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Abstract— Blind Source Separation (BSS) deals with the recov- vectors to compress the coding coefficients, which can ihdee
ery of source signals from a set of observed mixtures, whenttie  reduce the overhead, but only if the number of packets in each
or no knowledge of the mixing process is available. BSS can fin - oo mpination is much smaller than the size of the generaition.
an application in the context of network coding, where relayng .
linear combinations of packets maximizes the throughput ad and Ramamoorthy [14] mtroduce tWO,neW paclfet formats that
increases the loss immunity. By relieving the nodes from the allow to use erasure decoding and list decoding. These new
need to send the combination coefficients, the overhead cost solutions have a smaller overhead than classical appreache
largely reduced. However, the scaling ambiguity of the techique  at least when the number of sources is large enough. Finally,
and the quasi-uniformity of compressed media sources makes another approach, proposed by Thomos and Frossard[15],

unfit, at its present state, for multimedia transmission. In order ists | ting th di t . h that
to open new practical applications for BSS in the context of CONSISIS In generating theé coding vectors In such way tha

multimedia transmission, we have recently proposed to use a theé coding operations can be described by using just one
non-linear encoding to increase the discriminating power bthe symbol per packet. The encoding vectors are the rows of
classical entropy-based separation methods. Here, we prope to g (modified) Vandermonde matrix. This approach also can
append to each source a non-linear message digest, which@® oqco the overhead, but may increase the probability of

an overhead smaller than a per-symbol encoding and that cané fi . | lobal di tri derira th
more easily tuned. Our results prove that our algorithm is abe generating a singular global encoding matrix, rendering

to provide high decoding rates for different media types suo received packets non-decodable.
as image, audio, and video, when the transmitted messagesear  Another limitation of PNC is that it implicitly assumes that
less than 1.5 kilobytes, which is typically the case in a realistic a|| the nodes of the network have previously agreed on a
transmission scenario. complete ordering of the sources, that is, a correspondence

Index Terms—Blind Source Separation; Channel Coding; Ga- between a source and the column in the global encoding
lois Fields; Independent Component Analysis; Network Codig; vectors where its coefficient will be stored. In networkshwit
Multimedia Networking. high churn, the consensus problem over the source ordering

may be non-trivial.
I. INTRODUCTION We argue that the fixed overhead incurred by practical

In Network Coding (NC) [1], instead of merely relaying network coding schemes may be ill-suited to deal with canten
packets, the intermediate nodes of a network send linddrwhich different segments may have different impacts on
combinations of the packets they have previously receivéh® users satlsfactpn, such as the case of mpltlmgdla. Our
with random coefficients taken from a finite field [2-5]90&l is thus to design a network coding technique in which
NC, used as an alternative to traditional routing, has ptovdecoding probability can be traded off with the transmissio
beneficial to real-time streaming applications, both imter overhead, so that the two can be integrated in a transmission
of maximization of the throughput and in terms of reductiofyStém providing unequal loss protection to different paft
of the effects of losses [6-12]. However, in Practical Netwo the contente.g., based on their |mpac_:t on the_ total dlstortloln.
Coding (PNC) [5] approaches, the random coefficients must eorder to do so, we propose to avoid inclusion of the coding
included in the packet as headers, incurring a fixed overhezggfficients altogether (which solves the consensus prgble
that can be prohibitive if the maximum packet size is small2nd to replace it with a hashing of the packet content. At the

A few work exist that try to reduce this overhead. Jafafecoder side, in order to decode the packets, we formulate

et al. [13] proposed to exploit the sparsity of the codinghe unl_<n0wn encoding matrix inversion asBind Source
Separation (BSS) [16] problem.
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observations) without knowing the sources themselves nor thentil we find the one that has the lowest entropy [20].
parameters of the mixing process. This is a subject that hasThe scope of this article is focused on maximizing the
been intensively investigated in the last three decadestalu discriminating power of the contrast function in order to
its numerous potential applications in fields such as neumatrease the decoding probability at the receiver. We shall
networks, speech recognition, sensor signal processimage therefore compare ourself to thAscending Minimization
restoration, and biomedical signal processing [16, 17]. of Entropies for ICA (AMERICA) method [20], originally
In the context of BSS, the sources are described as randpraposed forf,. This method extracts a single source, then
vectors over the real or complex field, while the mixingemoves the contribution of this source from the mixtures
process consists inlmear combination with coefficients takenand repeats this process times, after which it has found
from the same field as the source signals: all N sources, restricting the search space to vectors linearly
independent from the ones recovered so far. This method
Y = AS. is guaranteed to always find a set of demixing coefficients
In this case, the separation process is reduced to finding that yield reconstructed sources with minimal entropy. Our
combination matrixA or, equivalently, its inversd—! = W. technique will also follow a similar approach, but the searc
The Independent Component Analysis (ICA) [18, 19] ap- space will be restricted to vectors that also yield admiesib
proach tries to solve the BSS problem by relying on thgourcesj.e., sources that carry a valid digest.
assumption that the sources are identically distributed an Other separation algorithms for finite fields have been pro-
loosely correlated, or statistically independent, withreather. posed to reduce the search space —and therefore the executio
Given a set of observations, an ICA algorithm will return #me-— of blind source separation algorithms, at the expeote
set of signals that maximizes the regularity of each signdl athe accuracy [21, 22]. One such technique has been proposed
minimizes the similarity among signals. Several matheraati for finite fields of prime order only, but can be easily extesde
tools can be used to implement the concept of regularityy sui® the general case [20]. At each iteration, the algorithrdsfin
as the entropy or the Kullback-Leibler divergence. In orier @ couple of observation vectoys andy; and a scalaw in the
obtain good results from ICA, the sources must generally gite field such that (y; 4+ ay;) < H(y;) and replacey;
non-Gaussian. In fact, most algorithms assume —eithecttjire With y; + ay;. When no substitution that reduces the entropy
or indirectly— non-Gaussianity as a measure of regularity acan be found, the algorithm terminates, and the final value of
rely on the fact that, being a linear combination of several they; will be the reconstruction of the original sources. This
random variables, the observations will be “more Gaussialgorithm is significantly faster than an exhaustive seabcit
(e.g., in terms of kurtosis), motivated by the Central LimiiS prone to get stuck in local minima. Other methods to speed
Theorem, and have a higher entropy than the original sourcep the execution have been proposed,, approximating the
Whatevercontrast function is used to discriminate betweenentropy with—pmaxlog(pmax), Wherepmax is the probability of
sources and mixtures, one should note that the originatssurthe most probable element [21, 22].
can only be retrieved up to some ambiguities. Namely, thereEven though we mostly focus on low-overhead network
will be a permutation ambiguityi.€., the algorithm will not be coding, it should be noticed that other applications for an
able to tell which reconstructed source is which) and sgaligfficient blind source separation technique in finite fieltsex
ambiguity {.e., the reconstructed sources will be identified ug-g., in the context of eavesdropping over MIMO multi-user
to a scaling factor). For linear mixing, the ambiguities fre t digital communications systems [23].
reconstructed sources can be expressed in the form: In this article we improve the results of the separation
. method by increasing the discriminating power of the algo-
S=%-1I-S. rithm without adding constraints on the distribution of the
whereX is a scaling matrixi.e,, a diagonal matrix of scaling SOurcesi.e., not relying on the assumption that none of the
factors, andI is a permutation matrix. original sources is uniform or close to uniform. The ratilena
The problem of ICA has been recently extended to tH& that many of the sources in today’s multimedia applicatio
case of finite fields [20], which presents several additiondlp indeed have a distribution close to the uniforeg(
challenges for ICA, due to the nature of the operations defineompressed images, sound, and video, considered at alsuitab
over a finite field. In particular, the Central Limit TheoremleVvel,i.e, bitor byte), so the traditional entropy-based methods
which is used in real-valued ICA, does not hold true in ¥ould fail in this case. We propose to append to the sources
finite field. However, entropy minimization can neverthslest Non-linear message digest, generated by a hashing fanctio
be used to separate the sources, as the entropy of any lif#Bich, as we will show, increases the separability of the ICA
combination of statistically independent random variateer Method, lending it to more practical application with short
a finite field of ¢ elements (denotef,) is not less than the Sources and distributions closer to uniform.
entropy of any of the components (as long as none of the comAlthough our technique might not always be able to guaran-
ponents is uniform). Separation is therefore possible jirign  t€€ thatl00 % of transmitted packets are correctly decoded, it
the inverse linear transformation that minimizes the nreagi d0€s provide a flexible trade-off between transmissionaate
entropy of the resulting combinations. Since the operatiod€coding probability. This allows for the design of a system
take place in a finite field, an exhaustive approach is passibivhere traditional PNC and our technique coexist, providing

i.e, to try any possible linear combinations of observatior) unequal error protection to different parts of a media
stream, thus enabling a rate-distortion control mechanism



the transmission scheme. T = 256 T=1024 | T = 4096
The rest of this article is organized as follows: in Sec. Il s 0.01 (0.03) 1 0.03 (0.17) 1 0.04 (0.17)
, g >- - 1 Fis || 0.01 (0.06) | 0.04 (0.17) | 0.04 (0.19)
we introduce our proposed approach for generating a variabl Fao 0.02 (0.09) | 0.04 (0.19) | 0.04 (0.19)
length digest of the sources to assist the separation [®oces Feoa 0.02 (0.09) | 0.04 (0.19) | 0.04 (0.20)
with particular attention to the design of the hashing fiorct Fi2s || 0.02 (0.11) | 0.04 (0.20) | 0.04 (0.20)
Then in Sec. Il we validate our technique with experimental Fase || 0.03 (0.14) | 0.04 (0.20) | 0.04 (0.20)

results and a comparison with a state-of-the-art exhaustiv Table |

; ; iffenemb- | NCREASE IN THE AVERAGE NUMBER OF IDENTIFIED SOURCES WHEN THE
entropy based sou_rce S.ep"?"‘f"t'on algonth_m, for dli_"fe (255,251) REED-SOLOMON CODE, RENDERED NONLINEAR BY
ber of sources, defined in finite fields of different size, amd f  compLEMENTING THE REDUNDANT PART IS USED TO AUGMENT THE
different types of source distributions. Finally, in SE¢, ive  DISCRIMINATING POWER WR.T. TO A PURELY ENTROP¥BASED METHOD,

H H FOR2 SOURCES AND PROBABILITY OF EACH BIT TO BE EQUAL TO ONE
draw our conclusions and outline some future work. 55 %. NUMBERS IN PARENTHESES REFER TO THE IDENTIFICATION WHEN

THE SCALING AMBIGUITY IS NOT TOLERATED.
II. PROPOSED APPROACH

In this section, we describe our proposed method to separate
a number of linearly combinedrixed) independent sources on-linear by complementing the redundant part. Some of

gffg;: 'g a f;p(;t:q ff'%;g.;hgt032§$t’ 22?} s_g:rrce%s:re ?Cotgrﬁ]ese new results for th@55,251) Reed-Solomon code for
&0, 'a bis ' S| SV ifferent sizes of the finite field and different lengths oé th

over a finite fields. two sources are given in Table I. However, the fixed structure
of these codes implies a fixed —and non-negligible— amount

A. Prior Work of overhead.

In general, source separation methods work by applying a

function, referred to asontrast function, that yields measur- B, Novel Contributions

ably different resuIFs vx_/hen applied to an .original SOUrce as,, his work, we propose a more flexible framework, able to

ppposed to a combination of sources, or mixture. For mstan%O trol the amount of overhead introduced with the sigreatur

in entropy based methods, the original sources are assur?&(:t][ure thus allowing the user to strike the trade-off Bagked

to have lower entropy than the mixtures, therefore, entro?gr the 'specific content.

minimization can be used as a contrast criterion. .
. . In order to do so, rather than encoding each of the symbols
In our previous work [24] we have shown that the ability of 9 y

. T i of the sources with a pre-defined error-detecting code, we
a contrast function to discriminate sources from mixturas c

be augmented if a pre-processing step is taken to introdmcea£ ply ahashing function to the whole sources to generate a
U9 pre-proc g step . variable-lengthmessage digest. The difference between these
easily detectable feature, aignature, in the original sources.

s . approaches can be seen in Fig. 1, where we show the overhead
In order to reduce the number of false positivies, mixtures bp 9

: S introduced by the feature w.r.t. the original source.
carrying a valid signature, the feature must present a low

probability of randomly appearing in the mixing process.

In the context of source signals in a finite field, we proposed ‘ ‘ ‘ ‘ ‘
to use channel encoding of the original sources as sighature
feature. Since in a linear code —by definiticamy combination D:I:I:I:I:I:I:I:I:I
of the codewords is still a codeword, it would be impossible b
to use a linear code to discriminate between original s@urce
and mixtures. We therefore focus only on non-linear codes. | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ .
particular, we opted for a odd-parity bit-codes,, adding a bit
to each symbol such that the total number of one-bits in eagfure 1. Different approaches to introducing a signategguire. (a) Original
codeword is odd, which is a simple yet effective signaturgymbols of the source. (b) Per-symbol error-detecting eingp (c) Message
The odd-parity code is clearly non-linear, as zero is not dgest
codeword.

Our experimental results showed that the entropy basecj\lm.Ice that, in a multl-hop iransmission scheme using our
methods benefit from error detecting coding by applying thtSChmql_Je’ only the _decodlng nodes need to periorm the
estimation of the entropy only to solutions that are adrhlssi separation. I.nternjed|ate nO(_jes of the network perform the
in the sense that the reconstructed sources are codewordS3 ¢ operations in PNC as in our ap_prdadshor.e premsely,.
this way, several solutions are eliminated that, even if/th oth In-our approach and m_PNC, |ntermed|_ate nodes just
present low entropy and could be mistakenly identified & mbine received packets using local encoding vectors. As

sources by the reference technique, cannot actually qmmels _etlal(ljed n thde f?_llowmg:,_ n thg tchase O; PNC.: the iomfj_rcde
to original sources as they are not part of the code. Includes an identity matrix, an € end-receiver will Tin

Further investigation, presented here for the first timso al'" tihnc\)/sit F;OStItIOrnS t\?er ?P:Obalri eiEC(I)dmgkn':am'i'(hiWhIChrCanh
shows that similar results can be achieved with codes thmat c,bo\e erted fo recover the original packets. S approac
detect a hlgh(_:,'r number of bit errors. In partlcular, we haVelThe operations required to determine the rank of the remebuffer might
tested Hamming codes and Reed-Solomon codes, rendetigdtly change.




requires the inclusion of all coefficient, and thus has a rate
of N -log,q, where N is the generation size ang is the

size of the finite field. In our approach, on the other hand,
the source instead of the identity matrix includes a smaller
digest, and the decoding nodes will rely on source separatio
in order to estimate the inverse of the global coding matrix.
In summary, the intermediate nodes are completely unaware
of either scheme, while source and receiver perform the same
task in different ways, in particular while in PNC offers agfik
trade-off between header length and decoding probability,
scheme is flexible in this respect. It is also worth mentignin
that, either by mixing different parts of the same contemtr&-
session NC), or different contents (inter-session NC), or a
combination of the two, the final result is always that the-enfi9ue 2. Relation between codewords, observations, waliyes and false
node receives the product of a generation of source messa%oesgwes'

and an encoding matrix that has to be inverted. In other words

both transmission scenarios end up with the same separatiogeth) is in fact acode over FZ' and any vector in it is a

problem, which our technique can be used to solve. codeword. Our codeC associates to each sourceldelements

A hashing function is an algorithm that maps large data S§fS,_ the concatenation of the source itself aRdadditional
of variable length into smaller sets. The input of a haSh"Q/mbols of digest, generated with a hashing functign.
function is referred to asmessage, whereas its output is " The condition expressed in Eq. (1) allows the digest values
referred to asligest. These functions are designed so that thgy pe ysed to distinguish between the linear combinatiods an
are easy to compute, and so that it is unfeasible to generaiga original sources. However, note that —since the field is
message with a given digest, or to modify a message withqiHite— it is impossible to design a functiop with D < T
changing its digest, or to find two different messages havifgy which the non-linearity condition is satisfied for af and
the same digest [25]. Let us denote our hashing function §s o discriminating hashing function shall therefore presen
() : Fg — F7, whereT is the length the message afitl g faise negatives, in the sense that an original sourceyalwa
the length of the digest, both expressed in number of symbalgries a valid digest, but it will also always return somisda

In our context, our hashing function has to be robust w.rssitives, in the sense that some mixtures will carry a valid
linear combinations, rather than a malicious agent or a Wgest.
error probability. In other words, the digest of a genemedr  The relative frequency of codewords within the observation

combination of sources should not be equal to the same lingay, set of sourceX (i.e, the set of all possible combinations
combination of their digests.e., for a set ofN' distinct sources qf the vectorsx; ...xy) can be expressed as:

B Codewords

O Observations
H True Positives
B False Positives

S1,89,...,SN, Organized in aV x T matrix S, and a vector .
w = (w1,...,wy) of combination coefficients: P(X) = Number of observations that arg codewords
Total number of observations
p(w'S)#w'oS), Notice that for each matriX there will always be at least
where N observations that are codewords,, the true positiveX,
©(s1) therefore minimizingP(X) is equivalent to minimizing the
B(S) = . number of false positives.
) The value of P(X) can be found by observing that the set
#lsw) of all possible observations given a matixcorrespond to the

Notice that assuming that th&¥ sources are distinct doeslinear row span oX, and that an observation is a codeword if
not lead to a loss of generality: in fact, if we assume thittbelongs at the same time to the spanXofand to the code
only N" < N source are distinct, we notice that mixing the,, (see Fig. 2).
N sources with aV x N matrix A will produce the same IC., N SPANCX)|
observations as mixing th&" distinct sources with aiv’ x PX)="+—2— "

N’ matrix A’. Due to the generality of botv and A in IsPANX) |
our discussion, we can therefore always reduce to the caseStdrting from this definition, first of all we observe that:

distinct sources. X C C, N sPAN(X) C sPAN(X).

If we define a set
_ . T The caseC, N SPAN(X) = sPAN(X) is verified when
Co = {E €Fy [€=(0,0(0)), Yo €, } ’ SPAN(X) C C,, which corresponds by definition to the case
with 77 = T+ D, this condition can be equivalently expressefif C, being a linear code. We observe in this case that

for a set of N distinct vectorsxi, ...,xy, organized in a P(X) = 1 for all X, consistently with our considerations
N x T' matrix X = (S®(S)) as: above. Conversely, whefi, N sSPAN(X) = X, the code is

. perfectly non-linear, in the sense that there are no linear
w X ZCy (1) combinations of vectors iX that belong to the code other



that the product with one of the vectors of the canonical bas# the vectors inX, which is a concatenation of the original
that is, the true positives. Given these relations of iriolus sources and their digests, can be a codewor@,obther than
we derive the following relations on the sizes: one of the vectors ofX themselvesj.e, C N SPANX) =
X, and P(C) = N¢V (and indeed, we find only thev
IX] < lice nsPANX) | < [IsPANCX)]l source pa(ck)ets over thg¥ possible linear combinations of
If we divide all terms by|| SPAN(X)|| > 0, we obtain: the vectors inX). It is worth noticing that albeit the PNC
approach is equivalent to a perfectly non-linear functibn,
Xl < IC, O SPANX) | <1. (2) has one operating point only, in the sense that the ledgth
ISPANCX)| [sPANCX )| of the digesty(-) is fixed(namelyD = N) and it cannot
The number of vectors iX is, by constructionN. In a be generalized. Our framework, on the other hand, is more
finite field, the size ofsPAN(X) is also a finite number, and general and allows to design a system in which differenteglu
can be computed as follow. Lét = RANK(X) < N; by def- of D can be used, resulting in different values®fC).

inition, there existR linearly independent vectoss,, ..., Xg Our results show that in order to minimize the number
in X. The span ofX is the set of all vectorg such that: of false positives, the optimal hashing functiefi(-) has to
R generate for the original sourcBsa set of digest® such that
7 — Z“Zﬁl its expected rank is maxim!zed. . _
= The correct message digest will thus point to a set of

candidates for the original sources much smaller than the
original search space, on which other criteria —like entrop
minimization— can be applied.

Since the source matri§ is by hypothesis random, so will
N be the digest matrixP. Rank maximization for a random
R S PX) <1 matrix in a finite field is a challenge commonly found in

q . . .
Practical Network Coding (PNC) [5] for the generation of the

Once we have found the relative number of positives for aWixing matrix, and it is commonly solved by selecting the
given matrixX, we can compute the expected relative numb%efﬁcients ur;iformly from the field

o:‘l pos.itives for the whole codé,, by averagingP’(X) over We therefore need to design a hashing function that for a
all Xs: message of arbitrary lengihcan generate an assigned number

P(C,) = E[P(X) D of digest symbols such that these symbols are uniformly
Z distributed in the finite field.

X

N

qF

There are therefor® variablesw; that can be freely chosen
in IF, to combine the independent vectorsXf leading to a
total of ¢# distinct combinations. By substitution in (2), we
obtain:

P(X)Prix =X} For this purpose, we propose to usgpange construction of
the hashing function [25]. A sponge construction is a hashin
function design technique that allows to decouple the input
length and the output length of the hashing function, deplict
whereR = E [RANK(X)]. in Fig. 3. This allows to generate an arbitrary length digest
Since the rank of anyX can be at mostV, we can say forinputs of any length. Two primitive functions are proetl
that for any choice of the functiop(-), thus for any codé,,, first an ABSORBf_unction that takes a variable-length in_rﬁlt
P(C,) > NqgV. and produces a fixed-length stdpe then a QUEEZEfunction
Let us now see how the Practical Network Coding can BBat takes the stat@ and returns an outpu of arbitrary size
interpreted within our framework. In the case of PNC, th& specified by the user.
codeC,, is not constructed in advance: once a set of souréig

orithm 1 Absorb part of the sponge construction of the
ashing function. Given an input of arbitrary leng# it
produces a stat€) of fixed length. The symbolss and [-],
denote modul@ sum and circular right shift, respectively.

¢ L function () =ABSORK(S)

S is divided into L blocks B; of 32 bits;

messages, . . ., sy has been selected, the code is construct
in such way thatp(s;) = e; (wheree; is thei-th vector of the
canonical base dﬂf‘f]\’) for the source messages, apt) = 0

for any vectors € Fg \ {s1,...,sn}. Notice that is always
possible to construct such a functigit-) as we assumed tha
the sources are known and distinct, thus it is always pcessiblzz

to deduce the index from the value ofs;, and to associate 3 ¢ ¢ 0i K < 0x99999999; Q < 0;
the corresponding vectay; of the base. 4 forieltol do.
Let us consider the matri® defined as the collections of Qe Qe Bz‘]_rv
the vectorsp(s;) for every source message 6: Q< [Qedl;
7: Q-+ Qe K|;
¢(s1) €1 8: o+ Q;
&= : = : | =1y 9: Q< Qa[Ql:
o(sn) en 10: end for

11 return @
Since® is the canonical base, its imagdﬂg and its kernel is 12: end function

{0}; therefore, by definition, no non-zero linear combination




Bua|--- | Bi | Bo SQUEEZE S| | @ | @

Figure 3. Sponge construction of the hashing function. TiEs®@RB function processes an inp&, divided in L blocks of fixed size, and produces a
fixed-length state). The SQUEEZE function can use the stat@ to generate a signatu® of assigned lengttD.

Algorithm 2 Squeeze part of the sponge construction of thge that this computations are easy, and can be implemented
hashing function. Given a statg of fixed length it produces efficiently at low level.

a message digedt of assigned lengtt). The symbolsp and  Although it would be extremely difficult to compute the
[], denote modul@ sum and circular right shift, respectively.expected number of positives for this hashing function, iue

1: function & =SQUEEZH(, D) the finite nature othT' it is in principle possible to compute

2: o+ 0; K + 0x99999999; P(C,) by full exploration. However, a good assessment of
3: for i+ 1to D do the quality of the function can be provided —without the
4: Q « Q] computational aggravation of a full exploration— by simply
5: Q<+ Qa0 comparing its performances with the lower bound; "

6: Q<+ Qe K]; on a statistically sufficient number of matricés. Such a

7 o+ Q; comparison is presented in Fig. 4 fdf = 4 sources in finite

8: Q<+ Qs Q] fieldsF,, 4 andFyg.

9: D, «— Q; We observe that in all the scenarios our function is almost
10: end for equivalent to the theoretical optimum. We notice that —as
11: return ® expected— forD = N the performance of the hashing tech-
12: end function nigue becomes extremely close to that of PNC; however, it is

important to notice that PNC appears in this figures as aesingl
point —reflecting the fact that its overhead is fixed for a give

In order to process a variable length input, thesmre generation size— while the hashing technique allows a trade
function works on blocks of data of fixed length (in ouwoff between overhead and expected number of a false pasitive
implementation32 bits). The input data might need to be zeroNotice that forD = £, i.e, with half of the overhead w.r..
padded to fit in an integer numbér of blocks. network coding, the loss in performance is almost neglaibl

The implementations of the #sorB and SJUEEZE func- This same behavior has been observed alsdVfer 2, N = 4
tions are given in Algorithm 1 and 2, respectively. Note tha&nd N = 8 (not shown here for the sake of brevity).
the functions perform the same basic operations, withmiffe ~ Finally, the separation procedure based on this hashing
inputs and outputs. These functions use basic bit opemtidunction is presented in Algorithm 3. For each vecterof
commonly used in hashing: modulosum {.e., exclusive or) length N in Fy:, we try to demix one message and the
and circular right shift, denoted in Algorithm 1 and 2 by respective digesP,. If the digest is validj.e, if ¢(z) = @,
and[-],, respectively. In the AsoRrs function, the state) is we store in) the combination vectow. After all the vectors
initialized to zero. Then, for each iteratian one of thel., w have been tried, we select th¥ linearly independent
blocks B; of the input is added to the current state in modulgectors in)V corresponding to the demixed messages with the
2. The result is then circularly shifted by one position. lowest entropy. The matridW composed as the horizontal

The same operations of update of the stdte.,~sum and concatenation of these vectors is our estimation of thergeve
circular shift— are then applied using the value state at theatrix of A. We limit ourselves to a family of linearly
previous iterations, and a constant valug&. The constant independent vectors under the assumption that, b&hghe
value is chosen to prevent that a long run of zeros in the inpoverse of A, it has full rank N. The demixed message
might permanently force the state to zero. Finally the statecorresponding to this matri¥% will represent our estimation

added to the shifted version of itself. of the encoded sources.
In the SYUEEZE function, the operations are the same,
except that the blocks3; are replaced with constant zero Ill. EXPERIMENTAL RESULTS
blocks, while the outpu® is composed of the stat@ at |5 the following, we present the results for the separation

the end of each iteration The numbetD of iterations, equal ot A sources defined in a finite fieldl,,, for the proposed

to the number of output symbols, is specified by the user. gigest-enhanced technique, and compare them with thetsesul

These functions work on blocks of fixed size 82Dits, 5chievable using an exhaustive entropy-based technidhe wi
therefore, in order to produce outputs in fields smaller thayt overhead. such as described in Sec .

[Fya2, only the firsth bits of each symbaob; are considered. No-
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of sources that the algorithm wast able to identify, is plotted against the packet length (llolkytes).
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Algorithm 3 Separation algorithm. Entropy minimization is Fs, N=4,D =% p1 =052
applied only on those candidate solutions that carry a valid 107 %
message digest. s0r X

1: Input: (N x T") observation matrixy’. 80r

2: Output: (N x T') separated source matri g 70k

BV 0, W0 ®

4: for all w of length N in F,, do w® %

5 (z|®)—w'Y; X ol

6: if p(z) = @5 then )

7 V< VU{w}; > 401

8: end if T 4ol

9: end for LL

10: repeat 201 -©-Proposed (NST

11: w* ¢~ arg min {H (WTY)}; -O-Proposed (ST)

wey 101 —<Reference (NST)

12: if w* & sPAN(W) then - % -Reference (ST)

13: W+ Wu{w*}; % 05 1 15

14:  endif Packet Length [kBytes]

150 V< V- {w*}

16: until W] =N Figure 7. Comparison between the reference method and the proposed
17: 'W < matrix built from the row vectors inV; technique, forN=4 sources inFs. The source bits are one with
18: (Z | 4’) ~WTy; probability p1=0.52. The overhead i symbols per packet. The
19: S « Z: failure rate is plotted against the packet length (in kikeisy. The

dashed lines represent the failure rate when the sourcesmasalered
identified up to a scaling factoB¢aling Tolerant, ST), while the solid

] ) ) lines represent the failure rate when scaling ambiguityitolerated
In particular, in our experimental setup, the referencé-tec(non Scaling Tolerant, NST).

nigue simply consists in identifying th®¥ linear combinations
of observations such that the combination coefficients are
linearly independent and the entropy is minimized [20, 22fhe length of the packet for the case &f = 2 sources in
This technique does not alter the sources and does not dddwith an overheadd = % = 1symbol and with uniform
any overhead. distribution of the sources (the bit probability = 0.5). As
Our technique, on the other hand, is restrained to the lineme showed in Sec. Il, an overhead &f = % with the
combinations of observations that carry a valid digést, proposed hashing function, offers an excellent compromise
such that the digest appended to the packet is equal to the batween overhead and false positive probability. Notie, in
locally computed by the separation algorithm. any scenario, PNC achieves1a0 % success rate (assuming
In order to have a consistent parameter for comparisannon-singular encoding matrix), at the cost &f symbols
over different finite fields, the probability distribution$ the of overhead, for a generation of si2é (twice as much than
sources are expressed in termspgfi.e., the probability that our technique). The packet length includes, for the progose
a bit is 1. For finite fields larger thaif;, this probability is technique, the overhead —which is in any case of a few bits
applied independently on each bit. over several hundreds of bytes and therefore does not #ffect
We report in Fig. 5(a) thdailure rate of the techniqueys.
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Figure 8. Comparison between the reference method and the proposkdigae, for N=8 sources inF4, for source bits are one with
probability p1=0.52, 0.54, 0.56, 0.58, 0.66, and0.75. The overhead id symbols per packet. The failure rate is plotted against ket
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figure. Each plotted point corresponds to the average overaad the failure rate is reduced by almost a factor two. This
least100 runs of the algorithm, each with randomly generatesult is very important for practical applications, in wiithe
sources and mixing matrix. The failure rate is simply ongeparation is done packet-wise, since packets typicailg ba
minus the success rate, where the success rate is the nurskzr limit dictated by the network.
of correctly identified sources divided by the total number o Notice that, in practical applications, finite fields of orde
sources. higher than two are typically used, as the probability of
We observe that in the case where the ICA methods haandomly generating a mixing matrix that has full rank —and
the worst performancd.é., uniform distribution), even with is therefore invertible— increases with the size of the field
just one bit of overhead per packet, our technique consigten In this respect, we present in Fig. 6(a) and 7 the results
outperforms the reference method, and the separationasigreobtained if we consider the same scenario in terms of number
improved for all packet lengths. Notice that when the sasircef sources and source distribution, but with sources defimed
are uniform, entropy minimization methods are no bettentha I, andFg, respectively.
blind (i.e., random) choice of the demixing coefficients, which As mentioned in Sec. |, entropy-based methods can only
means that our technique is able to identify uR8d% of the identify sources up to a scaling factor, a limitation knoven a
sources by relying on the one-bit signature alone. scaling ambiguity. If we tolerate the scaling ambiguity, we
In Fig. 5(b), we also report the results obtained for a highebserve that the performances for both methods are similar t
number of sourcesN = 4) in the same field¥2, again with the previous case. In particular, fé; we observe a failure
an overhead = % symbols, in this case two bits. The mostate of abouts5 % for the reference technique a8 % for
relevant difference is that, in this case, the sources ate mioe proposed for packets of abd®s bytes, and a failure rate
uniform (p; = 0.52). This allows both methods to converge t®f less thanl % for both techniques at aboukilobyte. Notice
complete separation with the length of the packets. Howev#rat, by using a more stringent definition of success, the non
our technique still consistently outperforms the refeegran scaling tolerant failure rate is necessarily larger or étjuan
effect more noticeable when the length of the packets islsméile scaling tolerant.
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However, unlike the case of analog applications, scalirapproximatively a factor two.
ambiguity is often not tolerable in digital applicatioresg., For the sake of completeness, in Figures 8, 9, and 10, we
a multiple in finite field of an encoded video packet bares report the results fotV=8 sources inF,, N=4 sources in
meaning, and the scaled signal is not semantically equival&,s, and N=2 sources inFy5¢ respectively, each for source
to the unscaled one. bits are one with probability;=0.52, 0.54, 0.56, 0.58, 0.66,

Therefore, if we consider that failure rate in a stricterssgn and0.75.
where we do not tolerate the scaling ambiguity, we see that ou Furthermore, in Fig. 11, we compare our proposed technique
technique presents a much lower failure rate than the mederewith the alternative network coding overhead compression
even for longer packets. In fact, without scaling ambigute methods proposed by Thomas al. [15] and discussed in
failure rate of the reference technique increase80td% for Sec. I. In this scenario, we consider a generatioriVof= 2
packets of about28 bytes, while it remains almost unalteredsources, so that for both techniques, the overheadysnbols
for the proposed. For sources of abdukilobyte, the failure per packet. We show the failure rate as a function of the
rate of the reference technique is ab60t%, while it stays logarithm of the size of the finite field. It should be noted
lower than10% for the proposed one. Furthermore, whilghat what is relevant in this comparison is the probability o
the failure rate of the proposed technique keeps decreastogrectly decoding the sources given a non-singular matrix
when the length of the packets increases upkdobytes, the and the probability of having a non-singular encoding matri
reference technique stays almost flabath. itself. While the alternative method does have an almog8t%

There may exist anyway, even in finite fields, applicationslue for the former, the latter is typically much lower. The
that are tolerant to scaling ambiguity. For this reason, tombined effect is that, while our technique performs much
Fig. 6(b) we also report a magnification of Fig. 6(a) in théetter for small finite fields, the two techniques becomeerios
range of packet lengths ~ 2 kilobytes. We observe that thearound fieldFs2, while the alternative method performs better
failure rate of our technique is consistently lower than thier larger fields. It should be noted, however, that while
one achieved by the reference technique, with a reductionthé alternative method provides a viable way to reduce the
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100 technique in separating signals that have been generated to

have a given probability distribution. In order to validater
approach in a more realistic multimedia transmission stena

in Figures 12, 13 and 14 we presents the results relative
to the separation of image (JPEG), audio (MP3), and video
(H.264/AVC) content. Notice that, in this case, we do notehav
control over the probability distribution of the data.

In all the scenarios, our technique consistently outparfor
the reference. It should be noticed that, as the size of tiite fin
field increases, the inherently difficulty of separation iarger
field is partially compensated by the fact that the higheleor
entropy {.e, the entropy considering blocks of an increasing
number of bits) becoming smaller. In summary, we observe
that, in most of the considered scenarios, our technique
Figure 11. Comparison between the proposed technique and tpgovides a viable trade-off between decoding probabilitg a
alternative network coding overhead compression methd8kfbr  overhead, suitable to be integrated in a unequal loss firmtec

N=2 sources, whose bits are one with probability-0.52. For both scheme beside traditional practical network coding. In the
techniques, the overhead isymbols per packet. The failure rate is

plotted against the logarithm of the size of the finite field. remalnl_ng cases, where the proposed technique alon_e |$eunap
to provide an acceptable success rate for the application, i
is still possible to exploit its advantages for a large fi@att
overhead, it still require that the nodes of the network headVhile the remaining data (e.g5 % in Fig. 12 forFase) can
a consensus on the ordering of the sources. be retransmitted, possibly using traditional network ogdi
So far, we have presented the results of our proposedinally, some considerations about the time-complexity of
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Figure 12. Comparison between the reference method and the proposecigee for transmission of image data (JPEG). The results a
presented for different numbers of sources and differefdfierhe failure rate is plotted against the packet lengttkifiobytes).

our proposed technique. As detailed in Sec. Il, our techesquthe output length. In other words, the function is able to
adds validity check, by means of digest validation, to agenerate a digest of any given length for sources of arbitrar
entropy minimization algorithm. This is done for each vectdength. The message digest is defined to be robust w.r.arline

whose entropy would be measured in purely entropy-bassainbination,i.e., a linear combination of digests has very

technique, thus, its complexity depends on the complexiigw probability of being equal to the digest of the linear

of the entropy minimization algorithm that is used. In thisombination of the corresponding messages.

work, we choose to use the AMERICA algorithm, because This property is exploited at the receiver side where ob-
of its simplicity and stability, so the time-complexity dfi@ servations with an invalid digest can be discarded without
technique isO (TqN), whereT is the length of the packet, further processing. On the remaining observations, whieh a

q is the size of the finite field, andV is generation size. A a considerable smaller subset of the search space, tralitio

smaller complexity can be achieved if, instead of AMERICAgntropy-based methods can be applied.

another ICA techniques, such as those mentioned in Sec. IQur results show that this approach dramatically improves

are used. the separation ability of the technique, in cases where the
traditional approaches are unfeasibie,, for short sources
IV. CONCLUSIONS& FUTURE WORK with distributions close to uniform.

In this paper, we presented a novel approach to blindFurthermore, our technique is much more robust to the
separation of source signals defined over a finite field. Bujld Scaling ambiguity problem, which we argue is much more
on our previous work, in which we proved that traditionaproblematic in digital multimedia applications than it is i
entropy-based separation algorithms can be greatly ingoroiraditional analog blind source separation.

if assisted with a non-linear error-detecting encodinghaf t  The possibility of separating efficiently the mixed sources
sources, we proposed to generate, for each source, a rean-ligiven a small and controllable overhead open the pOSSib”-
message digest to be sent along the sources. The mesé#dgtor a lossy network coding transmission scheme, where
digest is generated by a hashing function defined througts@urces are linearly combined in order to increase throughp
sponge-construction, which allows to decouple the input agnd loss immunity, but the overhead is significantly reduced
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