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Abstract— Blind Source Separation (BSS) deals with the recov-
ery of source signals from a set of observed mixtures, when little
or no knowledge of the mixing process is available. BSS can find
an application in the context of network coding, where relaying
linear combinations of packets maximizes the throughput and
increases the loss immunity. By relieving the nodes from the
need to send the combination coefficients, the overhead costis
largely reduced. However, the scaling ambiguity of the technique
and the quasi-uniformity of compressed media sources makesit
unfit, at its present state, for multimedia transmission. In order
to open new practical applications for BSS in the context of
multimedia transmission, we have recently proposed to use a
non-linear encoding to increase the discriminating power of the
classical entropy-based separation methods. Here, we propose to
append to each source a non-linear message digest, which offers
an overhead smaller than a per-symbol encoding and that can be
more easily tuned. Our results prove that our algorithm is able
to provide high decoding rates for different media types such
as image, audio, and video, when the transmitted messages are
less than1.5 kilobytes, which is typically the case in a realistic
transmission scenario.

Index Terms—Blind Source Separation; Channel Coding; Ga-
lois Fields; Independent Component Analysis; Network Coding;
Multimedia Networking.

I. I NTRODUCTION

In Network Coding (NC) [1], instead of merely relaying
packets, the intermediate nodes of a network send linear
combinations of the packets they have previously received,
with random coefficients taken from a finite field [2–5].
NC, used as an alternative to traditional routing, has proved
beneficial to real-time streaming applications, both in terms
of maximization of the throughput and in terms of reduction
of the effects of losses [6–12]. However, in Practical Network
Coding (PNC) [5] approaches, the random coefficients must be
included in the packet as headers, incurring a fixed overhead
that can be prohibitive if the maximum packet size is small.

A few work exist that try to reduce this overhead. Jafari
et al. [13] proposed to exploit the sparsity of the coding
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vectors to compress the coding coefficients, which can indeed
reduce the overhead, but only if the number of packets in each
combination is much smaller than the size of the generation.Li
and Ramamoorthy [14] introduce two new packet formats that
allow to use erasure decoding and list decoding. These new
solutions have a smaller overhead than classical approaches,
at least when the number of sources is large enough. Finally,
another approach, proposed by Thomos and Frossard[15],
consists in generating the coding vectors in such way that
the coding operations can be described by using just one
symbol per packet. The encoding vectors are the rows of
a (modified) Vandermonde matrix. This approach also can
reduce the overhead, but may increase the probability of
generating a singular global encoding matrix, rendering the
received packets non-decodable.

Another limitation of PNC is that it implicitly assumes that
all the nodes of the network have previously agreed on a
complete ordering of the sources, that is, a correspondence
between a source and the column in the global encoding
vectors where its coefficient will be stored. In networks with
high churn, the consensus problem over the source ordering
may be non-trivial.

We argue that the fixed overhead incurred by practical
network coding schemes may be ill-suited to deal with content
in which different segments may have different impacts on
the users’ satisfaction, such as the case of multimedia. Our
goal, is thus to design a network coding technique in which
decoding probability can be traded off with the transmission
overhead, so that the two can be integrated in a transmission
system providing unequal loss protection to different parts of
the content,e.g., based on their impact on the total distortion.
In order to do so, we propose to avoid inclusion of the coding
coefficients altogether (which solves the consensus problem),
and to replace it with a hashing of the packet content. At the
decoder side, in order to decode the packets, we formulate
the unknown encoding matrix inversion as aBlind Source
Separation (BSS) [16] problem.

Generally speaking, BSS consists in recovering a set ofN

source signalss1, s2, . . . , sN , organized in a matrix

S =




s1
...
sN




from a set of mixed signalsY = f(S) (also referred to as
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observations) without knowing the sources themselves nor the
parameters of the mixing process. This is a subject that has
been intensively investigated in the last three decades, due to
its numerous potential applications in fields such as neural
networks, speech recognition, sensor signal processing, image
restoration, and biomedical signal processing [16, 17].

In the context of BSS, the sources are described as random
vectors over the real or complex field, while the mixing
process consists in alinear combination with coefficients taken
from the same field as the source signals:

Y = AS.

In this case, the separation process is reduced to finding the
combination matrixA or, equivalently, its inverseA−1 = W.

The Independent Component Analysis (ICA) [18, 19] ap-
proach tries to solve the BSS problem by relying on the
assumption that the sources are identically distributed and
loosely correlated, or statistically independent, with each other.
Given a set of observations, an ICA algorithm will return a
set of signals that maximizes the regularity of each signal and
minimizes the similarity among signals. Several mathematical
tools can be used to implement the concept of regularity, such
as the entropy or the Kullback-Leibler divergence. In orderto
obtain good results from ICA, the sources must generally be
non-Gaussian. In fact, most algorithms assume –either directly
or indirectly– non-Gaussianity as a measure of regularity and
rely on the fact that, being a linear combination of severali.i.d
random variables, the observations will be “more Gaussian”
(e.g., in terms of kurtosis), motivated by the Central Limit
Theorem, and have a higher entropy than the original sources.

Whatevercontrast function is used to discriminate between
sources and mixtures, one should note that the original sources
can only be retrieved up to some ambiguities. Namely, there
will be a permutation ambiguity (i.e., the algorithm will not be
able to tell which reconstructed source is which) and scaling
ambiguity (i.e., the reconstructed sources will be identified up
to a scaling factor). For linear mixing, the ambiguities in the
reconstructed sourceŝS can be expressed in the form:

Ŝ = Σ ·Π · S.

whereΣ is a scaling matrix,i.e., a diagonal matrix of scaling
factors, andΠ is a permutation matrix.

The problem of ICA has been recently extended to the
case of finite fields [20], which presents several additional
challenges for ICA, due to the nature of the operations defined
over a finite field. In particular, the Central Limit Theorem,
which is used in real-valued ICA, does not hold true in a
finite field. However, entropy minimization can nevertheless
be used to separate the sources, as the entropy of any linear
combination of statistically independent random variables over
a finite field of q elements (denotedFq) is not less than the
entropy of any of the components (as long as none of the com-
ponents is uniform). Separation is therefore possible by finding
the inverse linear transformation that minimizes the marginal
entropy of the resulting combinations. Since the operations
take place in a finite field, an exhaustive approach is possible,
i.e., to try any possible linear combinations of observations

until we find the one that has the lowest entropy [20].
The scope of this article is focused on maximizing the

discriminating power of the contrast function in order to
increase the decoding probability at the receiver. We shall
therefore compare ourself to theAscending Minimization
of Entropies for ICA (AMERICA) method [20], originally
proposed forF2. This method extracts a single source, then
removes the contribution of this source from the mixtures
and repeats this processN times, after which it has found
all N sources, restricting the search space to vectors linearly
independent from the ones recovered so far. This method
is guaranteed to always find a set of demixing coefficients
that yield reconstructed sources with minimal entropy. Our
technique will also follow a similar approach, but the search
space will be restricted to vectors that also yield admissible
sources,i.e., sources that carry a valid digest.

Other separation algorithms for finite fields have been pro-
posed to reduce the search space –and therefore the execution
time– of blind source separation algorithms, at the expenses of
the accuracy [21, 22]. One such technique has been proposed
for finite fields of prime order only, but can be easily extended
to the general case [20]. At each iteration, the algorithm finds
a couple of observation vectorsyi andyj and a scalarα in the
finite field such thatH(yi + αyj) < H(yi) and replacesyi

with yi +αyj . When no substitution that reduces the entropy
can be found, the algorithm terminates, and the final value of
theyi will be the reconstruction of the original sources. This
algorithm is significantly faster than an exhaustive search, but
is prone to get stuck in local minima. Other methods to speed
up the execution have been proposed,e.g., approximating the
entropy with−pmax log(pmax), wherepmax is the probability of
the most probable element [21, 22].

Even though we mostly focus on low-overhead network
coding, it should be noticed that other applications for an
efficient blind source separation technique in finite field exist,
e.g., in the context of eavesdropping over MIMO multi-user
digital communications systems [23].

In this article we improve the results of the separation
method by increasing the discriminating power of the algo-
rithm without adding constraints on the distribution of the
sources,i.e., not relying on the assumption that none of the
original sources is uniform or close to uniform. The rationale
is that many of the sources in today’s multimedia applications
do indeed have a distribution close to the uniform (e.g.,
compressed images, sound, and video, considered at a suitable
level,i.e., bit or byte), so the traditional entropy-based methods
would fail in this case. We propose to append to the sources
a non-linear message digest, generated by a hashing function,
which, as we will show, increases the separability of the ICA
method, lending it to more practical application with short
sources and distributions closer to uniform.

Although our technique might not always be able to guaran-
tee that100% of transmitted packets are correctly decoded, it
does provide a flexible trade-off between transmission rateand
decoding probability. This allows for the design of a system
where traditional PNC and our technique coexist, providing
an unequal error protection to different parts of a media
stream, thus enabling a rate-distortion control mechanismin
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the transmission scheme.
The rest of this article is organized as follows: in Sec. II,

we introduce our proposed approach for generating a variable-
length digest of the sources to assist the separation process,
with particular attention to the design of the hashing function.
Then in Sec. III we validate our technique with experimental
results and a comparison with a state-of-the-art exhaustive
entropy-based source separation algorithm, for differentnum-
ber of sources, defined in finite fields of different size, and for
different types of source distributions. Finally, in Sec. IV, we
draw our conclusions and outline some future work.

II. PROPOSED APPROACH

In this section, we describe our proposed method to separate
a number of linearly combined (mixed) independent sources
defined in a finite field. In this context, the sources are blocks
of data,e.g., from a media bitstream, considered as vectors
over a finite fields.

A. Prior Work

In general, source separation methods work by applying a
function, referred to ascontrast function, that yields measur-
ably different results when applied to an original source as
opposed to a combination of sources, or mixture. For instance,
in entropy based methods, the original sources are assumed
to have lower entropy than the mixtures, therefore, entropy
minimization can be used as a contrast criterion.

In our previous work [24] we have shown that the ability of
a contrast function to discriminate sources from mixtures can
be augmented if a pre-processing step is taken to introduce an
easily detectable feature, orsignature, in the original sources.
In order to reduce the number of false positives,i.e., mixtures
carrying a valid signature, the feature must present a low
probability of randomly appearing in the mixing process.

In the context of source signals in a finite field, we proposed
to use channel encoding of the original sources as signature
feature. Since in a linear code –by definition–any combination
of the codewords is still a codeword, it would be impossible
to use a linear code to discriminate between original sources
and mixtures. We therefore focus only on non-linear codes. In
particular, we opted for a odd-parity bit-code,i.e., adding a bit
to each symbol such that the total number of one-bits in each
codeword is odd, which is a simple yet effective signature.
The odd-parity code is clearly non-linear, as zero is not a
codeword.

Our experimental results showed that the entropy based
methods benefit from error detecting coding by applying the
estimation of the entropy only to solutions that are admissible,
in the sense that the reconstructed sources are codewords. In
this way, several solutions are eliminated that, even if they
present low entropy and could be mistakenly identified as
sources by the reference technique, cannot actually correspond
to original sources as they are not part of the code.

Further investigation, presented here for the first time, also
shows that similar results can be achieved with codes that can
detect a higher number of bit errors. In particular, we have
tested Hamming codes and Reed-Solomon codes, rendered

T = 256 T = 1024 T = 4096
F8 0.01 (0.03) 0.03 (0.17) 0.04 (0.17)
F16 0.01 (0.06) 0.04 (0.17) 0.04 (0.19)
F32 0.02 (0.09) 0.04 (0.19) 0.04 (0.19)
F64 0.02 (0.09) 0.04 (0.19) 0.04 (0.20)
F128 0.02 (0.11) 0.04 (0.20) 0.04 (0.20)
F256 0.03 (0.14) 0.04 (0.20) 0.04 (0.20)

Table I
INCREASE IN THE AVERAGE NUMBER OF IDENTIFIED SOURCES WHEN THE

(255, 251) REED-SOLOMON CODE, RENDERED NON-LINEAR BY

COMPLEMENTING THE REDUNDANT PART, IS USED TO AUGMENT THE

DISCRIMINATING POWER W.R.T. TO A PURELY ENTROPY-BASED METHOD,
FOR2 SOURCES AND PROBABILITY OF EACH BIT TO BE EQUAL TO ONE

55%. NUMBERS IN PARENTHESES REFER TO THE IDENTIFICATION WHEN

THE SCALING AMBIGUITY IS NOT TOLERATED.

non-linear by complementing the redundant part. Some of
these new results for the(255, 251) Reed-Solomon code for
different sizes of the finite field and different lengths of the
two sources are given in Table I. However, the fixed structure
of these codes implies a fixed –and non-negligible– amount
of overhead.

B. Novel Contributions

In this work, we propose a more flexible framework, able to
control the amount of overhead introduced with the signature
feature, thus allowing the user to strike the trade-off bestsuited
for the specific content.

In order to do so, rather than encoding each of the symbols
of the sources with a pre-defined error-detecting code, we
apply ahashing function to the whole sources to generate a
variable-lengthmessage digest. The difference between these
approaches can be seen in Fig. 1, where we show the overhead
introduced by the feature w.r.t. the original source.

a

b

c

Figure 1. Different approaches to introducing a signature feature. (a) Original
symbols of the source. (b) Per-symbol error-detecting encoding. (c) Message
digest.

Notice that, in a multi-hop transmission scheme using our
technique, only the decoding nodes need to perform the
separation. Intermediate nodes of the network perform the
same operations in PNC as in our approach1. More precisely,
both in our approach and in PNC, intermediate nodes just
combine received packets using local encoding vectors. As
detailed in the following, in the case of PNC the source
includes an identity matrix, and the end-receiver will find
in those positions the global encoding matrix, which can
be inverted to recover the original packets. This approach

1The operations required to determine the rank of the reception buffer might
slightly change.
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requires the inclusion of all coefficient, and thus has a rate
of N · log2 q, whereN is the generation size andq is the
size of the finite field. In our approach, on the other hand,
the source instead of the identity matrix includes a smaller
digest, and the decoding nodes will rely on source separation
in order to estimate the inverse of the global coding matrix.
In summary, the intermediate nodes are completely unaware
of either scheme, while source and receiver perform the same
task in different ways, in particular while in PNC offers a fixed
trade-off between header length and decoding probability,our
scheme is flexible in this respect. It is also worth mentioning
that, either by mixing different parts of the same content (intra-
session NC), or different contents (inter-session NC), or a
combination of the two, the final result is always that the end-
node receives the product of a generation of source messages
and an encoding matrix that has to be inverted. In other words,
both transmission scenarios end up with the same separation
problem, which our technique can be used to solve.

A hashing function is an algorithm that maps large data sets
of variable length into smaller sets. The input of a hashing
function is referred to asmessage, whereas its output is
referred to asdigest. These functions are designed so that they
are easy to compute, and so that it is unfeasible to generate a
message with a given digest, or to modify a message without
changing its digest, or to find two different messages having
the same digest [25]. Let us denote our hashing function as
ϕ(·) : FT

q 7→ F
D
q , whereT is the length the message andD

the length of the digest, both expressed in number of symbols.
In our context, our hashing function has to be robust w.r.t.

linear combinations, rather than a malicious agent or a bit
error probability. In other words, the digest of a generic linear
combination of sources should not be equal to the same linear
combination of their digests,i.e., for a set ofN distinct sources
s1, s2, . . . , sN , organized in aN × T matrix S, and a vector
w = (w1, . . . , wN ) of combination coefficients:

ϕ
(
w⊤S

)
6= w⊤Φ(S),

where

Φ(S) =




ϕ(s1)
...

ϕ(sN )




Notice that assuming that theN sources are distinct does
not lead to a loss of generality: in fact, if we assume that
only N ′ < N source are distinct, we notice that mixing the
N sources with aN × N matrix A will produce the same
observations as mixing theN ′ distinct sources with anN ′ ×
N ′ matrix A′. Due to the generality of bothN and A in
our discussion, we can therefore always reduce to the case of
distinct sources.

If we define a set

Cϕ =
{
ξ ∈ F

T ′

q | ξ = (σ, ϕ(σ)) , ∀σ ∈ F
T
q

}
,

with T ′ = T+D, this condition can be equivalently expressed
for a set ofN distinct vectorsx1, . . . ,xN , organized in a
N × T ′ matrix X = (SΦ(S)) as:

w⊤X 6∈ Cϕ (1)

X

SPAN(X)
C

Codewords

Observations

True Positives

False Positives

Figure 2. Relation between codewords, observations, real positives and false
positives.

SetCϕ is in fact acode over FT ′

q and any vector in it is a
codeword. Our codeC associates to each source ofT elements
in Fq the concatenation of the source itself andD additional
symbols of digest, generated with a hashing functionϕ(·).

The condition expressed in Eq. (1) allows the digest values
to be used to distinguish between the linear combinations and
the original sources. However, note that –since the field is
finite– it is impossible to design a functionϕ with D < T

for which the non-linearity condition is satisfied for allw and
S. A discriminating hashing function shall therefore present
no false negatives, in the sense that an original source always
carries a valid digest, but it will also always return some false
positives, in the sense that some mixtures will carry a valid
digest.

The relative frequency of codewords within the observations
of a set of sourcesX (i.e., the set of all possible combinations
of the vectorsx1 . . .xN ) can be expressed as:

P (X) =
Number of observations that are codewords

Total number of observations
Notice that for each matrixX there will always be at least
N observations that are codewords,i.e., the true positivesX,
therefore minimizingP (X) is equivalent to minimizing the
number of false positives.

The value ofP (X) can be found by observing that the set
of all possible observations given a matrixX correspond to the
linear row span ofX, and that an observation is a codeword if
it belongs at the same time to the span ofX and to the code
Cϕ (see Fig. 2).

P (X) =
‖Cϕ ∩ SPAN(X)‖

‖SPAN(X)‖
.

Starting from this definition, first of all we observe that:

X ⊆ Cϕ ∩ SPAN(X) ⊆ SPAN(X).

The caseCϕ ∩ SPAN(X) = SPAN(X) is verified when
SPAN(X) ⊆ Cϕ, which corresponds by definition to the case
of Cϕ being a linear code. We observe in this case that
P (X) = 1 for all X, consistently with our considerations
above. Conversely, whenCϕ ∩ SPAN(X) = X, the code is
perfectly non-linear, in the sense that there are no linear
combinations of vectors inX that belong to the code other
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that the product with one of the vectors of the canonical base,
that is, the true positives. Given these relations of inclusion,
we derive the following relations on the sizes:

‖X‖ ≤ ‖Cϕ ∩ SPAN(X)‖ ≤ ‖SPAN(X)‖ .

If we divide all terms by‖ SPAN(X)‖ > 0, we obtain:

‖X‖

‖SPAN(X)‖
≤
‖Cϕ ∩ SPAN(X)‖

‖SPAN(X)‖
≤ 1. (2)

The number of vectors inX is, by construction,N . In a
finite field, the size ofSPAN(X) is also a finite number, and
can be computed as follow. LetR = RANK(X) ≤ N ; by def-
inition, there existR linearly independent vectorŝx1, . . . , x̂R

in X. The span ofX is the set of all vectorsz such that:

z =

R∑

i=1

ωix̂i.

There are thereforeR variablesωi that can be freely chosen
in Fq to combine the independent vectors ofX, leading to a
total of qR distinct combinations. By substitution in (2), we
obtain:

N

qR
≤ P (X) ≤ 1.

Once we have found the relative number of positives for any
given matrixX, we can compute the expected relative number
of positives for the whole codeCϕ by averagingP (X) over
all Xs:

P (Cϕ) = E [P (X )]

=
∑

X

P (X)Pr{X = X}

≥
N

qR
,

whereR = E [RANK(X )].
Since the rank of anyX can be at mostN , we can say

that for any choice of the functionϕ(·), thus for any codeCϕ,
P (Cϕ) ≥ Nq−N .

Let us now see how the Practical Network Coding can be
interpreted within our framework. In the case of PNC, the
codeCϕ is not constructed in advance: once a set of source
messagess1, . . . , sN has been selected, the code is constructed
in such way thatϕ(si) = ei (whereei is thei-th vector of the
canonical base ofFN

q ) for the source messages, andϕ(s) = 0

for any vectors ∈ F
T
q \ {s1, . . . , sN}. Notice that is always

possible to construct such a functionϕ(·) as we assumed that
the sources are known and distinct, thus it is always possible
to deduce the indexi from the value ofsi, and to associate
the corresponding vectorei of the base.

Let us consider the matrixΦ defined as the collections of
the vectorsϕ(si) for every source messagesi:

Φ =




ϕ(s1)
...

ϕ(sN )


 =




e1
...

eN


 = IN .

SinceΦ is the canonical base, its image isFN
q and its kernel is

{0}; therefore, by definition, no non-zero linear combination

of the vectors inX, which is a concatenation of the original
sources and their digests, can be a codeword ofCϕ other than
one of the vectors ofX themselves,i.e., C ∩ SPAN(X) =
X, and P (C) = Nq−N (and indeed, we find only theN
source packets over theqN possible linear combinations of
the vectors inX). It is worth noticing that albeit the PNC
approach is equivalent to a perfectly non-linear function,it
has one operating point only, in the sense that the lengthD

of the digestϕ(·) is fixed(namelyD = N ) and it cannot
be generalized. Our framework, on the other hand, is more
general and allows to design a system in which different values
of D can be used, resulting in different values ofP (C).

Our results show that in order to minimize the number
of false positives, the optimal hashing functionϕ∗(·) has to
generate for the original sourcesS a set of digestsΦ such that
its expected rank is maximized.

The correct message digest will thus point to a set of
candidates for the original sources much smaller than the
original search space, on which other criteria –like entropy
minimization– can be applied.

Since the source matrixS is by hypothesis random, so will
be the digest matrixΦ. Rank maximization for a random
matrix in a finite field is a challenge commonly found in
Practical Network Coding (PNC) [5] for the generation of the
mixing matrix, and it is commonly solved by selecting the
coefficients uniformly from the field.

We therefore need to design a hashing function that for a
message of arbitrary lengthT can generate an assigned number
D of digest symbols such that these symbols are uniformly
distributed in the finite field.

For this purpose, we propose to use asponge construction of
the hashing function [25]. A sponge construction is a hashing
function design technique that allows to decouple the input
length and the output length of the hashing function, depicted
in Fig. 3. This allows to generate an arbitrary length digest
for inputs of any length. Two primitive functions are provided:
first an ABSORB function that takes a variable-length inputS

and produces a fixed-length stateQ, then a SQUEEZE function
that takes the stateQ and returns an outputΦ of arbitrary size
D specified by the user.

Algorithm 1 Absorb part of the sponge construction of the
hashing function. Given an input of arbitrary lengthS, it
produces a stateQ of fixed length. The symbols⊕ and [·]r
denote modulo-2 sum and circular right shift, respectively.

1: function Q =ABSORB(S)
2: S is divided intoL blocksBi of 32 bits;
3: σ ← 0; K ← 0x99999999; Q← 0;
4: for i← 1 to L do
5: Q← [Q⊕Bi]r;
6: Q← [Q⊕ σ]r;
7: Q← [Q⊕K]r;
8: σ ← Q;
9: Q← Q⊕ [Q]r;

10: end for
11: return Q

12: end function
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S

B0B1BL−1 · · ·· · ·

L

ABSORB Q SQUEEZE

Φ

Φ0Φ1ΦD−1

D

Figure 3. Sponge construction of the hashing function. The ABSORB function processes an inputS, divided in L blocks of fixed size, and produces a
fixed-length stateQ. The SQUEEZE function can use the stateQ to generate a signatureΦ of assigned lengthD.

Algorithm 2 Squeeze part of the sponge construction of the
hashing function. Given a stateQ of fixed length it produces
a message digestΦ of assigned lengthD. The symbols⊕ and
[·]r denote modulo-2 sum and circular right shift, respectively.

1: function Φ =SQUEEZE(Q, D)
2: σ ← 0; K ← 0x99999999;
3: for i← 1 to D do
4: Q← [Q]r;
5: Q← [Q⊕ σ]r;
6: Q← [Q⊕K]r;
7: σ ← Q;
8: Q← Q⊕ [Q]r;
9: Φi ← Q;

10: end for
11: return Φ

12: end function

In order to process a variable length input, the ABSORB

function works on blocks of data of fixed length (in our
implementation,32 bits). The input data might need to be zero-
padded to fit in an integer numberL of blocks.

The implementations of the ABSORB and SQUEEZE func-
tions are given in Algorithm 1 and 2, respectively. Note that
the functions perform the same basic operations, with different
inputs and outputs. These functions use basic bit operations
commonly used in hashing: modulo-2 sum (i.e., exclusive or)
and circular right shift, denoted in Algorithm 1 and 2 by⊕
and [·]r, respectively. In the ABSORB function, the stateQ is
initialized to zero. Then, for each iterationi, one of theL
blocksBi of the input is added to the current state in modulo
2. The result is then circularly shifted by one position.

The same operations of update of the state –i.e., sum and
circular shift– are then applied using the value state at the
previous iterationσ, and a constant valueK. The constant
value is chosen to prevent that a long run of zeros in the input
might permanently force the state to zero. Finally the stateis
added to the shifted version of itself.

In the SQUEEZE function, the operations are the same,
except that the blocksBi are replaced with constant zero
blocks, while the outputΦ is composed of the stateQ at
the end of each iterationi. The numberD of iterations, equal
to the number of output symbols, is specified by the user.

These functions work on blocks of fixed size of32 bits,
therefore, in order to produce outputs in fields smaller than
F232 , only the firstb bits of each symbolΦi are considered. No-

tice that this computations are easy, and can be implemented
efficiently at low level.

Although it would be extremely difficult to compute the
expected number of positives for this hashing function, dueto
the finite nature ofFT ′

q it is in principle possible to compute
P (Cϕ) by full exploration. However, a good assessment of
the quality of the function can be provided –without the
computational aggravation of a full exploration– by simply
comparing its performances with the lower boundNq−N

on a statistically sufficient number of matricesX. Such a
comparison is presented in Fig. 4 forN = 4 sources in finite
fieldsF2, F4 andF8.

We observe that in all the scenarios our function is almost
equivalent to the theoretical optimum. We notice that –as
expected– forD = N the performance of the hashing tech-
nique becomes extremely close to that of PNC; however, it is
important to notice that PNC appears in this figures as a single
point –reflecting the fact that its overhead is fixed for a given
generation size– while the hashing technique allows a trade-
off between overhead and expected number of a false positive.
Notice that forD = N

2
, i.e., with half of the overhead w.r.t.

network coding, the loss in performance is almost negligible.
This same behavior has been observed also forN = 2, N = 4
andN = 8 (not shown here for the sake of brevity).

Finally, the separation procedure based on this hashing
function is presented in Algorithm 3. For each vectorw of
length N in F2b , we try to demix one messagez and the
respective digestΦz. If the digest is valid,i.e., if ϕ(z) = Φz,
we store inV the combination vectorw. After all the vectors
w have been tried, we select theN linearly independent
vectors inV corresponding to the demixed messages with the
lowest entropy. The matrixW composed as the horizontal
concatenation of these vectors is our estimation of the inverse
matrix of A. We limit ourselves to a family of linearly
independent vectors under the assumption that, beingW the
inverse of A, it has full rank N . The demixed message
corresponding to this matrix̂Z will represent our estimation
of the encoded sources.

III. E XPERIMENTAL RESULTS

In the following, we present the results for the separation
of N sources defined in a finite fieldF2b , for the proposed
digest-enhanced technique, and compare them with the results
achievable using an exhaustive entropy-based technique with-
out overhead, such as described in Sec I.
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Figure 4. Comparison between our sponge-constructed hashing functionϕ(·), the theoretical optimal hashing functionϕ∗(·), and Practical Network Coding.
The relative frequency positiveP (X) = Pr

{
z ∈ Cϕ | z = w

⊤
X
}

is plotted against the size of the overhead. The dashed blackline represents the value
P (X) = N

qN
, corresponding to the case where only the sources are identified as codewords,i.e., the case of perfect separation.
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Figure 5. Comparison between the reference entropy-based method and the proposed digest-enhanced technique, for inF2. The failure rate,i.e., the percentage
of sources that the algorithm wasnot able to identify, is plotted against the packet length (in kilobytes).
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Figure 6. Comparison between the reference method and the proposed technique, forN=4 sources inF4. The source bits are one with
probability p1=0.52. The overhead is2 symbols per packet. The failure rate is plotted against the packet length (in kilobytes). The dashed
lines represent the failure rate when the sources are considered identified up to a scaling factor. The solid lines represent the failure rate
when scaling ambiguity is not tolerated. The plot on the right represents the same comparison, between1 and2 kilobytes.

Algorithm 3 Separation algorithm. Entropy minimization is
applied only on those candidate solutions that carry a valid
message digest.

1: Input : (N × T ′) observation matrixY.
2: Output : (N × T ) separated source matrix̂S.
3: V ← ∅, W ← ∅;
4: for all w of lengthN in F

2b
do

5: (z | Φz)← w
⊤
Y;

6: if ϕ(z) = Φz then
7: V ← V ∪ {w};
8: end if
9: end for

10: repeat
11: w∗ ← arg min

w∈V

{
H

(
w⊤Y

)}
;

12: if w
∗ 6∈ SPAN(W) then

13: W ←W ∪ {w∗};
14: end if
15: V ← V − {w∗};
16: until ‖W‖ = N

17: Ŵ ← matrix built from the row vectors inW ;
18:

(
Ẑ | Φ̂

)
← Ŵ

⊤
Y;

19: Ŝ← Ẑ;

In particular, in our experimental setup, the reference tech-
nique simply consists in identifying theN linear combinations
of observations such that the combination coefficients are
linearly independent and the entropy is minimized [20, 22].
This technique does not alter the sources and does not add
any overhead.

Our technique, on the other hand, is restrained to the linear
combinations of observations that carry a valid digest,i.e.,
such that the digest appended to the packet is equal to the one
locally computed by the separation algorithm.

In order to have a consistent parameter for comparison
over different finite fields, the probability distributionsof the
sources are expressed in terms ofp1, i.e., the probability that
a bit is 1. For finite fields larger thanF2, this probability is
applied independently on each bit.

We report in Fig. 5(a) thefailure rate of the techniquevs.
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Figure 7. Comparison between the reference method and the proposed
technique, forN=4 sources inF8. The source bits are one with
probability p1=0.52. The overhead is2 symbols per packet. The
failure rate is plotted against the packet length (in kilobytes). The
dashed lines represent the failure rate when the sources areconsidered
identified up to a scaling factor (Scaling Tolerant, ST), while the solid
lines represent the failure rate when scaling ambiguity is not tolerated
(Non Scaling Tolerant, NST).

the length of the packet for the case ofN = 2 sources in
F2 with an overheadD = N

2
= 1 symbol and with uniform

distribution of the sources (the bit probabilityp1 = 0.5). As
we showed in Sec. II, an overhead ofD = N

2
, with the

proposed hashing function, offers an excellent compromise
between overhead and false positive probability. Notice that, in
any scenario, PNC achieves a100% success rate (assuming
a non-singular encoding matrix), at the cost ofN symbols
of overhead, for a generation of sizeN (twice as much than
our technique). The packet length includes, for the proposed
technique, the overhead —which is in any case of a few bits
over several hundreds of bytes and therefore does not affectthe
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Figure 8. Comparison between the reference method and the proposed technique, forN=8 sources inF4, for source bits are one with
probability p1=0.52, 0.54, 0.56, 0.58, 0.66, and0.75. The overhead is4 symbols per packet. The failure rate is plotted against the packet
length (in kilobytes).

figure. Each plotted point corresponds to the average over at
least100 runs of the algorithm, each with randomly generated
sources and mixing matrix. The failure rate is simply one
minus the success rate, where the success rate is the number
of correctly identified sources divided by the total number of
sources.

We observe that in the case where the ICA methods have
the worst performance (i.e., uniform distribution), even with
just one bit of overhead per packet, our technique consistently
outperforms the reference method, and the separation is greatly
improved for all packet lengths. Notice that when the sources
are uniform, entropy minimization methods are no better than a
blind (i.e., random) choice of the demixing coefficients, which
means that our technique is able to identify up to25% of the
sources by relying on the one-bit signature alone.

In Fig. 5(b), we also report the results obtained for a higher
number of sources (N = 4) in the same fieldF2, again with
an overheadD = N

2
symbols, in this case two bits. The most

relevant difference is that, in this case, the sources are not
uniform (p1 = 0.52). This allows both methods to converge to
complete separation with the length of the packets. However,
our technique still consistently outperforms the reference, an
effect more noticeable when the length of the packets is small

and the failure rate is reduced by almost a factor two. This
result is very important for practical applications, in which the
separation is done packet-wise, since packets typically have a
size limit dictated by the network.

Notice that, in practical applications, finite fields of order
higher than two are typically used, as the probability of
randomly generating a mixing matrix that has full rank –and
is therefore invertible– increases with the size of the field.

In this respect, we present in Fig. 6(a) and 7 the results
obtained if we consider the same scenario in terms of number
of sources and source distribution, but with sources definedin
F4 andF8, respectively.

As mentioned in Sec. I, entropy-based methods can only
identify sources up to a scaling factor, a limitation known as
scaling ambiguity. If we tolerate the scaling ambiguity, we
observe that the performances for both methods are similar to
the previous case. In particular, forF4 we observe a failure
rate of about55% for the reference technique and35% for
the proposed for packets of about128 bytes, and a failure rate
of less than1% for both techniques at about1 kilobyte. Notice
that, by using a more stringent definition of success, the non
scaling tolerant failure rate is necessarily larger or equal than
the scaling tolerant.
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Figure 9. Comparison between the reference method and the proposed technique, forN=4 sources inF16, for source bits are one with
probability p1=0.52, 0.54, 0.56, 0.58, 0.66, and0.75. The overhead is4 symbols per packet. The failure rate is plotted against the packet
length (in kilobytes).

However, unlike the case of analog applications, scaling
ambiguity is often not tolerable in digital applications,e.g.,
a multiple in finite field of an encoded video packet bares no
meaning, and the scaled signal is not semantically equivalent
to the unscaled one.

Therefore, if we consider that failure rate in a stricter sense,
where we do not tolerate the scaling ambiguity, we see that our
technique presents a much lower failure rate than the reference
even for longer packets. In fact, without scaling ambiguity, the
failure rate of the reference technique increases to80,% for
packets of about128 bytes, while it remains almost unaltered
for the proposed. For sources of about1 kilobyte, the failure
rate of the reference technique is about50%, while it stays
lower than 10% for the proposed one. Furthermore, while
the failure rate of the proposed technique keeps decreasing
when the length of the packets increases up to2 kilobytes, the
reference technique stays almost flat at55%.

There may exist anyway, even in finite fields, applications
that are tolerant to scaling ambiguity. For this reason, in
Fig. 6(b) we also report a magnification of Fig. 6(a) in the
range of packet lengths1 ∼ 2 kilobytes. We observe that the
failure rate of our technique is consistently lower than the
one achieved by the reference technique, with a reduction of

approximatively a factor two.
For the sake of completeness, in Figures 8, 9, and 10, we

report the results forN=8 sources inF4, N=4 sources in
F16, andN=2 sources inF256 respectively, each for source
bits are one with probabilityp1=0.52, 0.54, 0.56, 0.58, 0.66,
and0.75.

Furthermore, in Fig. 11, we compare our proposed technique
with the alternative network coding overhead compression
methods proposed by Thomoset al. [15] and discussed in
Sec. I. In this scenario, we consider a generation ofN = 2
sources, so that for both techniques, the overhead is1 symbols
per packet. We show the failure rate as a function of the
logarithm of the size of the finite field. It should be noted
that what is relevant in this comparison is the probability of
correctly decoding the sources given a non-singular matrix,
and the probability of having a non-singular encoding matrix
itself. While the alternative method does have an almost100%
value for the former, the latter is typically much lower. The
combined effect is that, while our technique performs much
better for small finite fields, the two techniques become closer
around fieldF32, while the alternative method performs better
for larger fields. It should be noted, however, that while
the alternative method provides a viable way to reduce the
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Figure 10. Comparison between the reference method and the proposed technique, forN=2 sources inF256, for source bits are one with
probability p1=0.52, 0.54, 0.56, 0.58, 0.66, and0.75. The overhead is1 symbols per packet. The failure rate is plotted against the packet
length (in kilobytes).
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Figure 11. Comparison between the proposed technique and the
alternative network coding overhead compression methods [15] for
N=2 sources, whose bits are one with probabilityp1=0.52. For both
techniques, the overhead is1 symbols per packet. The failure rate is
plotted against the logarithm of the size of the finite field.

overhead, it still require that the nodes of the network reach
a consensus on the ordering of the sources.

So far, we have presented the results of our proposed

technique in separating signals that have been generated to
have a given probability distribution. In order to validateour
approach in a more realistic multimedia transmission scenario,
in Figures 12, 13 and 14 we presents the results relative
to the separation of image (JPEG), audio (MP3), and video
(H.264/AVC) content. Notice that, in this case, we do not have
control over the probability distribution of the data.

In all the scenarios, our technique consistently outperforms
the reference. It should be noticed that, as the size of the finite
field increases, the inherently difficulty of separation in alarger
field is partially compensated by the fact that the higher-order
entropy (i.e., the entropy considering blocks of an increasing
number of bits) becoming smaller. In summary, we observe
that, in most of the considered scenarios, our technique
provides a viable trade-off between decoding probability and
overhead, suitable to be integrated in a unequal loss protection
scheme beside traditional practical network coding. In the
remaining cases, where the proposed technique alone is unable
to provide an acceptable success rate for the application, it
is still possible to exploit its advantages for a large fraction,
while the remaining data (e.g.25 % in Fig. 12 forF256) can
be retransmitted, possibly using traditional network coding.

Finally, some considerations about the time-complexity of
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Figure 12. Comparison between the reference method and the proposed technique for transmission of image data (JPEG). The results are
presented for different numbers of sources and different fields. The failure rate is plotted against the packet length (in kilobytes).

our proposed technique. As detailed in Sec. II, our techniques
adds validity check, by means of digest validation, to an
entropy minimization algorithm. This is done for each vector
whose entropy would be measured in purely entropy-based
technique, thus, its complexity depends on the complexity
of the entropy minimization algorithm that is used. In this
work, we choose to use the AMERICA algorithm, because
of its simplicity and stability, so the time-complexity of the
technique isO

(
TqN

)
, whereT is the length of the packet,

q is the size of the finite field, andN is generation size. A
smaller complexity can be achieved if, instead of AMERICA,
another ICA techniques, such as those mentioned in Sec. I,
are used.

IV. CONCLUSIONS& FUTURE WORK

In this paper, we presented a novel approach to blind
separation of source signals defined over a finite field. Building
on our previous work, in which we proved that traditional
entropy-based separation algorithms can be greatly improved
if assisted with a non-linear error-detecting encoding of the
sources, we proposed to generate, for each source, a non-linear
message digest to be sent along the sources. The message
digest is generated by a hashing function defined through a
sponge-construction, which allows to decouple the input and

the output length. In other words, the function is able to
generate a digest of any given length for sources of arbitrary
length. The message digest is defined to be robust w.r.t. linear
combination,i.e., a linear combination of digests has very
low probability of being equal to the digest of the linear
combination of the corresponding messages.

This property is exploited at the receiver side where ob-
servations with an invalid digest can be discarded without
further processing. On the remaining observations, which are
a considerable smaller subset of the search space, traditional
entropy-based methods can be applied.

Our results show that this approach dramatically improves
the separation ability of the technique, in cases where the
traditional approaches are unfeasible,i.e., for short sources
with distributions close to uniform.

Furthermore, our technique is much more robust to the
scaling ambiguity problem, which we argue is much more
problematic in digital multimedia applications than it is in
traditional analog blind source separation.

The possibility of separating efficiently the mixed sources
given a small and controllable overhead open the possibil-
ity for a lossy network coding transmission scheme, where
sources are linearly combined in order to increase throughput
and loss immunity, but the overhead is significantly reduced
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Figure 13. Comparison between the reference method and the proposed technique for transmission of audio data (MP3). The results are
presented for different numbers of sources and different fields. The failure rate is plotted against the packet length (in kilobytes).

at the cost of a reduced decoding probability.
Our technique therefore allows to strike a trade-off between

the decoding probability and the rate needed for the trans-
mission. A possible evolution is to work out its integration
within a rate-distortion framework as a form of unequal error
protection: one could design a mechanism by which, while
generations of packets with a large impact on the overall
distortion are sent with a traditional network coding scheme,
less important generations (e.g., refinement level in a scalable
technique) can be sent using the proposed technique, with an
overhead proportional to their impact on the distortion.

The improvement of the performance of our technique with
the non-uniformity of the sources suggests that an interesting
perspective is its application to the case of highly non-uniform
data, such as sparse signals (e.g., in the case of compress
sensing).
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