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Abstract

Compression of remote-sensing images can be necessary in various stages of the image life, and especially on-board a

satellite before transmission to the ground station. Although on-board CPU power is quite limited, it is now possible to

implement sophisticated real-time compression techniques, provided that complexity constraints are taken into account at

design time. In this paper we consider the class-based multispectral image coder originally proposed in [Gelli and Poggi,

Compression of multispectral images by spectral classification and transform coding, IEEE Trans. Image Process. (April

1999) 476–489 [5]] and modify it to allow its use in real time with limited hardware resources. Experiments carried out on

several multispectral images show that the resulting unsupervised coder has a fully acceptable complexity, and a

rate–distortion performance which is superior to that of the original supervised coder, and comparable to that of the best

coders known in the literature.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Satellite-borne sensors have ever higher spatial,
spectral and radiometric resolution. With this
wealth of information comes the problem of dealing
with very large volumes of data, in every stage of the
data life. The most critical phase is on-board the
satellite, where acquired data easily exceed the
capacity of the downlink transmission channel,
and often large parts of images must be simply
discarded, but similar issues arise in the ground
segment, where image archival and dissemination
e front matter r 2006 Elsevier B.V. All rights reserved
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are seriously undermined by the sheer amount of
data to be managed. To avoid these problems
one can resort to data compression, which allows
one to reduce the data volume by one and even two
orders of magnitude without serious effects on the
image quality and on their diagnostic value for
subsequent automatic processing. To this end,
however, one cannot resort to general purpose
techniques as they do not exploit the peculiar
features of multispectral1 remote-sensing images,
which is why several ad hoc coding schemes have
been proposed in recent years.
.

1Although we focus on multispectral images, most of the

considerations and techniques apply just as well to hyperspectral

images.
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The most popular approach is by far transform
coding, for several reasons. In fact, transform
coding techniques are well established and deeply
understood, they provide excellent performances in
the compression of images, video and other sources,
have a reasonable complexity and, not least, are at
the core of well-known and efficient standards such
as JPEG and JPEG2000, implemented in coders
widely used and easily available to the scientific
community [16]. As a matter of fact, a common
approach for coding multispectral images [14,11] is
to use some decorrelating transforms along the
spectral dimension followed by JPEG2000 on the
transform bands with a suitable rate allocation
among the bands. Viable alternatives include the use
of wavelet transform (WT) followed by SPIHT
[3,15], schemes based on the more traditional
discrete cosine transform (DCT) [12,1], or on other
application-oriented transforms, e.g., [4].

Less attention has been devoted to techniques
based on vector quantization (VQ) because, despite
its theoretical optimality [7], VQ is too computa-
tionally demanding to be of any practical use.
Nonetheless, when dealing with multiband images,
VQ is a natural candidate, because the elementary
semantic unit in such images is the spectral response
vector (or spectrum, for short) which collects the
image intensities for a given location at all spectral
bands. The values of a spectrum at different bands
are not simply correlated but strongly dependent,
because they are completely determined (but for the
noise) by the land covers of the imaged cell. This
observation has motivated the search for con-
strained VQ techniques [2,10,9], which are subopti-
mal but simpler than full-search VQ, and show
promising performances.

We focus here on the hybrid coding scheme
originally proposed in [5], where VQ is used only in
the first and more critical coding phase, to be
followed later by simpler transform techniques in
order to encode the residuals. In this approach,
apart from being a first encoding step, VQ has the
central role of segmenting the image in homoge-
neous classes: the VQ residuals are then grouped
according to their class, so that subsequent trans-
form coding techniques can operate on each class
separately, and adapt to their specific statistics.
Thanks to the joint use of VQ, which fully exploits
the strong interband dependencies of multispectral
images, and of class-adaptive transforms, which
concentrate in a few coefficients most of the
residuals’ energy, this coding scheme (referred from
now on as CBC, for class-based coder) provides a
very good performance.

It must be underlined that this is a supervised

coder, that relies on several pieces of information
(to begin with the VQ classifier and the covariance
matrices of the classes) which are supposed to be
known or computed in advance. These parameters
must be either retrieved from a very large database,
covering virtually all land covers of possible interest
in all atmospheric and illumination conditions, or
computed before actual coding, and in both cases,
on-board real-time coding is not possible. This
could not be an issue until a few years ago, but
the steady increases in computation power now
opens the door to real-time operations, that is,
to compression on-board the satellite, where it
is needed the most, before transmission to the
ground station.

Given the interesting performance of the CBC,
and the opportunities offered by the classifi
cation-based approach, in this paper we address
the problem of modifying the original coder so
as to make it fully unsupervised and suitable for
on-board operation. This requires that all coding
parameters be computed on-board at compression
time and sent as side information along with the
coded data, which, in turn, poses two constraints:
1.
 the combined complexity of the parameter design
and image coding phases must remain small
enough to allow for real-time operation, and
2.
 the information overhead associated with the
parameters must be very limited so as not to
impair the rate–distortion performance.

By keeping into account both the complexity
and side information constraints, we designed a
new CBC for multispectral images which is fully
unsupervised and guarantees low computational
complexity and highly competitive performance.
Although the design of an actual real-time
encoder is out of the scope of this work, the
experimental analysis shows that the overall coding
complexity is clearly within the reach of modern
high-performance on-board processors [17]. In
addition, experiments on real-world multispectral
images prove that, even in terms of rate–distortion
performance, the new unsupervised coder is super-
ior to the original CBC as well as to state-of-the-art
techniques such as 3d-SPIHT [15].

The next section reviews the CBC, highlighting
both its potential and its weak points for real-time
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operations, and carefully estimating its encoding
complexity. Section 3 describes in detail the varia-
tions w.r.t. the original coder and analyzes design
complexity and side information issues. Section 4 is
devoted to the experimental analysis on some real-
world remote-sensing images. First, the simplified
design procedure and the side information coding
technique will be validated, then, the rate–distortion
performance of the proposed technique will be
assessed by comparing it with those of the original
CBC and of a state-of-the-art wavelet-based coder.
Finally, Section 5 draws conclusions.

2. The original supervised coder

In this section we first describe in some detail the
CBC coding scheme, and then provide an accurate
estimate of its encoding complexity in view of real-
time use.

2.1. Coding scheme

CBC comprises three main steps, as summarized
in Fig. 1, namely,
1.
S

image segmentation;

2.
 lossless coding of the segmentation map;

3.
 lossy coding of the texture.
Multispectral image

Segmentation

egmentation map Texture Coding

Map Coding

Mux

Compressed data

Fig. 1. The class-based coding scheme.
Segmentation amounts to a simple spectral cluster-
ing: a set of template spectral vectors is selected in
advance, one for each class, and the current pixel is
classified, based on its spectrum, according to a
minimum-distance criterion. The set of template
spectra can be viewed as a VQ codebook, and the
segmentation itself as a VQ. Therefore, this
segmentation step can be also regarded as a first
level of image compression, followed afterwards by
the transform coding of the residuals.

The main reason for segmentation, however, is to
classify image pixels based on their spectra, so as to
collect and encode together VQ residuals of the
same class. Each set of residuals, in fact, exhibits
homogeneous statistics and can be compressed very
efficiently by means of conventional transform
techniques.2 In CBC a Karhunen–Loeve transform
(KLT) is first performed along the spectral dimen-
sion where, in order to account for the class
information, a different transformation matrix is
used for each class. Then, the transform bands are
scanned in order to form several sequences of
coefficients, one for each band and for each class,
that will be further subject to a one-dimensional
DCT to exploit remaining spatial redundancies
within each transform band. To maximize the
correlation of coefficients encountered along the
scanning path, the image is not scanned line by line
but along a Peano curve. Finally, each transform
coefficient is sorted by spectral class, KLT band and
DCT frequency, and included in a quantization set
which is quantized by a specific Lloyd–Max
quantizer at a rate decided by means of a greedy
bit allocation algorithm. Of course, the segmenta-
tion map, that is, the set of VQ indexes, must be
transmitted as well as a side information. Since
neighboring pixels are highly correlated the map is
significantly compressed, without loss of informa-
tion, by resorting to a predictive scheme followed by
Huffman coding.

Experiments show that the classification-based
coder guarantees a 2–3dB improvement at all rates
of interest w.r.t. to ‘‘flat’’ transform coder (the same
coder with a single all-encompassing class) despite the
additional cost required for the transmission of the
segmentation map. In addition, the segmentation map
2More sophisticated algorithms can produce smoother seg-

mentation maps than VQ, but they lead eventually to worse

overall performance [6]. Under this respect, in fact, VQ represents

the optimal choice, as it is designed to optimize the rate–

distortion performance, namely, to minimize the energy of

residuals for an assigned encoding rate.
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itself is a valuable piece of information, obtained on
the original uncompressed data and automatically
embedded in the coding stream, which helps making
this coding scheme an interesting tool for the
compression of remote-sensing images.

This quick review of CBC (the reader is referred
to [5] for further detail) allows us to focus on the
main processing steps, that is, VQ classification,
KLT spectral transform, spatial transform and
quantization in the original coder, several important
pieces of information (VQ classifier, KLT matrices,
scalar quantizers) are all supposed to be known in
advance, but in real-time operations they must be
designed on-line on the data to be encoded,
which adds to complexity, and transmitted as a
side information, which adds to the encoding rate.
This new design phase will be described thoroughly
in the next section, but before that, it is useful to
estimate the complexity of the encoding phase,
so as to have a significant reference for complexity,
and also to gain more insight about the coder
functioning.
2.2. Estimate of the encoding complexity

Let us consider a multispectral image with N

pixels3and B spectral bands. For each pixel, the
segmenter must find the minimum-distance spec-
trum among the C template spectra available, where
C is the number of classes. With full-search VQ, this
operation requires BC multiplications per each
spectrum, or C multiplications per sample (mps),
our conventional unit of measure for complexity).
Even though only small codebooks will be used
(say, Co32), this is a non-negligible level of
complexity. The CBC resorts therefore to tree-
structured VQ (TSVQ) [7], which reduces complex-
ity to about log2 C mps (the exact value is
unpredictable as it depends on the tree structure
itself) at little or no cost in terms of segmentation
accuracy. In TSVQ, in fact, the classes are organized
as a binary tree, and the desired class is reached by
means of a sequence of binary decisions, each of
which requires the computation of a single scalar
product.4

After VQ, each residual vector undergoes a KLT,
and this requires B2 multiplications per vector, that
3The actual number of rows and columns is irrelevant, here.
4A plethora of fast VQ techniques also exist, and possibly

could further reduce complexity, but their investigation goes

beyond the scope of this work.
is, B mps, quite small for typical multispectral
images. The complexity would become relevant for
large values of B (that is, hyperspectral images), in
which case, however, only a small fraction B05B of
the transform bands carry useful information, and
one can use a rectangular B� B0 transform with
complexity down to B0mps.

Then there is the DCT which, for a sequence of
length K, has a complexity of 1

2
K log2 K multi-

plications. Since all samples must be transformed,
irrespective of their class and band, we must carry
out about NB=K such DCTs, and hence the
normalized complexity is just 1

2
log2 K mps, not

large for typical values of K.
The last step is scalar quantization, but its

complexity will be neglected. In fact, it requires
only comparisons, and the exact number of
them depends on the bit rate allocated to
the specific set to be quantized and ultimately
on the overall encoding rate. As an upper bound,
the number of comparisons must be less than the
total number of bits sent (because some bits
are used for map coding) and hence at 1 bit/
sample, which is definitely high for multi-
spectral images, there is just one comparison per
sample.

Summing these results, the complexity of the
encoding phase can be estimated as

Qcoding ’ log2 C þ Bþ
1

2
log2 K . (1)

Of course, this is only an approximate estimation of
complexity, as many CPU-time consuming phases,
like data transfer, etc., are neglected, but allows us
to study under what conditions is CBC amenable to
on-board implementation. At first, one could
require that

QcodingoPCPU=Raq, (2)

with PCPU the CPU power in multiplications per
second, and Raq the data acquisition rate in sample/s.
Assuming, for example, a 2.5Gflops processing unit
[17], and a typical data rate of 108 sample=s, the
coder should be already able to function smoothly.
In addition, CBC lends itself naturally to parallel
processing, because after the VQ, which works on
all the data together, C processes can go on in
parallel, one for each class. Therefore, if a parallel
implementation is foreseen, complexity constraints
become much looser and real-time implementation
undoubtedly possible.
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3. The new unsupervised version

To realize a fully unsupervised version of CBC we
must simply design on-line the VQ classifier, the KLT
matrices and the scalar quantizers, but the resulting
increase in complexity and side information must be
carefully checked in order for the coder to remain
feasible and efficient. On the up side, since all these
pieces of information are designed on the same data
they are used on, there should be a performance
improvement which could balance or even exceed the
rate penalty due to the increased side information.

3.1. VQ classifier

The design of a VQ codebook can be very
demanding in terms of CPU power but, since only
a limited number of land covers are typically present
in a given image, we are interested in a rather small
codebook. Moreover, since our classifier is tree-
structured, we are not really looking for a size-C
codebook, but rather for C � 1 size-2 codebooks,
which are much simpler to design. Finally, the
design need not be carried out on all the data to be
encoded, but only on a training set of adequate size
MVQ. The design is carried out by the well-known
generalized Lloyd algorithm (GLA) [7], which
requires a few iterations, during which each training
vector is encoded by the current codebook. If we
assume, for the sake of simplicity, that the
classification tree is balanced, that training vectors
are evenly divided between the right and left
children at each node and that the GLA requires
no more than IVQ iterations to converge, the
complexity can be estimated as MVQIVQB multi-
plications for the design of the root codebook, plus
another 2� ðMVQ=2ÞIVQB for the design of the
two codebooks at level one of the tree, and so
on down to the bottom of the tree, for a total
of MVQIVQB log2 C multiplications or ðMVQ=NÞ

IVQ log2 C mps.
With MVQ ¼ N the overall cost would therefore be

significant, but even a modest subsampling, that is a
relatively large training set, would bring it well under
the encoding complexity. For example, assuming quite
conservatively IVQ ¼ 10, C ¼ 32, MVQ ¼ 100� C (a
good rule of thumb) and N ¼ 512� 512 we have a
fully manageable complexity of less than 1mps.

As for the side information, the VQ codebook is
composed of C vectors,5 with B components each.
5Intermediate TSVQ vectors are not needed at the receiver.
For any reasonable combination of the relevant
parameters (image size, etc.), the cost of sending
such a codebook is negligible even with a 16 bit per
component coding (and can be further reduced if
interband correlation is exploited), hence it will not
disrupt performance. On the contrary, a good
codebook designed on-line can be significantly
superior to its off-line counterpart, since in the
latter case the training set is not guaranteed to fit
well the actual data, so we could expect some
performance gain here.

3.2. Class-adapted KLT matrices

To compute a KLT transform matrix along
the spectral direction, we must first estimate
the B� B correlation matrix of the data, and then
compute its eigenvectors. Since we use class-
adaptive KLT, we need C such matrices, one for
each class.

For the estimation part we resort again to some
subsampling of the training data. With a training
set of MKLT vectors, MKLTB ðBþ 1Þ=2 multiplica-
tions are needed, that is, ðMKLT=NÞðBþ 1Þ=2mps,
which is not significant if the training set has a
reasonable size, for example, MKLT ¼ 100C as
before.

Computing the eigenvectors with standard inver-
sion procedures (tridiagonalization/Jacobi) instead,
has a complexity of about 2B2ðBþ 1ÞIKLT for each
KLT matrix [8], where IKLT is the number of
iterations required, for a total of 2BðBþ 1Þ
CIKLT=N mps. For multispectral images, where B

is rather small, this is certainly affordable; with
C ¼ 32, N ¼ 512� 512 and IKLT ¼ 10, for exam-
ple, complexity remains under 1mps even for a 20-
band image. For hyperspectral images, on the other
hand, since only the B05B dominant eigenvectors
are required, one can use much faster techniques,
such as the power method [8], and keep complexity
under control.

Concerning the side information, for each of
the C KLT matrices we must send BðBþ 1Þ=2
parameters which could become a burden only
in some non-typical conditions (small images,
low coding rates, many classes, many bands).
Therefore, care must be taken to avoid such cases
and to encode all parameters with as few bits as
possible, without significant performance losses.
On the pro-side, like before, using matrices com-
puted on-line cannot but improve the compression
performance.
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3.3. Set-adaptive quantizers

Here, we must definitely depart from the original
coding scheme, not so much for the design
complexity but because the side information re-
quired to transmit all the Lloyd–Max quantizers is
obviously unacceptable. In fact, an ad hoc quantizer
is used for the first DCT coefficient of the first KLT
band of the first class, another one for the second
DCT coefficient of the first KLT band of the first
class and so on, for a total of CBK quantizers in the
most general case. Even considering that most of
these sets of coefficients will be assigned no
encoding bits, and no information needs to be
transmitted for them, many quantizers remain to be
designed and transmitted that this approach, which
made perfect sense in the context of a supervised
algorithm, becomes unviable for the new real-time
unsupervised coder.

We resort therefore to parametric quantizers:
each set of coefficients is modeled as either Gaussian
(low frequencies) or Laplace (high frequencies), and
characterized by its variance, thus univocally
identifying the corresponding parametric quantizer.
To preserve the scalability of the original scheme,
we keep using tree-structured quantizers, and make
them mid-tread to increase robustness, so that at
each level there is a ternary node besides the binary
ones as shown in Fig. 2. The coefficient variances
are then used to perform rate allocation by means of
the Huang–Schultheiss algorithm [7].

The design complexity lies only in the variance
estimation. With no subsampling, all samples appear
in the estimate of a single parameter, hence the
complexity is just 1mps. Subsampling schemes could
reduce this cost, but this is clearly not an issue.

Side information is represented by the set
variances, and therefore a total of CBK parameters,
even more than for the KLT matrices. As noted
above, however, a large number of these sets will
have very low variance, and hence will be assigned
no quantization bits. Therefore, two pieces of side
information will be actually sent, a flag bit for each
Fig. 2. Tree-structured mid-tread scalar quantizer.
set which indicates whether it is active (bit assigned)
or not, and the variance for the active sets only. The
overall cost is therefore CBKð1þ aðRÞbÞ where the
fraction of active sets aðRÞ is smaller at low
encoding rates R, easing the possible problems,
and b indicates the number of bits used to encode
each parameter.

In summary, the total design complexity can be
estimated as

Qdesign ’
MVQ

N
IVQ log2 C þ

MKLT

N
ðBþ 1Þ=2

þ
2

N
CIKLTBðBþ 1Þ þ 1. ð3Þ

Even though the relative weight of coding and
design complexity, as expressed by Eqs. (1) and (3),
depends on a number of parameters that can vary
wildly, we can already draw some conclusions.
Assuming that the training set used in the design
phase is much smaller than the whole image, and
that IVQo10, as always happened in our experi-
ments, the first and second terms of Qdesign are
negligible w.r.t. the corresponding terms of Qcoding.
Moreover, the contribution due to scalar quantiza-
tion is always negligible. As for the third term of
Qdesign, it is negligible as well, except when the
number of bands is comparable with the spatial
dimension of the image, that is, for hyperspectral
images. In such a case, however, only a few
eigenvectors B05B really need be computed, as
already said, and Eq. (3) should be modified
accordingly leading again to a perfectly manageable
complexity. In conclusion, whether or not design
complexity can be considered negligible depends
essentially on the ratio between the training set size
(for both VQ and KLT) and the image size.

4. Experimental analysis

In this section, we investigate the actual complex-
ity and performance of the proposed coding scheme
by means of numerical experiments on real-world
remote-sensing images, with the goal to show that
the additional complexity required by the new
design phase is practically negligible, and hence
the whole coder could work in real time on-board a
satellite, and that the rate–distortion performance is
even superior to that of the original coder. Our
initial tests are conducted on the same image used in
[5] where CBC was originally proposed, a 6-band
Landsat TM multispectral image of a rural region
near Lisbon in Portugal, so as to obtain comparable
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results. Similar experiments were carried out on
other test images, and we report the results obtained
on a 4-band IKONOS multispectral image of the
San Diego, CA, area, which has features that are
markedly different from those of the first image, and
on a 32-band GER hyperspectral image of a region
near the river Rhein in Germany.

4.1. Complexity

In Section 3 we have seen that design complexity
depends primarily on the size of the training sets.
Therefore, we carry out some experiments to
establish what subsampling rates can be considered
safe for the design of VQ, KLT and scalar
quantizers. More precisely, for various number of
classes C and various coding rates, we perform the
complete design and coding cycle with smaller and
smaller training sets and measure the ensuing
performance degradation. Figs. 3 and 4 show the
results of two such experiments conducted on the
TM image, with 20 classes, and coding rates of 0.25
and 0.50 bit/sample. The abscissa reports the log of
the subsampling rate, going from 0 (no subsam-
pling) to 13 (only one sample in 8192 included in the
training set). The ordinate reports the signal-to-
noise ratio 6(SNR) obtained when the item of
interest is designed subject to subsampling while the
others are designed on the full training set.

We observe a common behavior in these two
cases as well as in other ones not reported here.
Reducing the VQ training set size has little or no
effect on performance up to MVQ ¼ 256 (that is, a
subsampling ratio of 1024), a much smaller size than
indicated by our rule of thumb. Beyond that point,
performance begins to decline significantly, also
because the TSVQ has a hard time identifying 20
different classes in the training set. The KLT
appears to be even more resilient to subsampling,
with stable performance (but for some obvious
random oscillations) in a wide range. Things are
definitely different for the scalar quantizers, where
even a moderate subsampling causes a clear loss.
This happens both because available data are
scarcer here, and because this is the last processing
step, and errors in this phase cannot be recovered by
some further processing. However, remember that
6In all experiments on this image, we follow the conventions

adopted in [5], so the bands are all normalized to unit power, and

the SNR is defined as 10 log10 ð1=MSEÞ, with MSE the mean

squared error. Later on we will use the more common definition

with signal variance replacing signal power.
SQ has such a limited complexity that subsampling
is not at all necessary.

Although joint effects are not analyzed here,
experiments show that a moderate subsampling rate
for both VQ and KLT, such as our 100� C rule,
entails no appreciable performance impairment.
Therefore, in the following, we will consider this
rule for subsampling.

Fig. 5 reports the design (solid lines) and coding
(dashed lines) complexity for a 512� 512 pixel
image as a function of the number of bands B and of
classes C. Curves are computed via Eqs. (1) and (3),
considering IVQ ¼ IKLT ¼ 10 and K ¼ 64, and



ARTICLE IN PRESS

10 20 30 40 50 60
0

10

20

30

40

50

60

70

# bands

co
m

pl
ex

ity

C=1,4,16,64

Fig. 5. Coding complexity vs. design complexity for U-CBC.

0 0.1 0.2 0.3 0.4 0.5 
10

15

20

25

30

bit /sample

S
N

R

CBC
U-CBC
SPIHT

Fig. 6. Rate–distortion performance for the TM test image.

0 0.1 0.2 0.3 0.4 0.5 
10

15

20

25

30

bit /sample

S
N

R

1 class 

20 classes 

8 classes 

4 classes 

Fig. 7. The RD curves for the TM test image and various number

of classes.

M. Cagnazzo et al. / Signal Processing: Image Communication 21 (2006) 850–861 857
assuming MVQ ¼MKLT ¼ 100C. In all situations,
design complexity is between one and two orders of
magnitude smaller than coding complexity, hence
definitely negligible. Needless to say, such a
proportion varies with the parameter values, and
becomes more critical, for example, when a much
smaller image is encoded, but this does not seem to
be a reasonable instance, and our choice of
parameters is instead rather conservative.

4.2. Rate– distortion performance

We can now turn to examine the rate–distortion
performance. In Fig. 6 we report the performance
on our test image of the original CBC coder (black),
our unsupervised version U-CBC (red) and the
widely known SPIHT algorithm (blue), originally
proposed by Said and Pearlman [13], adapted for
multispectral images [15], and made available by the
authors at [18]. In this experiment, we actually used
a further modified SPIHT coder [3] where KLT is
used in place of the WT in the spectral direction,
which provides a better performance and allows one
to treat images with an arbitrary number of bands.

First of all, we see that both versions of CBC
perform at least equally well than the reference
SPIHT-based technique, justifying our interest
towards the classification-based approach. What is
more interesting for us is that, despite the additional
side information required for VQ codebook, KLT
matrices and quantization parameters, and despite
the subsampling introduced in the design phase, our
unsupervised version outperforms the original CBC
coder (and SPIHT) by 1–2 dB at all rates of interest.
In other words, using coding tools tuned on the data
to be encoded is more than worth the cost, and this
gain comes on top of the opportunity to carry out
all operations on-board, with no need for external
pieces of information.

Note that CBC curves in Fig. 6 are computed as
upper envelopes of actual rate–distortion curves
obtained for different values of the number of
classes C. In Fig. 7 we report some such curves, with
C ¼ 1; 4; 8; 20, for CBC (black) and U-CBC (red), in
order to gain better insight about the difference in
their performance. First of all, the curves for C ¼ 1,
where no classification is carried out, exhibit the
worst performance but for extremely low bit rates.
All other curves start from a non-zero initial rate,
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Fig. 8. Band 5 of the TM image before and after encoding at 0.40 bit/sample.
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Fig. 9. Rate–distortion performance for the IKONOS test image.

7From now on, we adopt the usual definition of SNR as

10 log10 ðVARðX Þ=MSEÞ.
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corresponding to the cost of side information, and a
relatively high initial value of SNR, corresponding
to the first step of encoding provided by VQ. By
looking at these starting points, it is obvious that
unsupervised CBC benefits from a significant
advantage, both in rate and distortion, because of
the higher fidelity and smoothness of the classifica-
tion maps, and such an advantage increases with
increasing number of classes. In fact, it is relatively
easy to single out 20 meaningful classes within an
image, but is very difficult that exactly the same
classes are found in another image, although very
similar. Therefore the off-line approach of CBC
shows some fatigue for large values of C, to the
point that the 20-class curve never exceeds the
8-class curve, while the on-line design is effective in
all situations. In addition, even though VQ exploits
many redundancies in the image, the classified KLT
is still able to improve quality, resulting in a steep
initial increase of all rate–distortion curves. The use
of parametric rather than ad hoc quantizers does
not seem to produce appreciable degradations.

To complete this analysis, Fig. 8 shows band 5
of our test image and the same band compressed
with unsupervised CBC at 0.40 bit/sample, using a
20-class segmentation. Even at such relatively high
compression ratio (20:1) no coding artifacts are
visible.

Similar results were obtained for all multispectral
images available to us. As an example, let us
consider a 448� 448 section of the San Diego
IKONOS test image, which comprises only four
bands and has a higher spatial resolution then the
TM image, 4m instead of 20m. Fig. 9 reports the
rate–distortion performance7 of U-CBC (red),
obtained again as the upper envelope of curves for
fixed number of classes, and compares it with the
performance of SPIHT, both in the original version
(dashed blue) which uses the WT in the spectral
dimension, and is now applicable since the number
of bands is a power of two, and in our modified
version (solid blue) with KLT in the spectral
dimension. Results confirm the general behavior
observed for the TM image: except for very low bit
rates, which are of little interest given the low SNR
level, the comparison speaks always in favor of
U-CBC, which gains 1–2 dB w.r.t. the KLT-based
SPIHT and up to 3 dB w.r.t. the original WT-based
version.
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Fig. 10. Green band of the IKONOS image before and after encoding at 0.80 bit/sample.
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Fig. 11. Rate–distortion performance for the GER test image.
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Fig. 10 reports the original green band of our test
image and the same band encoded by U-CBC at
0.80 bit/sample, with 20-class segmentation, con-
firming again the accuracy of the encoding process.
Note that a higher bit rate is necessary here to
obtain a fully satisfactory result both because the
image is much richer in details and because there is a
smaller number of bands to be coded jointly.

Finally, Fig. 11 reports the result of a similar
experiment carried out on 32 bands of 512� 512
section of the GER test image. The behavior here is
somewhat different than before. In fact, while
U-CBC guarantees a consistent gain w.r.t. conven-
tional SPIHT, more than 1 db at 0.50 bit/sample, the
KLT-based SPIHT performs even better, gaining
about 0.5 dB at all rates. A possible explanation for
this result lies in the nature of the test image
considered (see Fig. 12a) which is much more
homogeneous than both the multispectral images.
Therefore the classified KLT guarantees only a
limited gain w.r.t. a global KLT, not sufficient to
offset the cost of side information, and the reduced
efficiency of one-dimensional coding of coefficients,
as opposed to the three-dimensional coding of
SPIHT.

Like for the other images, we complete our
analysis by showing, in Fig. 12, one band of the
10 bit/sample original image and its compressed
counterpart, obtained with unsupervised CBC at
0.30 bit/sample, using a 16-class segmentation.
Again, despite a compression ratio of more than
30:1, the subjective (as well as the objective) quality
is so good that this can be considered as near-
lossless coding.
In all the preceding analyses, we used the SNR to
compute an objective and synthetic measure of
encoding quality. However, in the remote-sensing
field, the quality of a compressed image is better
measured by its value for subsequent automatic
processing steps, like segmentation, classification,
detection of particular targets, etc. Therefore, we
conclude this section by presenting a sample
segmentation experiment, carried out on our first
test image, The Landsat TM section shown in
Fig. 8, assesses the diagnostic value of images after
compression.

We segmented the original image, with six classes,
using an unsupervised minimum-distance clustering
algorithm. Lacking actual references, this segmenta-
tion has been taken as our ground truth. Then,
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Fig. 12. Band 24 before and after encoding at 0.30 bit/sample.

Table 1

Confusion matrix with the CBC-compressed image

CBC Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Total User’s

acc. (%)

Class 1 26,714 7 234 26,955 99.1

Class 2 3222 52 3274 98.4

Class 3 164 31,648 260 32,072 98.7

Class 4 36 40,560 3020 1141 1835 46,592 87.0

Class 5 1763 48,439 507 50,709 95.5

Class 6 445 2566 59,410 62,421 95.2

Class 7 893 14,522 456 15,871 91.5

Class 8 143 1663 598 21,846 24,250 90.1

Total 26,893 3386 33,463 43,568 51,265 62,937 16,261 24,371

Prod.’s acc (%) 99.3 95.2 94.6 93.1 94.5 94.4 89.3 89.6

Table 2

Confusion matrix with the SPIHT-compressed image

SPIHT Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Total User’s

acc (%)

Class 1 25,970 104 881 26,955 96.3

Class 2 2886 388 3274 88.1

Class 3 333 28,098 3630 11 32,072 87.6

Class 4 137 35,844 20 6563 1262 2766 46,592 76.9

Class 5 3843 12 40,179 6675 50,709 79.2

Class 6 6 6351 7090 48,946 26 2 62,421 78.4

Class 7 2 1703 53 12,808 1305 15,871 80.7

Class 8 1250 2865 1 630 19,504 24,250 80.4

Total 27,359 3219 32,335 46,879 50,919 62,249 14,726 24,458 0

Prod.’s acc (%) 94.9 89.7 86.9 76.5 78.9 78.6 87.0 79.7
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using the classes found in this first step, the image
has been segmented again after being compressed at
0.40 bit/sample with both the CBC and the best
reference algorithm, SPIHT with KLT. Finally,
confusion matrices have been computed; they are
reported in Tables 1 and 2 for the two algorithms.
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Results speak definitely in favor of the proposed
algorithm, with an overall error rate of about 6%
for CBC as compared to about 18% for SPIHT
(similar results have been obtained with all images
at any rates). It is clear that this huge improvement
is only partially due to the better reconstruction
quality, considering that the SNR shows only a
2.5 dB improvement at that rate. The main reason,
instead, is that CBC comprises a segmentation step
which, although not explicitly accounted for in these
experiments, affects the compressed data and leads
eventually to a superior performance. A smarter
approach would be to take explicitly into account
the segmentation map built during the coding phase
on the original uncompressed data, and this
procedure would be highly recommended in case
of practical operations, but we did not use it here
since the comparison would have been unfair. It
must be also pointed out that results would be less
striking with other applications or segmentation
techniques, but spectral clustering is probably the
single most frequent processing step used in the
analysis of such images.

5. Conclusions

This research had the goal to develop and test a
low-complexity and fully unsupervised version of the
CBC for multispectral images proposed in [5] so as to
make it amenable to real-time use on-board a
satellite. To this end, besides modifying a few blocks
of the original coder, we had to include the on-line
design and transmission of several new pieces of
information. The judicious (and carefully tested) use
of subsampling allowed us to limit the increase in
complexity and hence obtain a definitely viable coder.

Experiments proved U-CBC to have a better
rate–distortion performance than the original coder.
This was partly a surprise, because more coding
parameters must be now transmitted as side
information, but the opportunity of fine tuning
such parameters on the same image to be coded
compensates abundantly this initial disadvantage.
The U-CBC provided also better results than 3d-
SPIHT, a state-of-the-art low-complexity coder,
and (but for one case) than an improved version
of 3d-SPIHT, based on spectral KLT.

The original CBC was already an interesting tool,
especially because of its distinctive feature of
providing an accurate segmentation map together
with the class statistics embedded in the coded
stream, pieces of information not easily available
for the end user. The unsupervised version devel-
oped here adds the features of low complexity and
improved rate–distortion performance, and makes it
a valid candidate for actual use on-board a satellite.
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