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What?

• Scientific data-sets
•Results of simulations

• Chemistry, Physics

• Computational fluid dynamics
• Computer assisted design

•Results of acquisitions
• Medical imaging
• Seismology, oceanography, etc.

[Dong09]
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What for?

• Visual exploration of scientific data
•  Hypothesis formulation
•  Model verification
•  Intuition validation

• Geometrical analysis
•  Result interpretation

• Communication of scientific results
•  Interactive and graphical material
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• Dwarf galaxies orbiting the Andromeda 
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•  Nature, January 3rd, 2013
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• Research and development activities
•Academic 
• Industrial

• CEA, 
• EDF, 
• Total,
• Dassault Systèmes

• 3D simulation, rendering and analysis software industry
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• Covered topics

•3D Rendering

• Interactive systems

•Geometrical and topological analysis
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• Students targeting
•R&D activities

• Students liking
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•Geometry
•Coding
•Cool pictures
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• It all starts with a numerical domain
•Sub-set of euclidean spaces (1D, 2D, 3D, nD)

• Regular Grids (pixels, voxels)
•Non-euclidean spaces (1D, 2D, 3D, nD)

• Notion of piecewise linear manifold
• Triangle surface, Tetrahedral mesh

• Simulation or acquisition
•Compute something on the domain 
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• These are complex data-sets:
•What should we show?
•How can we explore the data?

• Dimensionality curse

• How can we do it fast?



Challenges

• Be creative
• Be efficient
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Summary

• Numerical domain representations
• Scalar field visualization

•Level set extraction

• Vector field visualization
• Integral line extraction
•Line Integral Convolution

• Tensor field visualization
• Interpolation & convolution
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Example

• Domain
•2-manifold 

• Embedding space
•

• Cellular elements
•Triangles
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• d-manifold with boundary
•Topological space such that:

• Any of its open set is homeomorphic 
to       or its half space

• Boundary: closed (d-1)-manifold
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• 1D regular grids
•Arrays

• 2D regular grids
•Unit cell: pixel
•Collection of arrays

• 3D regular grids
•Unit cell: voxel
•Collection of arrays
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• Critical points in the interior

• Source of many ambiguities in 
visualization
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• Notion of simplex
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affinely independent points of an euclidean 
space 

•  
•0-simplex: vertex
•1-simplex: edge
•2-simplex: triangle
•3-simplex: tetrahedron
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Manifolds on a computer

• Notion of triangulation
•  The triangulation of a d-manifold       is a 
simplicial complex      such that
• The union                        of the simplices of      
is homeomorphic to 

•  Any open set of       is homeomorphic to  

• 2-triangulation: triangle mesh
• 3-triangulation: tetrahedral mesh
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•
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•

•

•

•

• 3 linear equations with 3 unknowns
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Barycentric coordinates

•

•

•

•

• Automatically interpolates on the edges

• Similar reasoning for d-simplex
• Can be used to determine if a point lies within a 

simplex
• No critical point in the interior!
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•
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Notion of critical point

• Combinatorial identification
•Star of a simplex

• Simplices that contain      
as a face

•Link of a simplex
• Simplices of the closure of 
the star that do not contain 
as a face
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Notion of critical point

• Combinatorial identification
•Minimum

• Empty lower link
•Maximum

• Empty upper link
•Regular point

• Lower and upper links both 
simply connected
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Notion of critical point

• Combinatorial identification
•Everything else

• Saddle

•Works in arbitrary dimension

•  Value of a critical point
• Critical value
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• Given a domain     of dimension d
•Level set

• 
• If    is not a critical value

•             is a (d-1) manifold

•  If     is closed,              is closed
• Otherwise it may be open
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•

•
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•
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Level set in a d-simplex

• Let     be a single d-simplex  
•

• Let    be an isovalue
•

• No critical point inside the simplex!
• Simply connected, open, (d-1)-manifold
• Can be computed by only looking at the boundary

– Level sets on (d-1)-faces: boundary of the level set
– Recursive process



Level set extraction

• Now we know
•How to compute a level set
• In arbitrary dimension
•But in only one d-simplex :(

• General algorithm
•Flip through the list of d-simplex
•Appy the algorithm on a per d-simplex basis
• “Marching Tetrahedra”
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Marching squares

• Let       be a 2-regular grid
•With bilinear interpolant

• Level set extraction
•Loop over the unit cells
•Cases on a 2D unit cell

• Much more than in a triangle
• More than in a tet!

[Wikipedia]
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• Geometrically inaccurate (lines)
• Topologically inconsistent (numerical estimation of the saddle)
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Marching cubes

• Let       be a 3-regular grid
•With trilinear interpolant

• Level set extraction
•Loop over the unit cells
•Cases on a 3D unit cell

• 256 cases

[Wikipedia]
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•Nielson and Hamann 1991, Natarajan 1994, Chernyaev 1995, 
Lewiner 2003, Etiene 2012
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Scalars



Vector Field 
Visualization

[Kitware]
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•Magnitude/angle



What is there to visualize?

• The simple way: glyphs
• Data overload
• Occlusion issues
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What is there to visualize?

• Getting inspiration from engineering sciences
•Localized visualization 
•Explicit representations
•Stream lines and surfaces

• Analogy to scalar fields:
• Isocontours
• Isosurfaces

[www.speedhunter.com]
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• Everywhere tangential to the flow
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Streamlines

• What is there to visualize?
• Integral curves 
• “Streamlines”

• Solution to an ODE
•

•

•

•Unique solution
[Chen]
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Streamlines on a computer

• Euler integration algorithm
•Fixed step size
•Ratio of the magnitude

• Trade-off
•Sampling
•Approximation quality

[Chen]
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Special case

• Gradient fields on PL-manifolds
•Path of steepest ascent

• Barycentric coordinates
•Piecewise constant gradient
•No integration error
•Nearly no ambiguity

• Primal/dual meshes



Streamsurfaces

• Adaptive sampling depending on the curvature of the seed curve

[Garth 09]



Examples

[KrishnanVIS09]

[GarthVIS08]
[Kitware]
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Line Integral Convolution

• Basic idea
•Global visualization

• Compute an integral curve 
for each point of the domain

•Problem
• Hard to see anything

•Key idea
• Mimic light variation (noise)
• Blend curves with noise 

[Post et al. 2003]
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Line Integral Convolution

• Convolution kernel
•Gaussian kernel
•Finite support

•Normalized

[Moller]
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Line Integral Convolution

[Helgeland]
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Line Integral Convolution

• Global visualization of the direction of the flow
•What about its magnitude? Its orientation?

[Helgeland]
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Derived scalar fields

• Combine the magnitude with the LIC
•Color map of the magnitude
•For each channel (RGB)

• Multiply by the LIC value

• What other derived scalar fields would be interesting?
•Flow orientation: divergence
•Angular speed: magnitude of the curl
•Flow distortion: Finite Time Lyaponov Exponent

[CIRA]
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Angular speed

• Magnitude of the curl, for instance
•

•On PL-manifolds? [Dong09]
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So far

• Extract geometrical features
•  Streamlines

• Seeding, Line Integral Convolution
• Where do they end/start?

• Extract geometrical measures
•  Magnitude, orientation, angular speed, distortion

• Vector field topology
•  Summarizes all this information

[http://www.deepakantony.com/]
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Gradient field topology

• Intuition of critical points
•Points where something critical happens
•Where the flow stops

• Where does the gradient stops?
•At the critical points of 

• Critical points of a gradient field
•Same as for scalar fields

[Reininghaus11]
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Gradient field topology

• Understanding the structure of the critical points

• Several streamlines can have the same 

extremities

• Equivalence relation
•All the points whose streamline

shares identical extremities
•Notion of flow cell

[Reininghaus11]
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Gradient field topology

• Understanding the structure of the critical points

• Now, what are the boundaries of 

the flow cells?

• Streamlines between 

critical points

[Reininghaus11]
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Critical points of a vector field

• For example
•

• Points where the magnitude vanishes
•

• With curl
•More critical points

[Chen]
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Vector field decomposition

• Critical point extraction
• Identify the cells of the domain 

containing critical points
•Sub-sampling for accurate locations

• Decomposition
•Backward and forward streamlines 

from the critical points
•Periodic orbits!

[Chen]
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Non planar domains

• PL 2-manifolds in 
•Trivial extension
•Numerical evaluations slightly more involved

• Volumetric domains
•Similar process

• Critical points: spiral effects
• Streamlines and streamsurfaces as separatrices

[Chen][Chen]
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Notion of tensor

• Order of a tensor
•Scalar value: 0th order tensor
•Vector field: 1st order tensor
• (dxd)-matrix: 2nd order tensor

• Here, mostly symmetric 2nd order tensors

[Wikipedia]
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In practice

• Given a domain
• For each vertex
• One matrix 

• (dxd)-matrix
•d: dimension of 

• Interpolation on the 
other simplices
•Matrix coefficients
•Eigenvector/values
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Tensor field interpolation

• Let's represent         by an ellipsoid
•Semi-principal axes

• Eigenvectors
•Axis length: eigenvalue
• Interpolation of the 

eigenvectors/values

•Similar to vector fields 
• Magnitude/angle

[Hotz]
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Glyph packing

• Intuitive idea
•Locally represent the tensor with a simple symbol

• Analogy with arrows for vector fields

•What kind of symbol?
• Ellipsoids, “superquadrics”

•What geometrical properties?
• Eigen vectors, eigen values

[Kindlmann]
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Tensor diagonalization

• If for each vertex
• If f(v)  is a symmetric matrix

•

• It can be diagonalized
•

– Eigenvalues
•

– Eigenvectors

SVD or PCA
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Tensor glyphs

• Ellipsoids
•Semi-principal axes

•Eigen vectors
– Direction, not a vector!

•Axis length
•Eigen values

•Anisotropy information

[Kindlmann]

Isotropy Axial anisotropy Planar anisotropy
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Tensor glyphs

• “Superquadrics”
•Parallelepiped with smooth edges
•Exaggerate shading variations across axis

[Kindlmann]
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• How to distribute the glyphs
•To avoid data overload
•Glyph overlap

• Particle-based energy optimization
•Given a target number of particles
•Optimally (globally) scale and place them 

•To minimize overlap
•Maximize the sum of distances between glyphs

[Kindlmann]
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Putting it all together

[Kindlmann]
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Tensor glyphs

[Kindlmann]

• Provide important insights
•Direction information
•Anisotropy information

• Still
•Occlusion issues
•No global information
•Dependent on the number of glyphs

•Trade-off
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Derived vector fields

• What interesting vector fields could we consider?
•Eigenvectors

• Not a real vector field
– No magnitude 
– No orientation

•  Magnitude
• Eigenvalues

•Ambiguous entity
• Notion of direction field

[Hotz]
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Direction fields

[http://www.pxleyes.com]

[http://www.123rf.com]

• Set of orthogonal “pseudo” vectors
•Pulling all the vector field visualization techniques

• Streamline computation
• Streamline seeding
• LIC

•How to combine the directions?
•Get inspiration from … craft
•Overlay the directions 
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Hyper-streamlines

[http://www.pxleyes.com]

[http://www.123rf.com]

• For each of the d directions
•Streamline integration

• We know how to do it for vector fields

•Problem
• No orientation 
• No clear matches across cells
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Hyper-streamlines

• Other than that...
•Same integration as for vector fields

• Recap
• Independent computation for minor/major
•Seeding

•Distance criterion
• Integration

•Euler
•Runge-Kutta

[Chen]
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Beyond hyper-streamlines

• Now that we know how to extract 

hyper-streamlines
•More global visualization

• Getting inspiration from vector fields
•Line Integral Convolution

• d-dimensional convolution kernel
• Independent computations

– Random blend minor/major
[Zhang]



Tensor fields



The awful truth



The awful truth

• Simulations usually have a temporal 
component



The awful truth

• Simulations usually have a temporal 
component

[Weinkauf]



The awful truth

• Simulations usually have a temporal 
component

• Simulations often come uncertainty 
evaluation

[Weinkauf]



The awful truth

• Simulations usually have a temporal 
component

• Simulations often come uncertainty 
evaluation

[Weinkauf]

[Fout]



The awful truth

• Simulations usually have a temporal 
component

• Simulations often come uncertainty 
evaluation

• Simulations often yield several fields 
per data-set

[Weinkauf]

[Fout]



The awful truth

• Simulations usually have a temporal 
component

• Simulations often come uncertainty 
evaluation

• Simulations often yield several fields 
per data-set

[Weinkauf]

[Fout]

[Akiba]
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