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Abstract—The 3D video extension of HEVC (3D-HEVC)
exploits texture-depth redundancies in 3D videos using inter-
component coding tools. It also inherits the same quadtree coding
structure as HEVC, for both components. The current software
implementation of 3D-HEVC includes encoder shortcuts that
speed-up the quadtree construction process, but those are always
accompanied by coding losses. Furthermore, since the texture and
its associated depth represent the same scene, at the same time
instant and view point, their quadtrees are closely linked. In this
paper, an inter-component tool is proposed where this link is
exploited to save both runtime and bits through a joint coding
of the quadtrees. If depth is coded before the texture, the texture
quadtree is initialized from the coded depth quadtree. Otherwise,
the depth quadtree is limited to the coded texture quadtree.
A 31% encoder runtime saving, a -0.3% gain for coded and
synthesized views and a -1.8% gain for coded views are reported
for the second method.

Index Terms—3D Video Coding, inter-component prediction,
depth quadtree limitation, texture quadtree initialization, predic-
tive coding.

I. INTRODUCTION

THREE dimensional video has undergone a rapid de-

velopment in the past few years, from the release of

blockbuster 3D movies to the emergence of new multimedia

services such as 3D television [1] (3DTV) and Free Viewpoint

Television [2] (FTV). While 3D video has not yet met its

expected success (mainly due to viewing discomforts and the

burden of wearing 3D glasses), it is expected to conquer the

market with autostereoscopic viewing, which requires more

views to be coded and transmitted, hence the multi-view

video format (MVV). The multi-view video plus depth (MVD)

format is an interesting alternative to MVV since it introduces

depth views which are easier to encode, and which can be

used to synthesize as many views as required at the receiver

side using Depth Image Based Rendering (DIBR).

Up to now, the texture and depth components of a given 3D

format have been encoded using traditional 2D encoders, such

as H.264/AVC [3], HEVC [4], or the multiview extension of

AVC, known as MVC [5]. These standards fail however to

exploit all the intricate redundancies in the 3D information, as
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they were not initially designed to handle this type of data.

For instance, depth videos in the MVD format have unique

characteristics which are not exploited by these standards.

Hence, there is a need for a true 3D video coding standard

to achieve efficient coding of 3D data.

In 2011, MPEG addressed this need by issuing a Call

for Proposals (CfP) for 3D Video Coding Technologies [6].

Following the response of the CfP, a joint collaborative team

between ISO and ITU, called JCT-3V, has been formed. JCT-

3V drafted two test models for a 3D video coding standard,

one AVC-based (3D-AVC), and the other HEVC-based (3D-

HEVC).

HEVC is a hybrid codec like its predecessors, but with

added tools that increase coding efficiency. Nearly 50% bitrate

reduction compared to H.264/AVC is achieved. HEVC uses

a quadtree coding structure [7] which provides block size

flexibility and granularity. While an HEVC input consists

of only one color video, 3D-HEVC processes MVD data,

consisting of multiple texture videos and their associated depth

videos. A base view (texture + depth) is coded in HEVC

for backward compatibility, while the other views, called

dependent views, are coded with additional tools.

3D-HEVC introduces inter-view and inter-component cod-

ing tools for efficient coding of dependent views and depth

data, respectively. While inter-view coding tools have already

been introduced in the MVC standard, inter-component tools

are a novel category of tools that are being intensively re-

searched recently. Indeed, the texture and depth components

of a 3D signal are highly correlated, and significant gains may

be achieved by efficient predictions or inheritances of specific

coding information from one component to the other.

3D-HEVC utilizes the quadtree-based coding structure in-

troduced in HEVC [8] for both the texture and depth compo-

nents. In the current reference software implementation of 3D-

HEVC (called HTM), a complex Rate Distortion Optimization

(RDO) process is performed at each level of the quadtree to

determine the best coding mode and partition size for a coding

unit (CU) at that level. The best depth level for the quadtree

of a CU is also determined using an R-D check. Tools aimed

at speeding up the quadtree construction by skipping some

of these R-D checks were proposed in the reference software

of HEVC (called HM), and are included in HTM, but these

encoder shortcuts are always accompanied by coding losses.

Furthermore, existing inter-component tools are not de-

signed to directly handle this quadtree coding structure. They

can only influence its construction indirectly by favoring

a specific inherited coding mode or prediction parameter
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amongst others, which can lead to a different partitioning of

a coding tree unit (CTU). In this paper, we propose a novel

inter-component tool that utilizes either the coded texture or

depth quadtree to control the construction and coding of the

other component’s quadtree. The aim is to reduce encoder

runtime while simultaneously improving coding efficiency.

The main idea is to force a depth CU to be less or equally

partitioned than its co-located texture CU. This means that if

the depth is coded first, the texture quadtree will be initialized

from the depth quadtree. Otherwise, the depth quadtree will

be limited to the texture quadtree. Both methods succeed in

reducing encoder runtime, as confirmed by our simulation

results. Additionally, a predictive coding of the quadtree of a

component using the other component’s quadtree is performed,

and achieves coding gains. The depth quadtree limitation with

its predictive coding part has been presented at the 2nd JCT-

3V meeting, and was adopted in both the 3D-HEVC working

draft and the HTM software [9].

The remainder of this paper is organized as follows. Sec-

tion II presents inter-component tools that can be found in

literature and in the 3D-HEVC test model. This section also

details the quadtree coding structure in 3D-HEVC and presents

tools designed to speed-up the construction of this structure.

Section III analyzes the texture-depth quadtree relationship in

order to prove the potential of the proposed texture quadtree

initialization (QTI) and the depth quadtree limitation (QTL).

Section IV presents QTI, QTL, and their associated predictive

coding part. The results for QTI and QTL are given in Sec-

tion V. Those results are analysed in Section VI. Section VII

concludes this paper while underlining possibilities for future

work.

II. BACKGROUND

A. Inter-component coding tools

1) Inter-component tools in 3D-HEVC: For coding depth

maps in 3D-HEVC, two inter-component tools are used so

far: Depth Modeling Modes (DMMs) 3 and 4, and Motion

Parameter Inheritance (MPI).

The DMMs were introduced in 3D-HEVC as four additional

Intra modes, added to the list of existing angular and planar

modes, for Intra coding of a depth CU [4]. DMMs predict a

depth CU using two constant regions, seperated by a straight

line [10]. The two prediction values across the constant regions

are coded in the bitstream. The partition information can

be coded (DMM mode 1), or inferred using spatial depth

neighbours (DMM mode 2). In DMM modes 3 and 4, the

partition information is inferred using reconstructed co-located

CUs in texture (hence the inter-component aspect of the

modes).

Furthermore, the motion vector correlations between the

texture and the depth component are exploited with the Motion

Parameter Inheritance (MPI) tool for depth coding [10]. In

MPI, the motion vectors and, when the texture CU is smaller

than the depth CU, the quadtree coding structure of the co-

located texture CU, are considered for inheritance in the depth

CU as an additional Merge candidate [8]. This introduces a

dependency when parsing the depth, because of the need to

check the sizes of both the texture and depth CUs before

deciding to parse the split flag.

These inter-component tools increase coding efficiency as

they bring a 1.8% bitrate reduction on synthesized views,

and 0.6% on coded texture videos when considering the total

bitrate (texture+depth), at the expense of a small increase of

about 7% in encoder and decoder runtimes [11].

2) Inter-component tools in literature: View Synthesis Pre-

diction (VSP) is an inter-component coding tool used to

efficiently code side views, which is currently in 3D-AVC test

model and candidate for adoption in 3D-HEVC. In VSP, the

coded central base view is warped using its associated coded

depth map to the side view position. This warped version of the

base view is used to code the side view in two ways: in [12],

the warped image allows to know which CUs in the side view

can not be rendered, due to occasional disocclusions, and need

to be coded. This implies significant changes in the coder,

especially in the prediction stage in Inter and Intra coding

modes. In [13], the warped image is added to the reference

picture list of the side view, just before the inter-view reference

picture, and the remaining coding process remains unchanged.

For depth coding, a tool called Depth Block Skip (DBS)

was introduced in [14]. DBS is an inter-component coding tool

used to force the coding of a depth block in SKIP mode if the

temporal correlation in texture is found to be high enough. A

depth block at time instant i is forced to be coded in SKIP

mode if the sum of absolute difference (SAD) between the co-

located block in texture at i and the co-located texture block

at i − 1 is lower than a certain threshold. Since the process

can be exactly repeated at the decoder, the SKIP mode does

not need to be signaled. The coding gains brought by this

tool are however not significant enough to justify the use of

two texture frames to code a depth block (hence increasing

memory consumption).

In [15], the SKIP mode for depth is forced whenever the

co-located texture block has been coded in SKIP mode. The

rationale behind this is that the uniformity of motion in texture

is likely to hold also in depth. This tool is able to eliminate

the flickering in depth motion due to bad depth estimation and

hence increase the quality of the synthesized views, though

it still needs evaluation in 3D-AVC along side other inter-

component coding tools.

Motion information can also be shared between texture

and depth. In [16], a joint texture-depth motion estimation

is performed where the Mean Square Error (MSE) involved in

R-D Lagrangian cost computations is computed as a weighted

sum of the texture and depth MSE. Only one motion vector

field is thus transmitted. An improvement of the depth map

reconstruction of more than 1 dB, for a small reduction in

the texture video quality (between 0.4 and 0.8 dB) is possible

when fine tuning the weight parameter.

The texture Intra mode can also be inherited for the cur-

rently coded depth prediction unit (PU). In [17], the Intra mode

of the co-located texture PU is inherited and systematically

placed in the most probable mode candidate list for the depth

PU. This leads, in some cases, to the replacement of an

efficient spatial Intra predictor. To avoid this, the inheritance

can be performed only in PUs where sharp edges exists in
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texture as in [18], because it is in those PUs where texture

and depth Intra modes are most correlated.

Finally, spatial transforms can be specifically designed for

depth. In [19], an adaptive wavelet lifting scheme is proposed

wherein short filters are applied to areas in depth containing

edges, and long filters applied in homogeneous depth areas.

The edge detection is performed on texture for decodability,

hence the inter-component aspect of the tool. Compared to

the linear 5/3 filter bank with the JPEG2000 codec used for

entropy coding, the tool brings significant gains on synthesized

views (up to 1.2 dB quality increase).

Apart from the MPI tool, all inter-component tools in 3D-

HEVC and in literature do not directly handle neither the

construction, nor the compression of the quadtree coding

structure for either the texture or the depth component, hence

the novelty of our proposed inter-component methods.

B. Quadtree coding in 3D-HEVC

3D-HEVC inherits an advanced quadtree-based coding ap-

proach from HEVC [7], wherein a picture is divided into cod-

ing tree units (CTU). Those are the equivalent of macroblocks

in previous video coding standards. The CTU can then be split

into four coding units (CU), and each CU can be further split

into four CUs, and so on. A specified maximum depth level

is set to limit the CU split recursion.

A CU can further be partitioned into prediction units (PUs)

(there are 8 different PU partition sizes, out of which 4 are

asymetric, as shown in Figure 1) where each PU has its own

prediction information. The PUs however cannot be further

partitioned. Note that each CU is also the root of a transform

CTU

2Nx2N 2NxN Nx2N NxN

PU

TU

Prediction tree

Transform tree

CU
2NxnU 2NxnD nLx2N nRx2N

Fig. 1. Quadtree structure of a CTU and possible partition shapes

tree, known as residual quadtree (RQT).

Three syntax elements, sent for each CU, control the

quadtree coding structure for texture and depth. First, the

split flag syntax element is sent to signal whether a CU has

been split into four sub-CUs or not. If the CU is at the highest

depth level, it cannot be further split, and hence the split flag

is not sent. If the CU is not split, a skip flag syntax element is

sent to signal whether the CU has been coded in SKIP mode

or not. If not, the partition size syntax element signals the

partition shape which has been selected for coding that CU.

In HTM, a Rate Distortion Optimization (RDO) process

tests, for each CU, all partition sizes, except the N×N partition

for depth levels lower than the maximum depth level. These

partition sizes are tested with respective coding modes (Merge,

Intra, Inter), and a Lagrangian cost is computed for each

partition size - coding mode combination. The cost of splitting

the CU is also computed and the configuration yielding the

lowest cost is selected for that CU. Note that in HTM-4.0,

the asymetric motion partitions (AMP) are disabled. However,

the proposed depth quadtree limitation and texture quadtree

initialization techniques are compatible with AMP.

C. Fast encoding methods

HTM includes three non-normative tools that directly im-

pact the splitting and partitioning of CTUs. First, an Early

Skip tool checks whether the R-D cost of the SKIP mode in

a 2N×2N partition is lower than a certain threshold. If that is

the case, no other prediction modes are tested and the CU is

no longer split (the recursion is stopped at this level). Second,

the Coding Block Flag (CBF)-based early termination [20],

where after each Inter partition check, if there is no residual

to code (i.e. if the CBF equals 0) in the CU, all subsequent

Inter checks (except Inter mode in N×N) and Intra checks are

no longer tested. Finally, the Early CU Termination tool (ECU)

stops the CU split at a certain depth level if the SKIP mode

in 2N×2N turned out to be the best mode at that level [21].

In JMVM (reference software of the MVC standard), these

three tools have also been implemented and tested [22].

A technique that categorizes macroblocks (MBs) into either

simple or complex mode regions MBs, and in which Inter

mode checks (including time-consuming motion and disparity

estimations) for the first category are skipped, is proposed as

well in [23]. Also in JMVM, the Previous Disparity Vector

Disparity Estimation (PDV-DE) and Stereo-Motion Consis-

tency Constraint Motion and Disparity Estimation (SMCC-

MDE) shortcuts are proposed in [24] to reduce the search

range for disparity estimation.

Recently, the Enhanced Depth CU (EDCU) [25] shortcut

has been proposed for the depth component only, where the

recursive split of the depth CU is stopped if the best mode

of the current depth CU is SKIP and if the co-located texture

CU was encoded in SKIP mode as well. Other tools [26], [27]

attempt to reach a good complexity-performance trade-off by

implementing algorithms to make more intelligent early CU

termination decisions.

However, all these tools are aimed at reducing encoder

runtime at the expense of a decrease in coding efficiency as

they do not allow any efficient coding of the quadtree syntax

elements. Furthermore, these tools would not be able to exploit

the relationship between the texture and the depth quadtrees

as they are purely 2D coding tools. The proposed methods

exploit this relationship to both reduce the encoder runtime

and achieve coding gains.

III. MOTIVATION

A. Comparison of the texture and depth quadtree

Our work in this paper is based on the following assump-

tion:
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Assumption 1. A texture CU is at least as partitioned as its

co-located depth CU.

Indeed, a depth map is a grayscale Luma-only image

which accounts for objects distance from the camera. The

geometric information that the depth map conveys is used

to synthesize intermediate views using DIBR. A depth map

is essentially composed of large planar regions seperated by

sharp edges and is invariant to illumination, patterned textures,

and shadows [19], [28]–[32]. Furthermore, fine partitioning is

usually performed along edges, to account for the lack of a

correct prediction for a CU. Since texture has more edges due

to illumination changes, patterned textures and shadows, it is

thus in general more partitioned than depth. This can be seen

in Figure 2 which presents the texture and depth coding and

prediction quadtrees at QP 25 in an Intra and an Inter frame

of the Kendo and Balloons sequences respectively.

(a) Kendo texture quadtree (Intra) (b) Kendo depth quadtree (Intra)

(c) Balloons texture quadtree (Inter) (d) Balloons depth quadtree (Inter)

Fig. 2. Texture and depth quadtree partitions for a Kendo Intra frame and a
Balloons Inter frame at QP 25 (best viewed in color)

Table I gives the percentage of CUs where Assumption 1

fails for four tested QPs and for one GOP of the sequences

considered (assumptions 2 and 3 will be discussed in Sec-

tion IV). The GOP consists of an 8-frame pyramid, with I, P

and hierarchical B pictures. The test was done under HTM-

4.0 in the same coding configuration and test conditions as

described later in Section V-A. We can see from this table

Sequence
Assumption 1 Assumption 2 Assumption 3

25 30 35 40 25 30 35 40 25 30 35 40

Kendo 38 15 6 2 15 4 1 0 43 18 8 3

Newspaper 56 31 16 6 27 13 6 1 60 34 17 7

Balloons 40 19 7 4 17 7 1 0 44 21 8 5

Dancer 15 16 10 4 3 5 3 0 21 20 12 5

GT Fly 21 11 4 2 5 4 1 0 25 12 4 2

Poznan Hall2 32 11 4 2 12 3 1 0 34 13 4 2

Poznan Street 31 13 6 2 9 3 1 0 36 15 7 2

TABLE I
PERCENTAGE OF CUS PER SEQUENCE AND PER QP WHERE ASSUMPTIONS

1, 2 AND 3 FAIL

that the assumption seems reasonable. It holds particularly well

for the Dancer and the GT Fly sequences because they are

computer-generated sequences with very clean depth maps.

Indeed, the depth maps of the other sequences considered

are estimated using stereo matching algorithms and thus,

they inherently contain artefacts. These artefacts sometimes

come out as false edges in the depth map which cause

a fine partitioning of an area that is supposed to be flat.

This area would however be coarsly partitioned in texture,

hence breaking the initial assumption. These false edges are

smoothed out at lower bitrates, which is why the assumption

failure percentage decreases from QP 25 to QP 40.

Furthermore, the assumption does not hold if we have

two adjacent objects in texture with similar luminance and

chrominance but with different depths. In that case, the CUs

containing both objects will be split in depth and not in

texture. Particular motions (zooming for instance) also break

the assumption. However these cases are rare, and this is

confirmed by the results of Table I.

B. Analysis of the quadtree coding cost

Table II shows the percentage of bits used to code the split

flag and the partition size per slice type and for one entire

GOP (in the texture and depth bitstreams). The same software

basis, test conditions and coding configuration as the ones used

to get the results of Table I were used in order to get these

percentages. Results shown here are averaged across four QPs

(25, 30, 35 and 40).

Sequence
Texture Depth

I P B GOP I P B GOP

Kendo 3.2 6.1 16.6 7.5 8.2 12.1 19.4 13.3

Newspaper 3.1 7.4 22.0 5.7 9.4 14.3 20.3 13.6

Balloons 3.2 8.0 20.8 6.5 9.3 14.5 18.6 13.4

Dancer 2.9 9.1 17.9 7.0 14.6 22.8 24.2 21.9

GT Fly 4.2 11.1 21.5 8.8 10.6 17.3 18.9 16.1

Poznan Hall2 4.7 8.6 16.2 8.3 13.3 18.2 18.4 17.2

Poznan Street 3.7 7.7 14.8 7.0 10.4 15.8 20.4 15.5

Average 3.6 8.3 18.5 7.2 10.8 16.4 20.0 15.8

TABLE II
PERCENTAGE OF BITS PER SLICE TYPE FOR THE “SPLIT FLAG” PLUS THE

“PART SIZE” ELEMENTS IN THE TEXTURE AND DEPTH BITSTREAMS

This table shows that there is a significant amount of bits

used to code the split flag and the partition size. The bitrate

percentage for these two elements is especially high on P

and B slices for depth and on B slices for texture. And

although on average, the percentage in the GOP is higher

for depth, our experiments show that the texture as a whole

represents around 90% of the entire texture+depth bitstream

in HTM-4.0. Consequently the quadtree information of the

texture represents 6.5% (7.2% × 0.9) of the entire bitstream,

while the quadtree information for depth represents only 1.6%

(15.8%× 0.1).

C. Conclusion

Since the assumption seems reasonable judging from Ta-

ble I, the encoder runtime is expected to be reduced if the

quadtree structure of a texture CTU is directly initialized from
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that of the depth or if the quadtree structure of a depth CTU is

limited to that of the texture. The encoder runtime reduction

can be evaluated fairly in both components since the texture

and depth runtimes are roughly the same in HTM-4.0 (coding

all texture views takes, on average, 55% of the total encoding

time of the sequences, while coding the depth views takes the

remaining 45%).

Furthermore, Table II shows that the cost of the quadtree

syntax element is significant, especially in texture. There is

much to be gained from an efficient coding of these elements.

Consequently, a texture quadtree initialization using depth

and a depth quadtree limitation using texture, with a quadtree

predictive coding scheme in both methods can achieve both

encoder runtime reduction and coding gains.

IV. PROPOSED METHODS

A. Texture quadtree initialization

1) Proposed scheme: When the depth is coded before

the texture, the texture encoder has access to the quadtree

information (split flag and partition size) of the co-located CU

in depth to control the quadtree of a currently coded texture

CU. Based on our assumption, we propose to force a texture

CU to be at least as partitioned as its corresponding depth CU.

In other words, the quadtree of the texture CU is initialized

from the quadtree of the depth CU; it can be further partitioned

but not less. This has two benefits: it can reduce encoder

runtime since certain coding modes are no longer checked, and

allow a predictive coding of the quadtree syntax elements of

the texture which, in turn, will increase coding efficiency. The

rest of this section will detail the texture quadtree initialization

(QTI) and its associated predictive coding part (PC).

Figure 3 shows all possible depth CU partitions and the

allowed texture CU partitions in each case, at a specific depth

level L. It does not show the allowed texture sub-CU partitions

at level L + 1 if the CU at depth level L was split. Indeed,

this scheme is recursive; it can be applied the same way for

each sub-CU.

If the depth CU is split or has a partition size of N×N , as

in case (a), the texture CU is forced to be split or partitioned

in N×N respectively. Other partitions are not checked, and no

split flag or partition size is sent for the texture CU. In case

(b) and (c), the only partition allowed for the texture CU is

N×2N (respectively 2N×N). Splitting the texture CU is also

possible. Hence, the encoder only sends the split flag. If the

CU is not split, the partition size is inferred from the depth

CU. In case (d), all texture modes and partitions are checked,

the encoder needs to send both the split flag and the partition

size in this case. Note that in all cases, splitting the texture

is always an option. Hence, in QTI, the recursion is never

stopped at any level, it is the starting level that is set.

2) Flexible QTI+1 variant: The proposed scheme some-

times leads to a sub optimal (R-D wise) partitioning of a

texture CU as it can force an unnecessary split or partition

when an assumption failure occurs. The texture quadtree is

said to be altered, meaning it has changed from what the

RDO process intended it to be. We define the severity of a

scheme in QTI by the amount of forced split and partitions

Depth Allowed texture partitions

a)

b)

d)

,

, , ,

,c)

Fig. 3. Allowed texture partitions in QTI

the scheme imposes in a CTU. The least severe scheme is

where no forcing is done (reference coding). The most severe

scheme is where each CU is forced to be split or partitioned in

N×N. Forcing splits and partitions however removes the need

of sending split flags and / or partition sizes. Consequently,

the more severe the scheme is, the more it alters the texture

quadtree, but the more bitrate reduction it allows as well. An

efficient coding scheme has a severity level that achieves a

good compromise between amount of alteration and amount

of bitrate reduction.

In this work, we propose a less severe scheme for QTI that

we call QTI+1 which relies on the following assumption:

Assumption 2. A texture CU is at least one depth level less

partitionned than its co-located depth CU

This scheme forces to split the texture CU at depth level L

only if the depth CU is split at depth level L + 1 (hence the

name), as shown in Figure 4. The split flag for the texture CU

does not need to be sent in this case. In any other case, the

decision is left for the R-D based optimization process, and

consequently the split flags and partition sizes need to be sent.

Compared to Assumption 1, Assumption 2 fails less often as

can be seen in Table I. Hence, this flexible scheme alters the

texture quadtree less often but at the expense of a lower bitrate

reduction potential. Note that this scheme is recursive as well,

it can be applied in the same way for each sub-CU at depth

level L+ 1 if the CU at level L is split.

Depth Allowed texture partition

, , ,

Fig. 4. The QTI+1 variant

B. Depth quadtree limitation

1) Proposed scheme: When texture is coded first, the depth

encoder has access to the split flag and the partition size

of the co-located texture CU to control the quadtree of a
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currently coded depth CU. The same assumption as in QTI

is considered: a depth CU is, at most, as partitioned as its

co-located texture CU. In other words, the depth quadtree

is limited to that of the texture. This also has two benefits

since encoder runtime can be reduced, and coding efficiency

increased. The rest of this section will detail the depth quadtree

limitation (QTL) and its associated predictive coding part

(PC).

Figure 5 shows the allowed depth partitions per possible

texture partition in QTL. If the texture is partitioned either in

2N×2N, N×2N, or 2N×N as in case (a), the depth is forced

to be in 2N×2N. The encoder will not check smaller partition

sizes, and will not try to split the depth CU. Also, it does not

need to send the split flag or partition size for that CU. In case

(b), all partition sizes are checked and splitting the depth CU

is allowed. The split flag and partition size need to be sent.

This case does not yield any encoder runtime reduction nor

coding gains compared to a reference coding.

Texture Allowed depth partitions

a)

b)

,

, , ,

,

Fig. 5. Allowed depth partitions in QTL

2) Strict QTL-1 variant: The proposed depth quadtree

limitation scheme has a certain level of severity. Just like in

QTI, we can adjust this severity level to obtain a better trade-

off between the amount of quadtree alteration and the potential

of bitrate reduction. A more severe scheme for QTL was thus

studied in this work, which relies on the following assumption:

Assumption 3. A depth CU is at most one depth level less

partitionned than its co-located texture CU

In this scheme, the depth CU at depth level L is only

allowed to be split or rectangularly partitioned if the texture

is split at depth level L+ 1. In any other case, the depth CU

is forced to be partitioned in 2N×2N. This scheme, called

QTL-1, is more severe than QTL, because no split flags or

partition sizes are sent for both cases of the original QTL

scheme. However, the alteration level is also higher since there

are more assumption failures, as can be seen from Table I.

C. Impact on the codec architecture

QTL+PC and QTI+PC include a predictive coding scheme

where the split flag and/or the partition size for a CU are not

sent in some cases. Similarly as for the MPI tool, this implies

a parsing dependency since the decoder needs to check the

texture or depth quadtree to know whether to parse or not

the two syntax elements. It is most likely that any realistic

implementation of 3D-HEVC will perform at most a parallel

parsing with one CTU delay given that parallel decoding is

forbidden by the following tools: DMM and MPI. This is

possible with both QTL+PC and QTI+PC.

On the encoder side, this whole set of tools enables a one

CTU delay parallel encoding, whatever the component coding

order. This one CTU delay parallelization strategy also enables

a very limited increase of the memory requirements, resulting

from the storage of the quadtree information due to QTL, MPI

or QTI, tiny compared to other data to be stored at the CTU

level.

V. EXPERIMENTAL RESULTS

A. Experimental setting

We have implemented QTI, QTL, their predictive coding

parts, and their variants in HTM-4.0 [33]. This software first

codes a center view 0, then two side views, 1 and 2. Each view

is composed of both the texture and depth components. The

coding order is the following: T0 D0, T1 D1, T2 D2 (where

Ti and Di are respectively the texture and depth frames in the

i
th view). This configuration is appropriate to test QTL+PC.

This software includes a tool called Flexible Coding Order

(FCO) [34]. The FCO tool allows to change the coding order

to T0 D0, D1 T1, D2 T2, which is appropriate to test QTI+PC

for the two side views. FCO cannot change the order to D0 T0,

D1 T1, D2 T2 since the processing of the base view needs to

remain HEVC compatible. Hence QTI+PC cannot be applied

for the base view. In our QTI experiments, the coding of the

base view remains consequently unchanged. It is important to

note that we could have applied QTL+PC in the base view to

code D0, but that would not allow for a fair evaluation of QTI

since results would be mixed in with QTL results.

Aside from the changed coding order for QTI, we have

strictly followed all the conditions in the Common Test Con-

ditions (CTC) for HTM experiments defined by JCT-3V [35].

A Group Of Pictures (GOP) of 8 was considered with an Intra

period of 24. An 8-bit internal processing was chosen. The

maximum coding unit depth was set to 4, and the maximum

coding unit size was set to 64×64. Furthermore, the following

encoder shortcuts were enabled: fast encoder control (FEN),

fast decision for Merge RD cost (FDM). For side view coding,

disparity compensated prediction and multiview motion vector

prediction were enabled. For depth coding, MPI, DMM (inter-

component tools) and view synthesis optimization (VSO) were

all enabled to conform to CTCs.

The following QP combinations for texture and depth

(respectively) were considered: (25;34), (30;39), (35;42) and

(40;45). We have tested our tools on seven sequences defined

in the CTCs (1920×1088 and 1024×768). The experiments

were done on 10 seconds of video length. Each sequence is

composed of three views: the left, the center (coded first)

and the right view. After encoding, three synthesized views

were rendered between each view. PSNRs on synthesized

views were measured with respect to views synthesized using

uncompressed original views. Coding gains correspond to

bitrate reductions evaluated using the Bjontegaard metric (BD-

Rate) [36]. The experiments were launched on a cluster of

servers, each having 8 CPU cores, and 10 GB of RAM,

some even having 16 GB of RAM. To present the results, we

have used the standard table template (which defines standard

columns) given in the common test conditions [35].
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Sequence
Video

Synt. Coded+Synt.
Runtimes

0 1 2 Avg Enc Dec

Balloons 0.0 2.6 2.2 0.9 0.8 0.8 91 100

Kendo 0.0 3.4 3.5 1.4 1.1 1.1 87 96

Newspaper 0.0 5.3 3.8 1.7 1.4 1.4 87 99

GT Fly 0.0 3.0 3.5 0.8 0.7 0.7 87 100

Poznan Hall2 0.0 2.8 2.6 1.1 0.9 0.9 92 99

Poznan Street 0.0 1.8 2.0 0.6 0.5 0.5 93 100

Dancer 0.0 2.4 2.5 0.7 0.6 0.6 92 99

Average 0.0 3.0 2.9 1.0 0.9 0.9 90 99

TABLE III
BD-RATE CODING RESULTS PER SEQUENCE, IN %, OF QTI

Sequence
Video

Synt. Coded+Synt.
Runtimes

0 1 2 Avg Enc Dec

Balloons 0.0 1.7 1.4 0.6 0.5 0.5 90 100

Kendo 0.0 1.9 2.1 0.8 0.7 0.7 91 97

Newspaper 0.0 3.0 2.3 1.0 0.9 0.8 87 93

GT Fly 0.0 1.7 2.2 0.5 0.4 0.4 94 103

Poznan Hall2 0.0 1.3 1.6 0.6 0.5 0.5 104 101

Poznan Street 0.0 1.1 1.1 0.3 0.3 0.3 97 101

Dancer 0.0 1.1 1.1 0.3 0.3 0.3 101 108

Average 0.0 1.7 1.7 0.6 0.5 0.5 95 100

TABLE IV
BD-RATE CODING RESULTS PER SEQUENCE, IN %, OF QTI+PC

B. QTI results

Tables III, IV and V present the BD-Rate coding results

of QTI, QTI+PC, and the variant QTI+1+PC (positive values

are losses). The video column shows the BD-Rate coding

results for the three coded views. Only the texture PSNR

and the texture bitrate are considered in this computation.

The “Synth” column shows the BD-Rate coding results for

synthesized views. The bitrate considered is the sum of the

bitrates of the three coded texture and depth views. The

PSNR is the average PSNR for the 6 synthesized views. The

“Coded+Synth” column shows the BD-Rate coding results

for coded and synthesized views. The same bitrate as in the

previous column is considered, but the PSNR is the average of

the PSNRs of the 3 coded and the 6 synthesized views. The

tables also provides encoding and decoding runtimes (time

taken to code / decode both texture and depth) compared to

the reference. QTI succesfully reduces encoder runtime by

10% because certain coding modes and partition sizes are no

longer checked for CUs, as explained in Section IV-A1. This is

however accompanied by around 1% bitrate increase on coded

views and on synthesized views.

When the predictive coding part is added, the BD-Rate

losses are largely reduced. A bitrate reduction of 1.3% and

0.4% is achieved on side views and on coded and synthesized

views respectively compared to QTI alone. This comes with

a small increase in encoding runtime due to memory accesses

to the depth component and additional checks, making a total

runtime reduction of 6%. The bitrate reductions however are

not large enough to compensate all the losses in QTI, hence

the remaining overall BD-Rate losses in QTI+PC.

The QTI+1 variant relaxes the severity of the scheme by

only forcing to split a texture CU if the co-located depth CU

is split at the next depth level. Here, the texture quadtree is

Sequence
Video

Synt. Coded+Synt.
Runtimes

0 1 2 Avg Enc Dec

Balloons 0.0 0.1 0.0 0.0 0.0 0.0 87 105

Kendo 0.0 0.2 0.2 0.1 0.1 0.1 86 96

Newspaper 0.0 0.1 0.1 0.0 0.1 0.1 86 92

GT Fly 0.0 0.3 0.6 0.1 0.1 0.1 92 117

Poznan Hall2 0.0 -0.1 0.0 0.0 0.0 0.0 105 101

Poznan Street 0.0 -0.2 0.2 0.0 0.0 0.0 102 99

Dancer 0.0 0.1 0.1 0.0 0.0 0.0 101 99

Average 0.0 0.1 0.2 0.0 0.1 0.0 94 101

TABLE V
BD-RATE CODING RESULTS PER SEQUENCE, IN %, OF QTI+1+PC

Sequence Depth Video total Synt. Coded+Synt.
Runtimes

Enc Dec

Balloons -15.7 -1.4 1.3 0.4 68 98

Kendo -11.5 -1.3 0.9 0.2 64 98

Newspaper -15.1 -1.8 2.0 0.7 64 100

GT Fly -20.6 -1.2 0.0 -0.4 62 100

Poznan Hall2 -24.5 -2.3 0.6 -0.3 69 98

Poznan Street -15.3 -1.0 0.1 -0.2 74 87

Dancer -37.8 -1.0 0.2 -0.2 65 99

Average -20.1 -1.4 0.7 0.0 66 97

TABLE VI
BD-RATE CODING RESULTS PER SEQUENCE, IN %, OF QTL

less altered but the bitrate reduction potential is also reduced.

QTI+1+PC still achieves the same encoder runtime savings as

QTI+PC but with only a small coding loss of 0.1% on coded

and synthesized views.

C. QTL results

1) Objective results: Tables VI, VII and VIII shows the

BD-Rate coding results and runtimes of QTL, QTL+PC, and

QTL-1+PC. Notice that in these tables, the “Video” columns

are removed since QTL does not affect texture data. A new

column, “Depth”, is added to show BD-Rate coding results

evaluated only on the depth component. Only the depth PSNR

and depth bitrate are considered in this computation. Another

column, “Video total” is added wherein the average PSNR

of the coded texture videos is measured against the total

texture+depth bitrate. Since QTI does not affect depth, these

two columns are not shown in Tables III, IV and V.

As seen in Table VI, QTL achieves a significant 34%

encoder runtime reduction, while introducing coding losses on

Sequence Depth Video total Synt. Coded+Synt.
Runtimes
Enc Dec

Balloons -18.2 -1.7 1.0 0.1 76 102

Kendo -14.3 -1.6 0.6 -0.2 68 99

Newspaper -17.9 -2.3 1.6 0.3 66 100

GT Fly -23.7 -1.4 -0.2 -0.6 70 99

Poznan Hall2 -28.1 -2.9 0.0 -0.9 65 97

Poznan Street -18.7 -1.2 -0.1 -0.5 69 87

Dancer -40.6 -1.3 -0.1 -0.5 69 99

Average -23.1 -1.8 0.4 -0.3 69 97

TABLE VII
BD-RATE CODING RESULTS PER SEQUENCE, IN %, OF QTL+PC
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Sequence Depth Video total Synt. Coded+Synt.
Runtimes
Enc Dec

Balloons -24.7 -2.2 1.6 0.4 71 103

Kendo -15.8 -2.0 1.4 0.3 65 98

Newspaper -23.4 -2.9 2.8 0.9 66 103

GT Fly -37.3 -2.0 0.2 -0.5 67 99

Poznan Hall2 -35.3 -3.6 0.6 -0.7 61 99

Poznan Street -25.5 -1.6 0.2 -0.3 70 88

Dancer -47.3 -1.9 0.6 -0.2 64 99

Average -29.9 -2.3 1.1 0.0 66 98

TABLE VIII
BD-RATE CODING RESULTS PER SEQUENCE, IN %, OF QTL-1+PC

synthesized views. The predictive coding part brings an addi-

tional 0.3% bitrate reduction in both the synthesized and the

coded+synthesized columns but with a little runtime penalty

due to the additional access to texture data. The QTL-1+PC

variant is a more radical scheme: it achieves 34% encoder

runtime reduction, but at the expense of a bigger coding loss of

1.1% on synthesized views. Consequently, QTL+PC achieves

a better coding gain vs. encoder runtime reduction trade-off

than QTL-1+PC.

2) Subjective results: Table VII shows that QTL+PC gives

losses, on average, on synthesized views. These are due to

smoothing out wrong edges in depth, which is in fact an

improvement brought by the tool. To show that QTL+PC

does not add any new artefacts on synthesized views, a

subjective viewing session was conducted during the 2nd JCT-

3V meeting [37]. A 3D and a 2D test were performed. For each

test, two sequences (Balloons and Newspaper) at two QPs (25

and 35) each were evaluated. QP 25 was selected because it

yields the highest coding losses on synthesized views. QP 35

was selected to provide complementary information for lower

bitrates.

In the 3D test, a stereo sequence was constructed from the

two synthesized views that are closest to the center view, and

was projected onto a 3D screen. In the 2D test, the closest

synthesized view to the left of the center view was selected

for projection. These synthesized views were rendered from

texture and depth coded using the reference software HTM-

4.0 on the one hand, and with our tool enabled on the other

hand. Hence two sequences, A and B, were projected to nine

(5 JCT-3V experts, and 4 non-experts) viewers in this order: A

B A B. The viewers did not know what A and B corresponded

to. Actually, A was set as the reference for some viewings and

as the proposed method for others. The viewers were asked

to rate if A is largely better (a score of +3 is given), better

(+2), slightly better (+1), same as (0), slightly worse (-1),

worse (-2) or largely worse (-3) than B. Table IX shows the

coding scores for the 2D and the 3D test, where a negative

value represents an improvement resulting from the use of the

proposed QTL+PC method.

In both the 2D and the 3D test, no score above 1 or below -1

is reported. It is thus confirmed that no new annoying artifact is

noticeable. In the 3D test, results were particularly consistent:

for each sequence, there was either no difference, or one of

the method claimed as slightly better. Said differently, for one

given experiment, it is not possible to find a score of +1 and

Test Sequence + QP
Viewer

AVG
AVG /
Test1 2 3 4 5 6 7 8 9

3D

Balloons 25 0 -1 -1 -1 0 0 -1 -1 0 -0.6

-0.1
Newspaper 25 0 0 0 1 0 0 0 0 0 0.1
Balloons 35 1 1 0 0 0 1 1 0 0 0.4

Newspaper 35 0 0 -1 0 0 0 0 -1 0 -0.2

2D

Balloons 25 1 0 0 0 0 0 0 1 0 0.2

-0.2
Newspaper 25 -1 -1 -1 -1 0 0 -1 0 -1 -0.7
Balloons 35 0 0 0 1 -1 -1 0 1 0 0

Newspaper 35 0 -1 0 -1 -1 1 0 -1 0 -0.3

TABLE IX
CODING SCORES FROM SUBJECTIVE VIEWING EXPERIMENTS FOR 2D AND

3D TESTS

Method
Video

Video total Synt. Enc
0 1 2 Avg

QTL+PC 0.0 0.0 0.0 0.0 -1.8 0.4 69

ECU-D 0.0 0.0 0.0 0.0 -2.2 1.1 76

EDCU 0.0 0.0 0.0 0.0 -1.4 0.4 82

CBF-D 0.0 0.0 0.0 0.0 0.0 0.3 85

QTI+1+PC 0.0 0.1 0.2 0.0 0.0 0.1 94

ECU-T 0.3 -1.2 -1.1 0.5 0.7 -0.1 63

CBF-T 0.9 0.5 0.5 0.9 1.0 0.7 72

TABLE X
AVERAGE BD-RATE CODING RESULTS OF QTI+1+PC, QTL+PC AND

OTHER RECENT ENCODER SHORTCUTS

-1 simultaneously. The proposed method is even favored with

an average score of -0.1 and -0.2 in the 3D and 2D case

respectively. This confirms that smoothing out the wrong edges

in QTL+PC actually tends to be beneficial.

D. Comparison with state-of-the-art encoder shortcuts

Table X shows the average coding gains of QTL+PC and

QTI+1+PC compared to state-of-the-art encoder shortcuts:

ECU, CBF and EDCU, defined in Section II-C. ECU and

CBF are 2D video shortcuts, applicable to both texture and

depth components. Thus, for fairness of evaluation, we have

compared ECU and CBF applied on texture only (resp. depth

only) with QTI+PC (resp. QTL+PC). EDCU is a depth only

encoder shortcut and was thus compared only with QTL+PC.

Table X shows that QTL+PC achieved more bitrate and

encoder runtime reductions than its competitors. For texture

coding, ECU-T and CBF-T achieved more encoder runtime

reductions than QTI+1+PC, at the expense of a bigger loss in

the “Video Total” column.

VI. RESULTS INTERPRETATION AND ANALYSIS

A. Analysis of QTI results

Table XI shows in which cases encoder runtime savings,

bitrate savings and coding losses occur in QTI+PC. When

a depth CTU is homogeneous (not split), QTI+PC does not

impact the texture quadtree construction nor its coding. When

a depth CTU contains an edge and is split accordingly, if

the texture CTU is split as well, QTI brings encoder runtime

savings since coding modes and partition sizes are no longer

checked for low depth level CUs. The predictive coding

part further brings bitrate reductions since the split flag and

partition size for low level CUs are not sent in the bitstream. If
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CTU
Texture

Homogeneous
64×64

Textured/Edge
8×8

Depth

Homogeneous
64×64

QTI+PC: no impact

QTL+PC: runtime saving
+ bitrate reduction

QTI+PC: no impact

QTL+PC: no impact

Textured/Edge
8×8

QTI+PC: coding loss
+ runtime saving

QTL+PC: runtime saving
+ bitrate reduction

+ synth. PSNR drop

QTI+PC:
bitrate reduction
+ runtime saving

QTL+PC:
bitrate reduction

TABLE XI
ANALYSIS OF IMPACT ON CODING LOSS, BITRATE REDUCTION AND

ENCODER RUNTIME IN QTI+PC AND QTL+PC UNDER DIFFERENT

COMBINATIONS OF DEPTH AND TEXTURE CTUS

the texture CTU is homogeneous while the depth CTU is split,

our initial assumption no longer holds. Runtime savings are

achieved but coding losses occur since the texture quadtree

is altered. This is shown in Figure 6: while the highlighted

texture CTUs are homogeneous in reference coding as seen in

Figure 6(b), they become as partitioned as the co-located depth

CTUs with QTI+PC, as seen in Figure 6(c). This situation is

relatively unfrequent, as can be seen from Table I, but it is

responsible for the coding losses shown in Table III for QTI

alone.

(a) Depth quadtree in refer-
ence coding

(b) Texture quadtree in ref-
erence coding

(c) Texture quadtree with
QTI+PC

(d) Texture quadtree with
QTI+1+PC

Fig. 6. Texture quadtree in reference coding, with QTI+PC and QTI+1+PC.
Gray CUs are coded in SKIP mode, and green CUs in Inter (best viewed in
color)

We can see from Table XI that encoder runtime savings

in QTI only occur when the depth CTU is split. Actually,

they are possible only if a depth CU is split or partitioned

in N×2N or 2N×N, which correspond to cases (a), (b) and

(c) respectively in Figure 3. The percentage of these three

cases, that we call FT for Favorable for Texture, is shown in

Table XII for each sequence. This table shows that overall,

the percentage of CUs wherein encoder runtime savings are

possible is only 9.2% which explains why the runtime savings

in QTI were not larger than 10%.

Furthermore, the predictive coding part of the tool brings

bitrate reductions only on those 9.2% of CUs as well. Con-

Sequence FT FD

Kendo 10.3 82.1

Newspaper 11.4 87.0

Balloons 8.8 87.5

Dancer 11.4 80.9

GT Fly 7.4 84.5

Poznan Hall2 5.5 89.2

Poznan Street 9.8 82.5

Average 9.2 84.9

TABLE XII
THE FT AND FD PERCENTAGES PER SEQUENCE

sequently, the amount of bitrate reduction is not sufficient to

compensate all the losses in QTI that are due to assumption

failures. Hence, coding losses are still reported in QTI+PC. In

QTI+1+PC, the more flexible scheme reduces the alteration of

the texture quadtree while decreasing the FT percentage in the

process. Figure 6(d) indeed shows that QTI+1+PC allowed the

highlighted texture CTUs, to be one level less partitioned than

the depth CTUs, hence reducing the texture quadtree alteration

compared to QTI+PC, and the losses that come along with it.

The resulting trade-off nearly removes all coding losses (only

a small 0.1% loss is reported).

When applied on the texture component only, ECU reduces

significantly the encoder runtime by 37% because it is applied

often. It gives losses on the central view but significant gains

on the dependent views. Indeed, a significant PSNR drop is

noticeable in these views, but well compensated by an equally

significant bitrate reduction. This PSNR drop is no longer

compensated when taking into account the PSNR and bitrate

of the central view hence the 0.5% loss in the “Video Avg”

column in Table X. When also taking into account the depth

bitrate in the BD-Rate computation, the results are even worse

(0.7% loss). QTI+1+PC is applied less often than ECU, hence

only reducing encoder runtime by 6%. However, it also does

not alter the texture enough to cause such a major PSNR

drop, hence not presenting any coding loss when evaluating

the coded views PSNR against the coded views bitrate or

against the coded views + depth bitrate. In mobile applications

for instance where encoder runtime savings are primordial,

ECU on texture could be preferred over QTI+1+PC. In other

applications which do not involve view synthesis, and where

only the R-D performance of the coded texture views counts,

QTI+1+PC could be more suitable than ECU-T. Note that

QTI+1+PC also gives lower losses in general than CBF-T in

all evaluation scenarios, although CBF-T gives larger runtime

reductions.

B. Analysis of QTL results

Table XI shows that when the texture and depth CTUs

are homogeneous, runtime savings are achieved since coding

modes and partition sizes are no longer checked for high level

CUs in depth. The recursion is stopped at depth level 0, hence

bringing significant runtime reduction. Also, a small bitrate

saving is achieved with the predictive coding part since neither

the split flag or the partition size of the CTU needs to be

sent. If only the depth is split to achieve better prediction on
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an edge, then our assumption no longer holds. In this case,

the runtime and bitrate reductions are accompanied by a loss

of quality on synthesized views. This does not happen very

frequently however, as can be seen in Table I. When the texture

is split, if the depth CTU is homogeneous, QTL+PC has no

impact on coding the depth CTU. If the depth CTU is also

split, only bitrate reductions are achieved by not sending the

quadtree information for high level depth CUs.

We can see from Table XI that the CUs wherein bitrate

reductions and runtime savings are possible in depth have an

homogeneous co-located texture CU. Actually, these reduc-

tions occur when the texture CU is partitioned in 2N×2N,

N×2N, or 2N×N, which correspond to case (a) in Figure 5.

The percentage of these CUs, that we call Favorable for

Depth (FD), is given in Table XII, for each sequence. Overall,

the FD percentage equals 84.9%, which is relatively high.

This explains the significant runtime reduction and bitrate

savings in QTL+PC. The large difference between the FT and

FD percentages also explains the performance gap between

QTI+PC and QTL+PC in terms of runtime reductions. The

predictive coding part achieved however nearly the same

coding gains in both tools, as it gave -0.3% and -0.4% on

coded+synthesized in QTL and QTI respectively. Since FD

is much higher than FT, the predictive coding in QTI should

have given less gains. However, the cost of transmitting the

split flag and partition size in the bitstream is higher in texture

than in depth (6.5% against 1.6%), as shown in Section III-B,

so even though the predictive coding is less used in QTI, it

has more impact there than in QTL.

The example in Figure 7 shows how QTL successfully

smoothes out wrong edges in depth. Indeed, the texture

background area, as shown in Figure 7(a) is planar. Its

corresponding CTUs are not split (or at most, split once). In

depth, the corresponding area should normally be planar as

well, but a badly performed stereo matching created a wrong

edge in that area, highlighted in Figure 7(b). Consequently,

when QTL is not used, the CTUs corresponding to that depth

area are split, as seen in Figure 7(d). When QTL is used, the

depth quadtree is limited to the texture quadtree: the depth

CTUs are not split, hence smoothing out the wrong edge, as

shown in Figure 7(e).

These wrong edges are still present in reference coding,

and when comparing to an uncompressed synthesized view,

rendered with an original depth that contains these wrong

edges, the reference coding appears to be better than QTL+PC.

This is visible in the “Synth.” column in Table VII which

reports losses, due to a PSNR drop on synthesized views from

smoothing out wrong edges. While there is a significant depth

bitrate reduction brought by QTL+PC, evaluated at 23.1% on

the depth component as shown in Table VII, this reduction is

not able to compensate this PSNR drop.

However, smoothing out the wrong edges in depth is actu-

ally an improvement since the quality of the synthesized views

will be increased. Indeed, the subjective results in Table IX

confirm that there is no actual degradation in the quality of the

synthesized views. In fact, on average, our tool was found to

be better than the reference, especially on the 2D test where

the potential artefacts resulting from the use of our tool, if

(a) Texture area (b) Depth area (c) Texture quadtree

(d) Depth quadtree with
reference

(e) Depth quadtree with
QTL+PC

Fig. 7. Depth quadtree with reference coding and with QTL. Gray CUs are
coded in SKIP mode, green CUs in Inter and red CUs in Intra (best viewed
in color)

any, would be more noticeable anyway.

In the coded+synthesized column, the PSNR considered is

the average between the 6 PSNRs of the synthesized views

and the 3 PSNRs of the coded texture views, which do not

change using our method since QTL does not affect the texture

component. Consequently, the PSNR drop on the synthesized

views is attenuated in this column, and can therefore be

compensated by the bitrate reduction on the depth component,

leading to the shown overall BD-Rate gains.

Furthermore, since neither the PSNR nor the bitrate of the

coded texture videos change in QTL+PC, the depth bitrate

reductions are directly visible in the “Video total” column,

and although attenuated by the added texture bitrate, they are

still significant.

Compared to QTL+PC, ECU applied only on depth achieves

lower runtime reduction than QTL+PC. ECU however gives

a more significant bitrate reduction on the depth component

alone, which is visible in the “Video total” column in Table X

(-2.2% gain). ECU, which was presented initially as a 2D

encoder shortcut in HM, is based on the assumption that if

a CU is best coded in SKIP mode, splitting it further would

not allow to find a better configuration, R-D wise. Altough the

assumption is valid for texture, it is not appropriate for depth

since any failures in this assumption would cause smoothing

out an edge in depth, hence heavily impacting the synthesis.

And unlike in QTL+PC, these are not necessarily wrong edges.

Consequently, a significant PSNR drop on the synthesized

views is observed, causing a 1.1% loss. These losses are

not present in QTL+PC. EDCU conditions the application

of ECU using an additional constraint: the co-located texture

CU must be coded in SKIP as well. Consequently, EDCU is

less applied than ECU, hence giving lower runtime reductions

(18% instead of 24%), but also lower losses on synthesized

views, and an R-D performance only slightly worse than

QTL+PC. As for CBF applied only on depth, it gives a

worse R-D performance than QTL+PC and a lower runtime

reduction.

Finally, note that at the time of writing this paper, the most

recent HTM software version was HTM-4.0. Since then, many
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tools have been added or removed from the software. In the

more recent HTM-7.0 version, released in June 2013, the

performance of QTL+PC was only slightly reduced: it still

achieves a significant runtime reduction of 26% with a 1.0%

loss on synthesized views (but as said earlier, these are not

real losses) and -1.2% gain in the “Video total” column.

VII. CONCLUSION

In this work, we have presented the texture quadtree initial-

ization (QTI) and the depth quadtree limitation (QTL) coding

tools and their associated predictive coding (PC) part. QTI+PC

and QTL+PC are able to reduce encoder runtime and achieve

coding gains by exploiting texture-depth correlations.

QTI+PC brings 6% encoder runtime reduction. The method

is promising, although the assumption failures, essentially

due to wrong edges in depth, cause coding losses. In a

more flexible scheme, the runtime reductions are maintained,

and the coding losses are almost entirely compensated by

the bitrate reductions the predictive coding part brings. In

the future, a more flexible scheme that achieves a better

compromise between level of texture quadtree alteration and

bitrate reduction potential needs to be found.

QTL+PC, on the other hand, reduces encoder runtime

significantly by 31% while achieving -0.3% coding gain on

average for coded and synthesized views, -23.1% on depths,

and -1.8% on coded videos when the depth bitrate is con-

sidered. It can also smooth out wrong edges in depth, which

eventually leads to a better synthesis quality. QTL+PC was

presented in the 2nd JCT-3V meeting and was adopted in both

the 3D-HEVC working draft and software.
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