a view from other available views. It is a popular
research topic in computer vision, and numerous methods
have been developed in this field over the past four decades.
View synthesis techniques can be mainly classified in three
categories [5]. The methods in the first category, like DIBR,
require explicit geometry information such as depth or dis-
parity maps to warp the pixels in the available views to the
correct position in the synthesized view [6] [7]. Methods
in the second category require only implicit geometry, like
some pixel correspondences in the available and synthesized
view, that can be computed using optical flow [8] [9] for
instance. Finally, methods in the third category require no
geometry at all. They appropriately filter and interpolate a
pre-acquired set of samples (examples of tools in this category
include light field rendering [10], lumigraph [11], concentric
mosaics [12]). A common problem in view synthesis are areas
that are occluded in the available views but should be visible in
the virtual ones. These areas appear as holes in virtual views,
also referred to as disocclusions . This problem is currently
resolved by using inpainting algorithms such as the ones
described in [13] and [14]. Two of the most popular inpainting
algorithms were developed by Bertalmio and Sapiro [15] and
Criminisi et al. [16].

Recently, the Moving Pictures Experts Group (MPEG) ex-
pressed a significant interest in MVD formats for their ability
to support 3D video applications. This new activity is mainly
focused on developing a 3D extension of the HEVC [17] video
coding standard, after a first standardization activity finalized
with Multiview Video Coding (MVC) [18]. An experimental
framework was developed as well, in order to conduct the
evaluation experiments [19]. This framework defined a View
Synthesis Reference Software (VSRS) as part of the 3D-
HEVC test model [20], which would later become an anchor
to several new rendering techniques. Furthermore, establishing
whether encoding all views or synthesizing some from coded
views is better for multiview video sequences is still an open
matter. Recently MPEG decided to dedicate 6 months to
compare the two schemes [21].

Traditionally, view synthesis methods, and VSRS in partic-
ular, only use inter-view correlations to render virtual views.
However temporal correlations can also be exploited to im-
prove the quality of the synthesis. In general, this type of
methods synthesize or improve the synthesis of a frame by
extracting additional information from different time instants,
as opposed to DIBR methods which only use adjacent views
at the same time instant. For instance in [22] the authors
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use motion vector fields between frames of the intermediate
views to improve the view synthesis in MVC standard. Chen
et al. [23] use motion vector fields computed through block-
based motion estimation in the reference views and then
warp both the start and end point of the vectors in the
synthesized view. The motion vectors are then used to retrieve
information about dis-occluded regions from other frames.
Sun et al. [24] and Kumaret al. [25] use adjacent views to
extract background information from multiple time instants,
used for hole filling in a DIBR synthesis. In [26] the authors
use the information from the current and other frames of the
synthesized video to fill hole regions. Other studies use the
inter-view correlations directly during coding, view-synthesis
prediction (VSP) [27] [28] [29] or take advantage of multiview
format redundancies to deal with network packet loss [30].
Yuan et al. [31] use Weiner filter to improve the synthesis by
eliminating distortions caused by coding.

In this paper, we propose a new coding scheme for 3D-
HEVC built around a novel view synthesis method that fully
exploits temporal and inter-view correlations. Our methodis
designed to complement the synthesis method used in the
3D-HEVC standardization process in order to improve the
quality of the synthesis. We use the optical flow to derive
dense motion vector fields between frames in the adjacent
views which are available at the decoder side, then warp
them at the level of the intermediate view. This allows us
to build different temporal predictions from left and right
adjacent views using reference frames at two time instants
(past and future). Other motion estimation techniques thatare
less computationally intensive can also be used at the cost
of prediction accuracy [32] [33] [34]. However, since it does
not require sending any residual information, we prefer using
an optical flow motion estimation technique, since it offersa
more accurate prediction [35]. The reference frames used for
motion compensation are previously encoded and sent as an
additional frame per GOP in the intermediate view, we will
refer to these frames as key frames in the rest of this paper. The
four predictions are then merged into a single one, with the
aim of reducing the number of holes in the final synthesis. Due
to a big temporal distance between reference and synthesized
frames, the motion vector fields may be imprecise especially
for frames with intense motion. We mitigate these effects
by using the so-called “Hierarchical” synthesis scheme, in
which temporal layers are used to perform symmetric synthesis
(where each frame is synthesized from either a key frame or
a previously synthesized frame) and we compare it with a
“Direct” scheme (where each frame is directly synthesized
from a past and a future key frame). To further improve
the quality of the synthesis, we introduce an adaptive fusion
method that selects between inter-view and temporal predic-
tion. The remaining disocclusions in the synthesized imageare
then filled by a linear inpainting method.

The remaining of this paper is organized as follows. The
second section of this paper presents a state-of-the-art ofview
synthesis techniques. The proposed method is described in the
third section. The results obtained are summarized in Sec-
tion IV with a detailed interpretation, and finally conclusions
and future work directions are presented in Section V.

II. STATE OF THE ART OF VIEW SYNTHESIS TECHNIQUES

In this state of the art, we focus on the first class of view
synthesis methods, also referred to as DIBR techniques. We
first discuss the rendering technique used in the reference
software for view synthesis, and in the rendering software
used by the Joint Collaborative Team on 3D Video Coding
Extension Development (JCT-3V) [36]. Then, an overview of
other rendering techniques found in the literature is presented.

A. Reference software

1) View Synthesis Reference Software: VSRS inputs two
texture views and their two associated depth maps, along
with intrinsic and extrinsic camera parameters. The outputis
a synthesized intermediate view. VSRS allows synthesizing
frames using two operational modes: a general mode and a 1D
mode, respectively used for non-parallel (e.g. cameras aligned
in an arc) and 1D-parallel (cameras are aligned in a straight
line perpendicularly to their optical axes) camera settings.

Figure 1 illustrates the rendering process in the general
mode of VSRS. First, the left and right reference depth maps
(sD,l andsD,r) are warped to the virtual view position, giving
s′D,l ands′D,r. The occlusions are handled by the highest depth
value (closest to the camera), usually the depth values are
reversed quantified from 0 to 255 such that the highest value in
the depth map corresponds to the lowest depth of the scene [1].
s′D,l ands′D,r are then median filtered to fill small holes, giving
s′′D,l ands′′D,r. A binary mask is maintained for each view to
keep track of larger holes caused by disocclusions.s′′D,l and
s′′D,r are then used to warp the texture viewssT,l and sT,r

to the virtual view position, givings′T,l ands′T,r (this reverse
warping process wherein the depths are warped first and then
used to warp the texture is reported to give a higher rendering
quality [19]). Holes in one of the warped views are filled
with collocated non-hole pixels from the other warped view,
if available. This givess′′T,l ands′′T,r, which are then blended
together to form a single representation. The blending can be
a weighted average according to the distance of each view to
the virtual view point (Blending-On mode), or it can simply
consist in taking the closest view to the virtual view point,
and discarding the other (Blending-Off mode). The binary
masks of each view are merged together at this stage and the
remaining holes are filled at the final stage of the algorithm
by propagating the color information inward from the region
boundaries.

The 1D mode of VSRS works a bit differently. In this mode,
the camera setup is assumed to be 1D parallel. This allows
to make a number of simplifications to the warping process
which is reduced to a simple horizontal shift. First, the color
video is up-sampled for half-pixel or quarter pixel accuracy.
A “CleanNoiseOption” and “WarpEnhancementOption” avoid
warping unreliable pixels. The process gives two warped
images, two warped depth maps and two binary masks from
the left and right reference views. Each pair is then merged
together. When a pixel gets mapped from both the left and the
right reference views, the final pixel value is either the pixel
closest to the camera or an average of the two. Remaining
holes are filled by propagating the background pixels into
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Fig. 1. Flow diagram for View Synthesis Reference Software (VSRS) general
mode [19].

the holes along the horizontal row. Finally, the image is
downsampled to its original size.

2) View Synthesis Reference Software 1D Fast: Each con-
tribution to the 3D-HEVC standardization that proposes to
modify the coding of dependent views or depth data, is
required to present coding results on synthesized views. The
software used for synthesizing the intermediate views is a
variant of VSRS, called View Synthesis Reference Software
1D Fast (VSRS-1DFast). This software is included in the HTM
package, and is documented in the 3D-HEVC test model [20].
VSRS-1DFast allows inputting two or three texture and depth
views along with their corresponding camera parameters, and
synthesize an arbitrary number of intermediate views. Justlike
the 1D mode of VSRS, VSRS-1DFast assumes that the camera
setup is 1D parallel. Figure 2 illustrates the different steps of

Fig. 2. Flow diagram for View Synthesis Reference Software 1D Fast (VSRS-
1DFast) [20].

the rendering algorithm used in VSRS-1DFast. The texture
views sT,l and sT,r are first upsampled to obtain̂sT,l and
ŝT,r: the luma component is upsampled by a factor of four
in the horizontal direction, and the chroma by a factor of

eight in horizontal direction and two in vertical direction, thus
yielding the same resolution for all components. The warping,
interpolation and hole filling are carried out forŝT,l and ŝT,r

line-wise. This gives two representations of the synthesized
frame: s′T,l and s′T,r. Then, two reliability mapss′R,l and
s′R,r are determined indicating which pixels correspond to
disocclusions (reliability of 0). A similarity enhancement stage
then adapts the histogram ofs′T,l to the one ofs′T,r. Finally,
s′T,l and s′T,r are combined. If the “interpolative rendering”
option is activated, the combination would depend on the
warped depth maps and the two reliability maps created. If
not, the synthesized view is mainly rendered from one view
and only the holes are filled from the other view. The resulting
combination is later down-sampled to the original size of the
texture views.

B. Rendering techniques in literature

In [37], a rendering technique called View Synthesis using
Inverse Mapping (VSIM) is introduced. It operates at full-pel
accuracy and assumes a 1D-parallel camera setting. The left
and right texture views are warped to the synthesized view po-
sition using simple horizontal shifts, also called column shifts.
A table is maintained for the left and right interpretationsof
the synthesized frame which records the column shift of each
pixel. Holes in these two tables are filled using a median filter.
Then, the two representations are merged and the remaining
holes are filled by checking the collocated value in the tables,
and inverse mapping the pixel back to its original value in the
left or right view. Residual holes are filled by simply assuming
that their depth is the same as the depth of the collocated pixels
in the original views. VSIM outperforms VSRS, on average,
by 0.41 dB at quarter-pel accuracy and by 1.35 dB at full-pel
accuracy on 5 sequences. However, the rendering runtime is
not provided, making it difficult to assess the complexity of
the method.

In [38], the depth maps are pre-processed with an adaptive
smoothing filter in order to reduce holes after synthesis. The
filter is only applied to edges in the depth map (corresponding
to an abrupt transition in depth values) since these are the main
cause for holes. The method is thus less complex than methods
which apply a symmetric or asymmetric smoothing filter to
the entire depth map. Furthermore, if hole regions correspond
to vertical edges, an asymmetric Gaussian smoothing filter is
used to further pre-process the depth map. No objective gains
are reported, but a perceptual improvement is noticed on some
synthesized sequences.

A technique that does not require pre-processing the depth
map is introduced in [39]. A hole in the synthesized tex-
ture image is filled by the color of the neighboring pixel
(between the 8 direct neighboring pixels) with the smallest
depth value in the synthesized depth map (this is referred to
as Horizontal, Vertical and Diagonal Extrapolation (HVDE)).
The two warped texture images are complemented (holes in
one are filled with available pixel values in the other), and later
blended, giving a final imageW . The same process (HVDE,
complementation, and blending) can also be performed in
case the depth maps were pre-processed with a bi-lateral
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smoothing filter, giving an imageA, which would then be
used to fill remaining holes inW . This technique is reported
to outperform basic DIBR by 1.78 dB on one sequence.

Another method for improving the quality of the synthesis
is to apply a non-linear transformation to the depth maps [40].
Specifically, the depth range of points in the background
is compressed, such that these points would have the same
or slightly different depths. This reportedly reduces holes in
the synthesis. The transformation depends on the depth map
histogram. Objective gains are not presented but a visible
improvement is noticed on the shown images.

Another desired feature is the possibility to freely change
the quality of a synthesized view. Since the quality of DIBR
rendering depends on the actual synthesis process, additional
boundary artifact processing can be used to adjust the quality
of the synthesis. Zhaoet al. analyze and reduce the boundary
artifacts from a texture-depth alignment perspective in [41].
In [42] Cheunget al. tackle the problem of bit allocation
for DIBR multiview coding. The authors use a cubic distor-
tion model based on DIBR properties and demonstrate that
the optimal selection of QPs for texture and depth maps
is equivalent to the shortest path in a specially constructed
3D trellis. Xiao et al. [43] propose a scalable bit allocation
scheme, where a single ordering of depth and texture packets
is derived. Furthermore, depth packets are ordered based on
their contribution to the reduction of the synthesized view
distortion.

Other works also exploit pixel-based processing with dense
MVFs with an end goal of improving the synthesis at the
decoder side. Liet al. compute dense MVFs on texture in [44].
Time consuming optical flow computations are limited only
around the edges of objects. Additional depth predictors are
obtained by mapping the MVs computed on texture to depth.
The depth map improvement is reflected in a high increase of
quality for synthesized views.

C. Remarks

The rendering techniques used in the reference softwares,
and in most contributions in literature, are all based on 3D
image warping using depth maps. Pixels from reference views
are mapped to pixels in the virtual view using the disparity
information that the depth maps convey. However, we show
that the synthesis can be improved by extending DIBR to the
temporal axis. In the remaining work, we present a rendering
method where temporal correlations between different frames
in the synthesized views are exploited to improve the quality
of the synthesis. Our method is detailed in the next section.

III. PROPOSED METHOD

Traditional rendering techniques synthesize an intermediate
frame only from the left and right reference views at the same
time instant. By exploiting the temporal correlations in the
multiview sequence, we are able to obtain additional predic-
tions from past and future frames and merge them together to
obtain the synthesized frame. We refer to our synthesis method
as View Synthesis exploiting Temporal Prediction (VSTP). In
this section, we describe the epipolar constraint for disparity

maps and optical flows, on which the proposed method is
based. We then provide a description of the algorithm and
propose two synthesis schemes for a Group Of Pictures (GOP)
that exploit this idea.

A. Epipolar constraint

Figure 3 shows the relation between the positions of a
real-world point projection in different views and at different
time instants. Let us considerIrt−1, Irt , Ist−1, Ist which are,
respectively, the reference (r) view frames and the synthesized
(s) view frames at time instantst − 1 and t. Let M × N be
the size of the image withM being the height andN the
width. Let k = (x, y) be a point inIrt−1, vr(k) its associated
motion vector (Irt is the reference frame forIrt−1), pointing
to a corresponding point inIrt , and dt−1(k) its associated
disparity vector, pointing to a corresponding point inIst−1.
Let vs(k + dt−1(k)) be the motion vector of the projection
of k in Ist−1 and dt(k + vr(k)) the disparity vector of the
projection ofk in Irt . If the point is not occluded, there is only
one projection ofk in Ist , so the two vectors will point to the
same position. This defines a so-called epipolar constraint[45]
on k, which can be written as:

vr(k) + dt(k+ vr(k)) = dt−1(k) + vs(k+ dt−1(k)) (1)

k=(x,y)

v r(k)

v s (k+d t-1 (k))

d t-1 (k) d t(k+v r(k))

Reference

view

Synthesized

view

I
r

t-1 I
r

t

I
s

tI
s

t-1

y

x

t-1 t

Fig. 3. Epipolar constraint, the relation between the disparity fieldsdt−1 and
dt at two time instantst andt− 1 respectively, and the motion vector fields
in the synthesized and reference viewvs andvr respectively for a position
k in the reference frameIr

t−1
.

B. Method description

The goal of the method is to synthesizeIst from a past and
future key frame in the synthesized view. Knowingvr, dt, and
dt−1, vs can be derived using Equation (1) for every pixel in
Ist−1 that has a correspondence inIrt−1:

vs(k+ dt−1(k)) = vr(k) + dt(k+ vr(k))− dt−1(k) (2)

vr can be obtained by inputtingIrt−1 and Irt in an optical
flow algorithm [46]. The result is a dense motion vector
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field vr where each pixel inIrt−1 is associated with a motion
vector. The disparity mapsdt anddt−1 can be obtained by
simply converting the values in the depth mapsZr

t andZr
t−1

associated withIrt andIrt−1 respectively into disparity values.
We assume that we are dealing with a 1D parallel camera
setup, and that only horizontal disparities exist. In this simple
setup, the disparity value for a pointk of coordinates(x, y)
in Irt−1 can be written as:

dx
t (k) = f ·B

[
Zr
t (x, y)

255

(
1

Zmin

−
1

Zmax

)
+

1

Zmax

]

d
y
t (k) = 0

(3)

where f is the focal length of the camera,B the baseline
between the reference and synthesized views, andZmin and
Zmax the extremal depth values. The same formula can be
applied to obtaindt−1.

If we decompose Equation (2) for thex andy components
separately, we obtain:

vx
s (x+ dx

t−1(x, y), y)

= vx
r (x, y)+dx

t (x+vx
r (x, y), y+vy

r (x, y))−dx
t−1(x, y)

vy
s (x+ dx

t−1(x, y), y) = vy
r (x, y)

(4)

There will be holes invs that coincide with disocclusions
created when warpingIrt−1 with the dt−1 disparity vector
field. If two or more positions inIrt−1, k1 andk2 for instance,
are warped to the same positionk3 in Ist−1 (occlusion), the
vector vs(k3) retained is the one which corresponds to the
pixel with the highest depth value, as shown in Equation (5):
the motion vectors for occluded points of the scene are thus
ignored.

vs(k3) =





vr(k1) + dt(k1 + vr(k1))− dt−1(k1)

if Zr
t−1(k1) > Zr

t−1(k2)

vr(k2) + dt(k2 + vr(k2))− dt−1(k2)

otherwise
(5)

Using the motion vector fieldvs andIst−1, a prediction ofIst
can be made, although it will contain holes due to disoccluded
areas invs. A total of four predictions can be made by
exploiting the epipolar constraint, one for each referenceview
(left and right,L andR) and at each time instant (past and
future, p and f ), they will be denoted byP(i) (Ist ) where
i ∈ {0, 1, 2, 3}. This is shown in Figure 4.

The four predictions are then merged into a single oneĨst ,
where the value of each pixel equals the average of the non-
disoccluded pixel values in the four predictions as shown in
the following equation. When all four predictions contain the
same disocclusion, the pixel value is computed by inpainting.
Indeed, while the four predictions contain disocclusions,the
majority of these holes are not the same in all predictions and
thus they will be filled after the merging step:

Ĩst (k) =





A(k)∑
i=0

P(i) (Ist (k))

A(k)
if A(k) 6= 0

inpainted ifA(k) = 0

(6)

vs,p,L s,f,L

s,f,Rs,p,R

vr,p,R

vr,p,L vr,f,L

vr,f,R

v

vv

dp,L

dt,R
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t futurepast

Ip,L
r
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r
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r
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If
s

Fig. 4. Four predictions using the epipolar constraint: dotted lines represent
the new temporal predictions introduced by our method.

whereA(k) is the number of existing predictions for position
k. Disocclusions (A(k) = 0) are filled using the same
inpainting method used in VSRS-1DFast, which is a simple
line-wise interpolation.

Figure 5 illustrates the steps of VSTP algorithm. In order
to generate a temporal prediction, the algorithm inputs two
frames of the reference view at two time instants, i.e., a
current and a future or past time instants, denoted byIrt,L
and Irp,L respectively in the figure, and computes a dense
motion vector field between the two (vr,p,L). The dense MVF
is then warped at the level of the synthesized view using
the corresponding disparity maps (dt,L and dp,L). We also
retain a disparity map corresponding with the new MVF (d′).
Thus, each pixel has an associated motion vector and disparity.
The next step is the backward motion compensation in which
we use a key frame (Isp) as reference in order to obtain a
first temporal prediction, in case of overlapping values we
use d′ to select the foreground pixel.̂Isp,R, Îsf,L, Îsf,R are
obtained using the same steps in the right reference view
at the same time instant and at a future time instant in the
left and right reference views respectively, as described in
Figure 4. The final synthesis is obtained by performing a
simple merge between the four temporal predictions or an
inter-view/temporal fusion as described in Section III-D.The
inter-view prediction is denoted bŷIi in Figure 5.

C. Prediction schemes in a GOP

The synthesized view is rendered GOP-wise in our al-
gorithm. The GOP structure is the one used to code the
left and right reference views. In addition to the reference
views (as required by VSRS-1DFast) we send a first frame
per GOP of the synthesized view (at the encoder side we
require this view, it can be either original or synthesized from
uncompressed adjacent views if not available) in the bitstream.
These frames, referred to in the rest of this work as key
frames, are efficiently coded using 3D-HEVC with the left
view serving as inter-view reference (the base view). The rest
of the frames are synthesized using our method with one of
the temporal prediction schemes described below. For the first
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Fig. 5. Flow diagram for View Synthesis exploiting Temporal Prediction
(VSTP). The dotted dash line is the temporal prediction block, which is
applied four times, i.e. past and future time instants (p and f ) in the left
and right (L andR) reference (r) views.

frame actually synthesized in a GOP, the key frame of the
current GOP and the one of the future GOP respectively are
the past and future reference frames,Isp andIsf respectively.

Figure 6 shows the difference between the two temporal
prediction schemes. The “Direct” scheme uses the key frame
of the current GOP and the one of the next GOP as past and
future reference frames for all remaining frames to synthesize
in the GOP. This results in an asymmetric prediction, with
two different temporal distances between each of the two
key frames and the current frame. The temporal distance
can be as high as the GOP size minus one, and an optical
flow computation with such large temporal distances can
give imprecise motion vector fields thus making the “Direct”
scheme inefficient. An alternative scheme, called the “Hier-
archical” scheme, can be used, in which temporal layers are
used to perform symmetric predictions (with equal temporal
distances). In each layer, the past and future references for the
current frame are either the key frames or already synthesized
frames in lower layers. The maximal temporal distance in this
scheme equals half of the GOP size.

D. Adaptive Fusion

In the proposed method the synthesized frame is obtained
by merging our four temporal predictions as described in
Equation (6). When dealing with fast moving objects, the
optical flow computation between frames with high temporal
distance may give imprecise motion vector fields which lead to
an inconsistent positioning of the objects in the four temporal
predictions. In this case, a simple average-based merging
would result in a bad representation of objects with high
motion intensity. In what follows, we refer to the traditional
disparity based synthesis used in VSRS-1DFast as the inter-
view prediction. We introduce a different merging algorithm
called “Adaptive Fusion” which uses the inter-view prediction
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Fig. 6. Temporal prediction schemes inside a GOP of the synthesized view.

and our temporal prediction alternatively for different parts
of the image. The idea of this method is to generate a binary
fusion map in which we mark the bad pixels from the temporal
prediction, to be replaced by the inter-view prediction. The first
step of this algorithm is to estimate which areas will selectthe
inter-view prediction and which ones will select the temporal
prediction. The next step is the actual fusion, where each pixel
value is computed as an average between either the temporal or
inter-view predictions , depending on the previously computed
binary map.

In order to describe our selection process for a pixel, let
us consider:̂itpL, îtfL, îtpR, îtfR four temporal predictions of
a pixel at positionk and îi the blend between the left and
right inter-view predictions obtained from VSRS-1DFast. It is
safe to assume that good temporal predictions of a pixel are
similar, i.e., the values are close to each other (have a low
spread). On the contrary, imprecise motion vector fields might
lead to dissimilar values that span over a large range (have a
wide spread) and in this case inter-view prediction should be
used. Note that in some casesîi is worse than the temporal
prediction even if we have a wide spread. The challenge is to
remove artifacts in the temporal prediction without introducing
new ones from the inter-view prediction. By comparing the
value of îi to our four temporal predictions we can identify
four cases. In the following, the maximum and minimum value
of the temporal predictions are denoted byîtmax and îtmin

respectively :

Case 1: Wide spread and̂ii ∈ [̂itmin, î
t
max]

Case 2: Wide spread and̂ii /∈ [̂itmin, î
t
max]

Case 3: Low spread and̂ii ∈ [̂itmin, î
t
max]

Case 4: Low spread and̂ii /∈ [̂itmin, î
t
max]

We considerCase 1and Case 4as typical situations in
which we should select inter-view and temporal predictions
respectively. Indeed, inCase 1, wide spread means there is a
bad match between the four temporal predicted values, which
indicate an imprecise optical flow computation. An inter-view
prediction inside this range is probably the best value.Case
4 indicates a good temporal prediction and we should use the
average of the four points. InCase 2the inter-view predicted
value is either good or very bad depending on how far away it
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is from îtmin or îtmax. In Case 3the two prediction values are
close and we prioritize the temporal one. When dealing with
disocclusions, the number of available temporal or inter-view
predictions for a pixel can vary, i.e., a certain position(x, y)
can be a disocclusion in one or more temporal or inter-view
predictions. In situations when only one type of predictionis
available we select it, and if we have no prediction at all, we
mark the pixel to be later filled.

Considering the vectorspt = [̂itpL, î
t
fL, î

t
pR, î

t
fR] and

pt&i = [̂itpL, î
t
fL, î

t
pR, î

t
fR, î

i], the selection between inter-
view and temporal prediction for a pixel is done as follows:

î =





ît if mean(| pt −mean(pt) |)

−mean(| pt&i −mean(pt&i) |) < α

îi if mean(| pt −mean(pt) |)

−mean(| pt&i −mean(pt&i) |) > α

(7)

where ît = mean(pt) and α is a threshold used to control
the selection process (by increasingα we favor the temporal
prediction). Adding an outlying value to thept vector will
increase its mean absolute deviation, on the contrary an inlying
value will maintain a similar mean absolute deviation. In our
model we select temporal prediction whenîi is an outlier, this
corresponds toCase 4. For Case 2andCase 3we favor the
temporal prediction and forCase 1we favor the inter-view
prediction. The value forα used in this work was empirically
found to be optimal at0.5.

From this process, we deduce a binary selection map:

B(k) =

{
0 if î = ît

1 if î = îi
(8)

which indicates the selected prediction type for each pixel.

E. Discussion on the method

In dense camera rig systems, a high number of views
are available at the encoder side. Typically, only a subset is
coded and sent in the bitstream, the rest being synthesized
at the receiver side [20]. Our prediction method uses the
synthesized view at the encoder side, since one frame per
GOP of that view is transmitted in the bitstream. Indeed,
synthesizing the intermediate views instead of sending them
is a more efficient alternative as show in [47]. Our method
can be seen as in between these two scenarios: we only send
some information on the synthesized views, which we exploit
to improve the synthesis. Consequently, in this work, we do
not only propose a rendering method, but also a change in
the design of the transmission stage. Note that we could have
proposed a method where the key frames in the synthesized
view are rendered with the left and right reference views using
VSRS for instance, but then the rendering artifacts createdin
these key frames would be propagated to the rest of the frames
in the motion compensation stage.

Furthermore, we use a “backward” motion compensation
stage in our method: the vectors invs point from Isp (or Isf )
to Ist . We can have avs that points fromIst to a past or future
reference if the vectors invr point in the same direction (e.g.,
from Irt to Irp or Isf ). This can easily be done if the inputs of

the optical flow algorithm that outputsvr are reversed. In this
case, and ifk = (x, y) is a point inIrt , Equation (2) becomes:

vs(k+ dt(k)) = vr(k) + dt−1(k+ vr(k))− dt(k) (9)

From Equation (9), we can see thatvs is now defined for
every pixel inIrt that has a correspondence inIst . The holes
in vs (and in the corresponding prediction) correspond to
disocclusions when warping fromIrt to Ist . Even if we use
a different time instant (f ), the holes in the corresponding
prediction would still come from warpingIrt to Ist and thus
will coincide with the holes of the first prediction. The merging
process will not be able to fill in these holes and they will
eventually have to be inpainted. In our method, the holes
correspond to disocclusions when warping fromIrp to Isp in
the first prediction, and fromIrf to Isf in the second. The holes
do not necessarily coincide, and thus, pixels can be efficiently
predicted from one or the other frame, during the merging
process.

In comparison to other pixel-based methods such as [44]
which improve the encoding of the depth map using dense
MVFs computed on texture, our method warps the dense
MVFs at the level of the intermediate view and uses them to
motion compensate texture images as shown in this section.

Furthermore, boundary artifacts reduction methods such
as [41] can be used in parallel with VSTP. Since, our final
synthesis is a blend between DIBR rendering and the temporal
predictions, reducing the artifacts in the DIBR synthesis will
increase the quality of our method. Also, a better texture-
depth alignment can benefit the warping of the dense MVFs.
However, our method also gives the possibility to adjust the
QP of the key frames which will in turn affect all frames
inside a GOP or modify the frequency of the key frames which
will reduce or increase the temporal distance of the prediction
resulting in a higher quality rendering and a variation of the
transmission rate.

As discussed above, our method provides new possibilities
to control the rate and distortion in comparison to VSRS-
1DFast: modifying the QP of key frames or adjusting their
frequency. The bit allocation optimization scheme for DIBR
multiview coding presented in [42] can be employed with our
method as-well. However, a study towards the integration of
the additional rate and distortion control options provided by
VSTP within such schemes should be performed. For simplic-
ity reasons in our experiments we will use the recommended
depth and texture QPs for 3D-HEVC testing, as discussed in
section IV-A.

IV. EXPERIMENTAL RESULTS

A. Experimental setting

Our algorithm takes as input two coded left and right views
with their associated depth videos and camera parameters, and
one frame per GOP of the intermediate view, and outputs
the whole intermediate view after synthesizing the rest of
the frames. The synthesis results are compared against the
original intermediate sequences to measure the PSNR. We thus
consider a five-view scenario in these experiments in which
we code two views (left and right) and key frames from 1/2
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view and synthesize three intermediary views at1/4, 1/2 and
3/4 positions between the two base views. We assume that
one of the three intermediary views is available at the encoder
side(1/2). The coding configuration described in the Common
Test Conditions (CTCs) defined by JCT-3V for conducting
experiments with the reference software of 3D-HEVC [48] is
used for coding the left and right views. The recommended
texture and depth QPs are25, 30, 35, 40 and 34, 39, 42, 45
respectively. The optical flow algorithm used in our method
can be downloaded from [46], the configuration parameters
are reported in Table I and more details can be found in [49].

TABLE I
OPTICAL FLOW PARAMETERS

Parameter Description Value

Alpha Regularization weight 0.012
Ratio Downsampling ratio 0.4
MinWith Width of the coarsest level 20
nOuterFPIterations Number of outer fixed point iterations 7
nInnerFPIterations Number of inner fixed point iterations 1

nSORIterations
Number of Successive Over
Relaxation iterations 30

We test our method on four sequences of the test set in the
CTCs: Balloons, Kendo, Newspaper and PoznanHall2. Each
sequence is composed of three real views and we also consider
two virtual views. The CTCs indicate to use the middle view
as base view, and the left and right views as dependent views.
However, here we want the left and right views to be decodable
without the middle view because only the first frame in each
GOP of that view will be sent in the bitstream. We thus set
the left view as base view, and the others as dependent views.
Also, we code roughly 10 seconds of video of each sequences.
Note that the number of frames is lower in PoznanHall2
because its frame rate is lower as well (cf. Table II).

TABLE II
SEQUENCES USED IN OUR EXPERIMENTS

Class Sequence
Frames per

second
Number of

frames

class A
(1920× 1088) PoznanHall2 25 200

class C
(1024× 768)

Balloons 30 300
Kendo 30 300

Newspaper 30 300

We compare our synthesis method to the reference VSRS-
1DFast in 3D-HEVC test model, HTM. We evaluate the
performance of the reference and the proposed methods using
the Bjontegaard delta-PSNR (BD-PSNR) [50] metric on the
synthesized views. The PSNR is evaluated against the original
intermediate views. Evaluating our synthesis against frames
synthesized from uncompressed views, as indicated by the
CTCs, would penalize the lack of artifacts that arise from
disparity warping, which are present in both compressed and
uncompressed VSRS synthesis. The rate in the reference
method is the sum of the rates needed to code the left and
right views with their associated depth videos. The same rate
is considered in the proposed method, to which is added

the rate needed to code the first frame in each GOP of the
intermediate view. We use the BD-PSNR metric to measure
the improvement (see Figure 7).

B. Synthesis results

Table III gives the BD-PSNR values obtained with the
two prediction schemes with simple merging (“Direct” and
“Hierarchical”) and “Adaptive Fusion” applied in the “Hier-
archical” scheme (“HierarchicalAF”) when considering only
the PSNR of the 1/2 intermediary view synthesized with
VSTP. In Table IV we show the BD-PSNR for the 3 inter-
mediary views. Here, the PSNR is computed as the average
between the 3 (1/4, 3/4 synthesized with VSRS-1DFast and
1/2 with VSTP). A positive value in this table indicates a
gain. On average, our method brings 0.53dB, 0.59dB and
0.87dB BD-PSNR increase with “Direct” and “Hierarchical”
schemes with simple temporal predictions merging, and the
“Hierarchical” scheme with the “Adaptive Fusion” method
respectively, compared to the reference VSRS-1DFast method.
In the last column of the table (HierAF+HierSynth) we show
the BD-PSNR obtained if we synthesize the1/4 and 3/4
virtual views from left base view and our VSTP synthesis,
and from VSTP synthesis and the right base view respectively.
The depth map for the1/2 view is synthesized from right and
left base views. By employing this hierarchical synthesis we
take advantage of the higher quality of our rendering method
to improve the1/4 and3/4 views without modifying the rate.
The delta-PSNR between reference and ours for1/4 and3/4
views is -0.09dB, -0.01dB, 1.58dB for Balloons, Kendo and
Newspaper sequences in average over all QPs. As expected
these results are consistent with the BD-PSNR reported in
Table IV(HierAF+HierSynth compared to HierarchicalAF),
since the rate is not modified. Note, that the 5 view test case
scenario no longer contains the Poznan Hall2 sequence. This
is due to using original views as reference for evaluating the
PSNR of the1/4 and3/4 views which in the case of Poznan
Hall2 sequence are not available. As discussed in Section III-E
synthesis is proven to be more efficient. However, the quality
of an encoded view is always higher than that of a synthesis,
we obtained38.50dB PSNR compared to35.81dB PSNR
and 32.99dB PSNR for direct 3D-HEVC encoding, VSTP
synthesis and VSRS-1DFast synthesis, respectively, in average
over all sequences and all QPs.

TABLE III
BD-PSNRVALUES FOR A 3 VIEW TEST CASE, OBTAINED WITH BOTH

PREDICTION SCHEMES AND ADAPTIVE FUSION IN THE PROPOSED METHOD

COMPARED WITH THE REFERENCEVSRS-1DFAST METHOD.

Sequence BD-PSNR (in dB)
Direct Hierarchical HierarchicalAF

Balloons 1.94 1.84 2.45
Kendo -1.12 -0.56 0.93
Newspaper 4.70 4.80 5.28
PoznanHall2 2.17 1.99 2.32

Average 1.92 2.01 2.74

The Rate Distortion (RD) curves for the reference and the
proposed method (for both schemes and merging methods) are
given in Figure 7. We can see that while both schemes with
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TABLE IV
BD-PSNRVALUES FOR A 5 VIEW TEST CASE, OBTAINED WITH BOTH

PREDICTION SCHEMES, ADAPTIVE FUSION AND HIERARCHICAL

SYNTHESIS IN THE PROPOSED METHOD COMPARED WITH THE REFERENCE

VSRS-1DFAST METHOD.

Sequence BD-PSNR (in dB)

Direct Hierarchical HierarchicalAF
HierAF +
HierSynth

Balloons 0.52 0.49 0.69 0.64
Kendo -0.45 -0.27 0.22 0.22
Newspaper 1.52 1.55 1.71 2.78

Average 0.53 0.59 0.87 1.21

simple merging outperform the reference method for Balloons
and Newspaper, our method outperforms the reference only
with the “Hierarchical” scheme with adaptive fusion in Kendo.
This is also represented in BD-PSNR values for this sequence
which are only positive in the “Hierarchical” scheme with
adaptive fusion, as shown in Table III. Using the “Adaptive
Fusion” method with the “Hierarchical” scheme brings high
additional gains for Kendo sequence and moderate additional
gains for Balloons, Newspaper sequences. This is expected
because the fusion method was designed with the main goal
of correcting bad temporal predictions caused by high intensity
motion as is the case of Kendo sequence.

To better evaluate our method we perform an additional test.
Since VSTP synthesis requires information to be sent through
the bitstream, mainly one frame per GOP, we perform a direct
comparison between the encoding of a dependant view and our
VSTP synthesis. The results indicate we are able to outperform
the encoding at low bitrates. This is possible due to encoding
errors at lowbitrates having a greater impact on the qualityof
the image as compared to synthesis errors; while, at the same
time synthesis provides better rate. The tests were performed
on Balloons, Kendo and Newspaper sequences for QPs ranging
from 50 to 35 and we obtained: 1.33, 1.06, 0.62 dB BD-PSNR
gain, over 3D-HEVC, respectively for each sequence.

Figure 8 shows, for the four tested sequences, the varia-
tion of the PSNR of the synthesized view over time with
the reference and the proposed method (both schemes and
“Hierarchical” scheme with “Adaptive Fusion”). Only one QP
(25) is represented for simplicity as the behavior of any curve
is similar across all QPs. In the proposed method and for
all sequences, we notice periodic peaks in the synthesized
view PSNR, which correspond to the first frame of each GOP.
Since these frames are not synthesized but rather decoded,
their PSNR is higher than any other frames in the GOP.
For the Balloons, NewspaperCC and PoznanHall2 sequences,
the proposed method outperforms the reference VSRS-1DFast
rendering for most frames. For the Kendo sequence, our
method is better only in certain parts.

Figure 9 shows two side-by-side examples of ideal and real
fusion maps for Kendo and NewspaperCC sequences. The
ideal fusion map displayed here is only showing, in black, the
pixels that if replaced by inter-view prediction, would have
their absolute error decreased by at least 5 (we ignore small
gains). We can see that our map is consistent with the ideal
map for correcting high errors. This is also shown in Figure 10
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Fig. 7. RD curves of the reference and proposed method on 5 viewtest
scenario for the Balloons, Kendo and NewspaperCC sequences.
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Fig. 8. Variation of the PSNR of the middle synthesized view over time for the reference and proposed method at QP 25.

where we display the difference between the absolute error
of temporal and inter-view prediction for the same frame of
Kendo sequence. Positive values indicate inter-view prediction
is better and we can see a correspondence between high values
and our fusion map.

Figure 11 shows parts of frames synthesized using the ref-
erence and the proposed method with hierarchical scheme and
Figure 12 shows parts of frames using the proposed method
with and without adaptive fusion. For fairness of comparison,
for our method, we show frames that are actually synthesized
and not decoded. We can notice a clear improvement in the
synthesis quality with our method: the artifacts obtained with
VSRS-1DFast (highlighted in red in the figures) are efficiently
removed and also artifacts in our method are removed when
using the adaptive fusion.

C. Results interpretation

The “Adaptive Fusion” method with the “Hierarchical”
scheme brings high gains in BD-PSNR. To better describe
our results we will refer to an ideal case where we use the
original frames to create a fusion map in which we mark all
the pixels that have a lower error in the inter-view prediction
compared to the temporal one, for simplicity we will only test
3 seconds from each sequence. As a mean of verifying the
quality of our obtained fusion map we compute the difference
between the mean absolute error (MAE) of pixels marked by
a fusion map, for temporal and inter-view predictions, referred
to as∆MAE as shown in the following equation, wherêI is
either the temporal or inter-view prediction,B is the binary
fusion map and̂It, Îi and I are the temporal and inter-view
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(a) Kendo ideal fusion map (b) Kendo fusion map obtained with our method

(c) Newspaper ideal fusion map (d) Newspaper fusion map obtained with our method

Fig. 9. Fusion maps for frame 4 in Kendo and Newspaper sequences, at QPs 30 and 25 respectively. Pixels in the temporal prediction that are replaced with
inter-view prediction are black. Figures 9(a) and 9(c) are the ideal maps in which inter-view prediction is only selectedif it corrects high temporal errors (the
original view was used for this computation). Figures 9(b) and 9(d) are obtained with the “Adaptive Fusion” method.

predictions and the original frame respectively.

MAE(Î , B) =





0, if B(x, y) = 0 ∀ x, y
M∑

x=1

N∑
y=1

B(x,y)|Î(x,y)−I(x,y)|

M∑
x=1

N∑
y=1

B(x,y)

, otherwise

∆MAE(Ît, Îi, B) = MAE(Ît, B)−MAE(Îi, B)
(10)

Table V shows the percentages of replaced pixels and the
MAE reduction for our method and the ideal case. The values
in Table V are the averages for all QPs. For example let us
consider the Kendo sequence at QP 25. In average for this
case25.39% of the pixels in a frame are better predicted with
inter-view prediction, our method selects3.48% of the pixels
to be replaced by inter-view prediction, out of which1.6% is a
bad selection (temporal prediction was actually giving better
results and we replaced it with inter-view prediction). Note
that the25.39% ideally selected pixels include predicted areas
which are better only by a small margin. Our selection however
focuses on correcting high errors. Even though parts of our

TABLE V
ADAPTIVE FUSION RESULTS: PERCENTAGE OF REPLACED PIXELS AND

MAE GAINS FOR OUR METHOD AND THE IDEAL CASE IN WHICH THE

FUSION MAP IS DETERMINED USING THE ORIGINAL VIEW.

Sequence
Inter-view predicted

pixels (%) ∆MAE

Real Ideal Real Ideal

Balloons 2.74 30.58 0.50 2.57
Kendo 3.67 27.13 2.20 3.48
Newspaper 3.16 28.39 0.58 7.35
PoznanHall2 0.81 26.05 -0.55 2.34

Average 2.60 28.03 0.68 2.65

replaced areas are actually worse predictions and increase
the MAE, overall we still obtain a positive∆MAE which
shows we are correcting the high errors, as also shown in
Figures 9 and 10. For the Balloons and Newspaper sequences
where the introduction of “Adaptive Fusion” brings a small
additional increase in BD-PSNR we have a smaller percentage
of replaced pixels with a small∆MAE in contrast to the Kendo
sequence where this method brings a high additional increase
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in BD-PSNR. For the PoznanHall2 sequence we have a similar
result in BD-PSNR, the “Direct” and “Hierarchical” schemes
already provide a very good result due to low intensity
motion. Here the “Adaptive Fusion” method corrects some
small temporal prediction errors but also introduces inter-view
prediction errors, this explains why we have a negative∆MAE
over the replaced pixels in this sequence. Note that the number
of replaced pixels is smaller compared to the other sequences,
only 0.81% of a frame on average, thus the quality of the
entire image is affected only by a small margin.

The results of Table III and the RD curves in Figure 7
show that the “Hierarchical” scheme outperforms the “Direct”
scheme, which was expected, since the temporal prediction
distances are shorter in the first scheme. Note that in a GOP of
8 frames, the fifth frame is synthesized in the same way in both
shemes, which is why the curves of Figure 8 corresponding to
the two schemes, intersect not only in the first frame of each
GOP but also in the fifth frame.
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Fig. 10. Difference between inter-view and temporal prediction error
(∆MAE) on frame 4 in Kendo sequence, QP 30.

Our method improves the quality of the synthesis on three
levels: first, it accounts for a difference in illumination between
the coded reference views and the synthesized view, which
rendering techniques such as VSRS-1DFast cannot do. Indeed,
while VSRS-1DFast cannot warp a different illumination level
from the reference views into the synthesized view, our method
propagates the correct illumination level of the sent key frames
accross the rest of the frames using motion compensation.
Second, our method fills holes due to disocclusions more
efficiently than VSRS-1DFast. Indeed, these holes are filled
using inpainting in the latter, hence creating artifacts such
as the ones highlighted in Figure 11. In our method, the
disocclusion areas can be found in previously synthesized
frames. Third, foreground objects are better rendered because
the method is less sensitive to depth distortions. We use
disparity to warp dense MVFs rather than directly warping
the texture (cf. Figures 11(e), 11(f), 11(g), 11(h)). In addition,
VSTP brings texture information from different time instants
that cannot be obtained from inter-view prediction. The fusion
between the two prediction types will reduce the chance of

(a) Balloons - VSRS - QP 25 (b) Balloons - VSTP “Direct” -
QP 25

(c) Kendo - VSRS - QP 30 (d) Kendo - VSTP “Hierarchical”
- QP 30

(e) Newspaper - VSRS - QP 35(f) Newspaper - VSTP “Hierar-
chical” - QP 35

(g) PoznanHall2 - VSRS - QP 30(h) PoznanHall2 - VSTP “Adap-
tive Fusion” - QP 30

Fig. 11. Parts of frames synthesized with the reference VSRS-1DFast
and the proposed method. Highlighted artifacts in VSRS-1DFast (Fig-
ures 11(a), 11(c), 11(e) and 11(g)) are efficiently removed inour method
(Figures 11(b), 11(d), 11(f) and 11(h)).
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(a) Balloons - VSTP - QP 25 (b) Balloons - VSTP “Adaptive Fu-
sion” - QP 25

(c) Kendo - VSTP - QP 30 (d) Kendo - VSTP “Adaptive Fu-
sion” - QP 30

(e) Newspaper - VSTP - QP 25(f) Newspaper - VSTP “Adaptive
Fusion” - QP 25

(g) PoznanHall2 - VSTP - QP 30(h) PoznanHall2 - VSTP “Adaptive
Fusion” - QP 30

Fig. 12. Parts of frames synthesized with and without “Adaptive Fu-
sion”. Highlighted artifacts after merging the temporal predictions (Fig-
ures 12(a), 12(c), 12(e) and 12(g)) are efficiently removed when using
“Adaptive Fusion” (Figures 12(b), 12(d), 12(f) and 12(h)).

having residual holes in the final synthesis. This explains how
our method efficiently removes the aforementioned artifacts, as
shown in Figure 11. Also, subjective viewing of the sequences
has shown that there are no flickering effects with our method.
A synthesis example can be downloaded for viewing at the
following links:
http://perso.telecom-paristech.fr/∼cagnazzo/vsrs.zip
http://perso.telecom-paristech.fr/∼cagnazzo/vstp.zip
for VSRS-1DFast and VSTP respectively.

Our method is inherently more complex than VSRS-1DFast
due to the dense motion estimation / compensation stage.
Shortcuts that can reduce the complexity of our method, at the
price of loosing some prediction accuracy, include block-based
motion estimation/compensation and uni-predictive motion
compensation (predict using only a past frame, or only a future
frame).

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a view synthesis technique
that exploits temporal prediction in order to improve the
quality of the synthesis. Namely, some key frames of the
synthesized view are encoded in the bitstream, and the rest are
interpolated using motion compensation with vectors warped
from reference views. Four predictions using the left and right
reference view, and a past and future time instant can be
constructed and then merged together into a single prediction
of the synthesized frame. Two prediction schemes referred to
as “Direct” and “Hierarchical” have been presented in this
work. The first synthesizes frames using motion compensation
only with key frames, while the other motion compensates
with previously synthesized frames, hence reducing the pre-
diction distances. We also introduced a prediction merging
method referred to as “Adaptive Fusion” that selects between
inter-view and temporal prediction, thus removing some of
the motion estimation errors. Our method brings 0.53dB and
0.59dB PSNR increase with the “Direct” and “Hierarchical”
schemes respectively and 0.87dB PSNR with “Hierarchical”
scheme and “Adaptive Fusion” in average for several test
sequences over the state-of-the-art VSRS-1DFast software
under 3D-HEVC standards. Furthermore, the MVF precision
on frames with high intensity motion can be improved by using
a better motion estimation technique or using an adaptive GOP
size with respect to motion intensity. The “Adaptive Fusion”
method can be further improved by finding a better inter-
view/temporal selection criterion. Additional adjacent views
that are not available at the encoder side can be further
improved by deriving the vector fields required to directly
predict the frames from the key frames. Finally, the frequency
at which key frames are sent in our method, which, in the
current version, follows the GOP structure used for coding
the reference views, can be modified: lower frequencies allow
bitrate savings since less key frames will be sent but they also
imply motion estimation between distant frames, which will
decrease the prediction accuracy. Finding a good trade-offfor
this parameter is an interesting future research subject.

http://perso.telecom-paristech.fr/~cagnazzo/vsrs.zip
http://perso.telecom-paristech.fr/~cagnazzo/vstp.zip
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