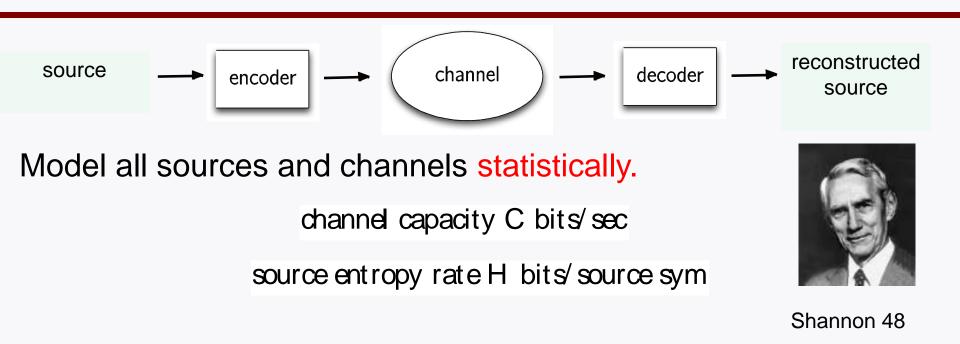
The Science of Information: From Communication to DNA Sequencing

David Tse Dept. of EECS U.C. Berkeley

Telecom Paris August 31, 2012


Research supported by NSF Center for Science of Information. Joint work with A. Motahari, G. Bresler, M. Bresler. Acknowledgements: S. Batzolgou, L. Pachter, Y. Song

Communication: the beginning

- Prehistoric: smoke signals, drums.
- 1837: telegraph
- 1876: telephone
- 1897: radio
- 1927: television

Communication design tied to the specific source and specific physical medium.

Grand Unification

Theorem:

 $= \frac{C}{H} \text{ source sym / sec.}$

A unified way of looking at all communication problems in terms of information flow.

• All communication systems are designed based on the principles of information theory.

• A benchmark for comparing different schemes and different channels.

• Suggests totally new ways of communication.

Secrets of Success

• Information, then computation.

It took 60 years, but we got there.

• Simple models, then complex.

The discrete memoryless channel is like the Holy Roman Empire.

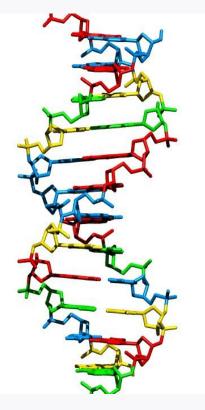
• Infinity, and then back.

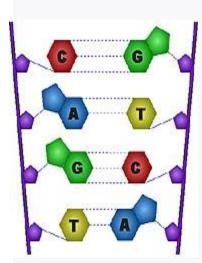
Allow us to think in terms of typical behavior.

"Asymptotic limit is the first term in the Taylor series expansion at infinity.

And theory is the first term in the Taylor series of practice."

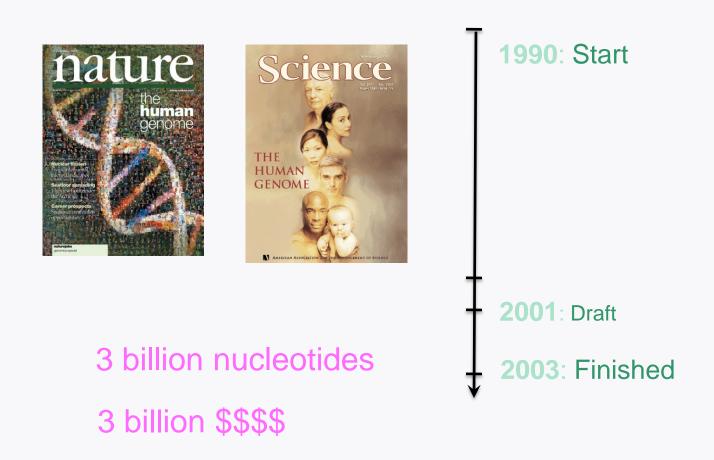
Tom Cover, 1990


Can the success of this way of thinking be broadened to other fields?


Information Theory of DNA Sequencing

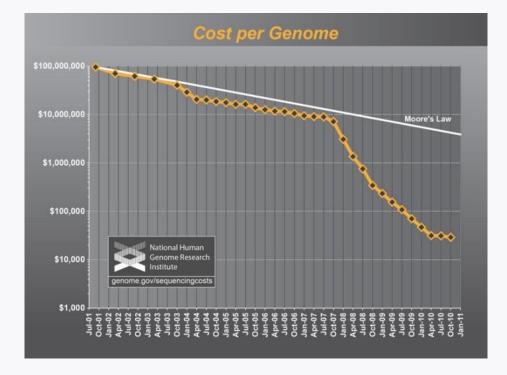
DNA sequencing

DNA: the blueprint of life


Problem: to obtain the sequence of nucleotides.

...ACGTGACTGAGGACCGTG CGACTGAGACTGACTGGGT CTAGCTAGACTACGTTTTA TATATATATACGTCGTCGT ACTGATGACTAGATTACAG ACTGATTTAGATACCTGAC TGATTTTAAAAAAATATT...

Impetus: Human Genome Project

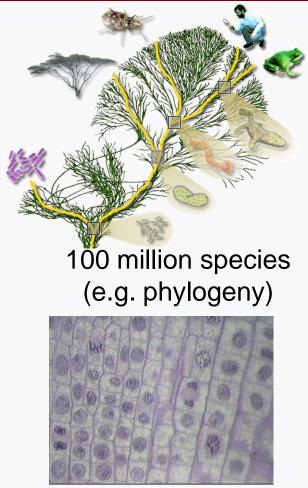


courtesy: Batzoglou

Sequencing gets cheaper and faster

Cost of one human genome

- HGP: \$3 billion
- 2004: \$30,000,000
- 2008: \$100,000
- 2010: \$10,000
- **2011:** \$4,000
- 2012-13: \$1,000
- ???: \$300

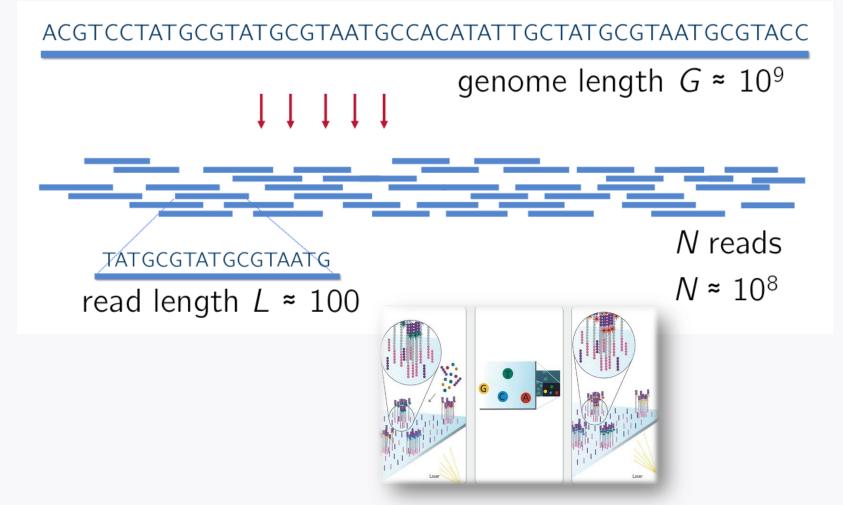


courtesy: Batzoglou

Time to sequence one genome: years \rightarrow days

Massive parallelization.

But many genomes to sequence


10¹³ cells in a human (e.g. somatic mutations such as HIV, cancer)

7 billion individuals (SNP, personal genomics)

courtesy: Batzoglou

Whole Genome Shotgun Sequencing

Reads are assembled to reconstruct the original DNA sequence.

A Gigantic Jigsaw Puzzle

Many Sequencing Technologies

- HGP era: single technology (Sanger)
- Current: multiple "next generation" technologies (eg. Illumina, SoLiD, Pac Bio, Ion Torrent, etc.)
- Each technology has different read lengths, noise profiles, etc

Many assembly algorithms

Available assemblers

[edit]

.

The following table lists assemblers that have a de-novo assembly capability on at least one of the supported technologies.^[6]

Name	Туре	Technologies	Author	Presented / Last updated	Licence*	Homepage
ABySS	(large) genomes	Solexa, SOLiD	Simpson, J. et al.	2008 / 2011	NC-A	link 🖌
ALLPATHS-LG	(large) genomes	Solexa, SOLiD	Gnerre, S. et al.	2011	os	link 🖌
AMOS	genomes	Sanger, 454	Salzberg, S. et al.	2002?/ 2008?	os	link 🖌
Celera WGA Assembler / CABOG	(large) genomes	Sanger, 454, Solexa	Myers, G. et al.; Miller G. et al.	2004 / 2010	os	link &
CLC Genomics Workbench	genomes	Sanger, 454, Solexa, SOLiD	CLC bio	2008 / 2010	с	link @
Cortex	genomes	Solexa, SOLiD	lqbal, Z. et al.	2011	os	link 🖌
DNA Dragon	genomes	Illumina, SOLiD, Complete Genomics, 454, Sanger	SequentiX	2011	с	link 🖨
DNAnexus	genomes	Illumina, SOLiD, Complete Genomics	DNAnexus	2011	с	link 🖨
Edena	genomes	Illumina	D. Hernandez, P. François, L. Farinelli, M. Osteras, and J. Schrenzel.	2008/2011	c	link 🕫
Euler	genomes	Sanger, 454 (,Solexa ?)	Pevzner, P. et al.	2001 / 2006?	(C / NC-A?)	link 🖌
Euler-sr	genomes	454, Solexa	Chaisson, MJ. et al.	2008	NC-A	link 🖌
Forge	(large) genomes, EST, metagenomes	454, Solexa, SOLID, Sanger	Platt, DM, Evers, D.	2010	os	link 🕫
Geneious	genomes	Sanger, 454, Solexa	Biomatters Ltd	2009 / 2010	с	link 🖌
Graph Constructor	(large) genomes	Sanger, 454, Solexa, SOLiD	Convey Computer Corporation	2011	с	link 🕫
IDBA (Iterative De Bruijn graph short read Assembler)	(large) genomes	Sanger,454,Solexa	Yu Peng, Henry C. M. Leung, Siu-Ming Yiu, Francis Y. L. Chin	2010	(C / NC-A?)	link &
MIRA (Mimicking Intelligent Read Assembly)	genomes, ESTs	Sanger, 454, Solexa	Chevreux, B.	1998 / 2011	os	link 🕫

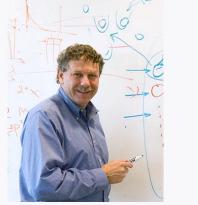
Source: Wikipedia

× Find:

🖶 Next 👚 Previous 🖌 Highlight all 🔲 Match case

Ŧ

And many more.....

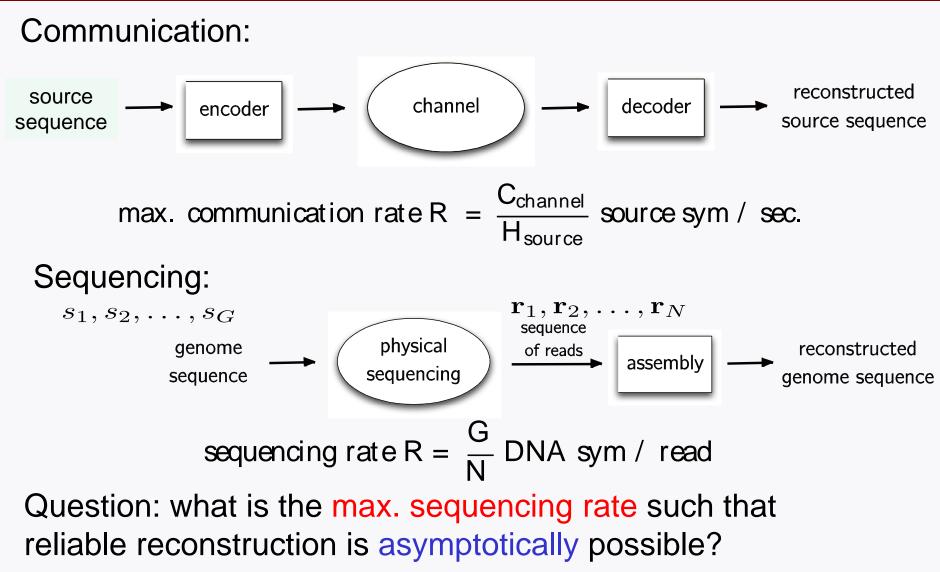

	(large) genomes	Sanger, 454, Solexa, SOLiD	Convey Computer Corporation	2011	с	link 🕫
IDBA (Iterative De Bruijn graph short read Assembler)	(large) genomes	Sanger,454,Solexa	Yu Peng, Henry C. M. Leung, Siu-Ming Yiu, Francis Y. L. Chin	2010	(C / NC-A?)	link 🛛
MIRA (Mimicking Intelligent Read Assembly)	genomes, ESTs	Sanger, 454, Solexa	Chevreux, B.	1998 / 2011	os	link 🕫
NextGENe	(small genomes?)	454, Solexa, SOLiD	Softgenetics	2008	С	link 🔗
Newbler	genomes, ESTs	454, Sanger	454/Roche	2009	С	link 🔗
PASHA	(large) genomes	Illumina	Liu, Schmidt, Maskell	2011	os	link 🕫
Phrap	genomes	Sanger, 454, Solexa	Green, P.	1994 / 2008	C/NC-A	link 🕫
TIGR Assembler	genomic	a		1995 / 2003	os	link 🗅
Ray ^[7]	genomes A Q	grand tota	al of 42!	2010	OS [GNU General Public License]	link 🕫
	genomes	traditional and next	Gene Codes Corporation	1991 / 2009 /	с	link 🕫
Sequencher	generation	generation sequence data	Cerie Codes Corporation	2011	Ŭ	
•	-	seneration sequence data			-	_
℠ Why i	-				-	_
^{se} Why i	is there r			algor	-	?
Sequencher Sea Why i SHARCOS SOPRA SSAKE	s there r				rithm'	? '
se Why i sharcus sopra	s there r (smail) genomes genomes	O Single	optimal a Donim et al.	algor 2007 / 2007 2010 / 2011	ithm'	ninke
See Why i Sharcuss SOPRA SSAKE SOAPdenovo	s there r (small) genomes (small) genomes	O Single Jurexa Illumina, SOLiD, Sanger, 454 Solexa (SOLiD? Helicos?)	Optimal a Domin et al. Dayarian, A. et al. Warren, R. et al.	2007 / 2007 2010 / 2011 2007 / 2007	rithm' os os	nun er Inke Inke
See Why i Sharcuss SOPRA SSAKE SOAPdenovo SPAdes	s there r (small) genomes (small) genomes (small) genomes,	SUIEXA Illumina, SOLID, Sanger, 454 Solexa (SOLID? Helicos?) Solexa	Optimal a Donini et al. Dayarian, A. et al. Warren, R. et al. Li, R. et al.	2007 / 2007 2010 / 2011 2007 / 2007 2009 / 2009	rithm' os os os	link @ link @ link @
Se Why i Sharcos Sopra SSAKE	s there r (small) genomes (small) genomes (small) genomes, single-cell	Solexa Illumina, SOLiD, Sanger, 454 Solexa (SOLiD? Helicos?) Solexa Illumina, Solexa	Optimal a Donmetal Dayarian, A. et al. Warren, R. et al. Li, R. et al. Bankevich, A et al.	2007 / 2007 2010 / 2011 2007 / 2007 2009 / 2009 2012	os os os os os	link & link & link & link & link &
Ser Why i SHARCOS SOPRA SSAKE SOAPdenovo SPAdes Staden gap4 package Taipan	S there r (small) genomes genomes (small) genomes genomes (small) genomes, single-cell BACs (, small genomes?)	O Single Sulexa Illumina, SOLiD, Sanger, 454 Solexa (SOLiD? Helicos?) Solexa Illumina, Solexa Sanger	Optimal a Dayarian, A. et al. Warren, R. et al. Li, R. et al. Bankevich, A et al. Staden et al.	2007 / 2007 2010 / 2011 2007 / 2007 2009 / 2009 2012 1991 / 2008	rithm' os os os os os os	P IIIIK e ² Iink e ² Iink e ² Iink e ² Iink e ²
See Why i SHARCOS SOPRA SSAKE SOAPdenovo SPAdes Staden gap4 package Taipan VCAKE	S there r small genomes genomes (small) genomes genomes (small) genomes, single-cell BACs (, small genomes?) (small) genomes	O Single Surexa Illumina, SOLiD, Sanger, 454 Solexa (SOLiD? Helicos?) Solexa Illumina, Solexa Sanger Illumina	Optimal a Dayarian, A. et al. Warren, R. et al. Li, R. et al. Bankevich, A et al. Staden et al. Schmidt, B. <i>et al</i> .	2007 / 2007 2010 / 2011 2007 / 2007 2009 / 2009 2012 1991 / 2008 2009	rithm' os os os os os os os	P IIIIK & IIIK & II
See Why i SHARCOS SOPRA SSAKE SOAPdenovo SPAdes Staden gap4 package	S there r (small) genomes genomes (small) genomes genomes (small) genomes, single-cell BACs (, small genomes?) (small) genomes	Solexa Illumina, SOLiD, Sanger, 454 Solexa (SOLiD? Helicos?) Solexa Illumina, Solexa Sanger Illumina Solexa (SOLiD?, Helicos?)	Optimal a Dommet al. Dayarian, A. et al. Warren, R. et al. Li, R. et al. Li, R. et al. Bankevich, A et al. Staden et al. Schmidt, B. <i>et al.</i> Jeck, W. et al.	2007 / 2007 2010 / 2011 2007 / 2007 2009 / 2009 2012 1991 / 2008 2009 2007 / 2007	os os os os os os os os os os	inke linke linke linke linke linke linke linke

A basic question

- What is the minimum number of reads required for reliable reconstruction?
- How much intrinsic information does each read provide about the DNA sequence?
- A benchmark for comparing different algorithms and different technologies.
- An open question!

Coverage Analysis

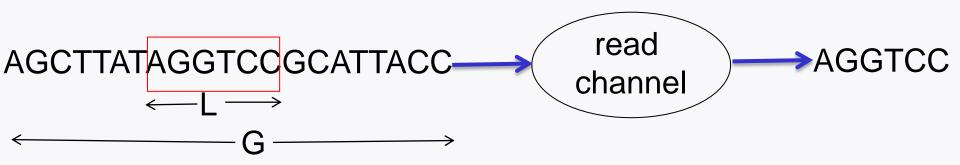
• Pioneered by Lander-Waterman



• What is the minimum number of reads to ensure there is no gap between the reads with a desired prob.?

- Only provides a lower bound on the minimum number of reads to reconstruct.
- Clearly not tight.

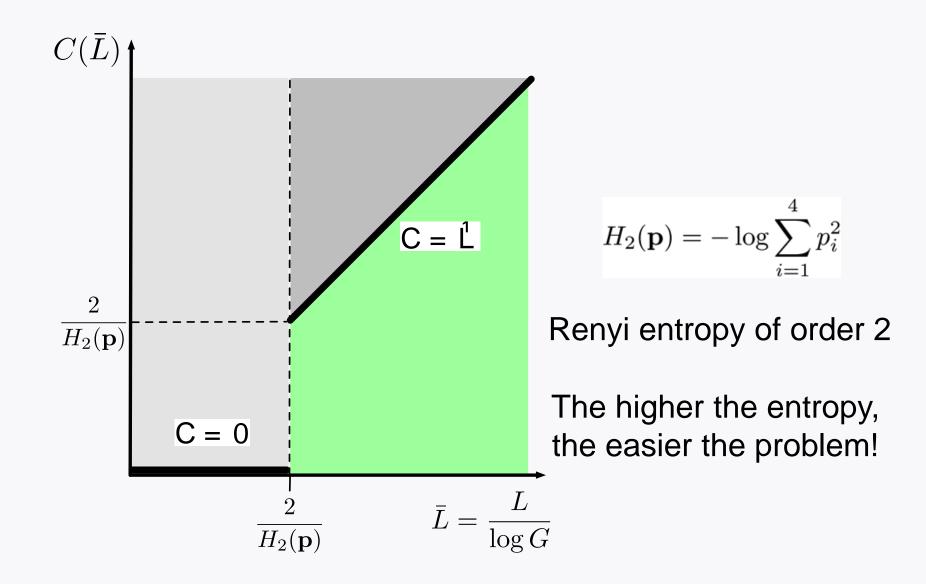
Communication and Sequencing: An Analogy



A Basic Model

- DNA sequence: i.i.d. with marginal distribution $\mathbf{p} = (p_1, p_2, p_3, p_4).$
- Starting positions of reads: i.i.d. uniform on the DNA sequence.
- Read process: noiseless.

Will build on this to look at statistics from genomic data.


The read channel

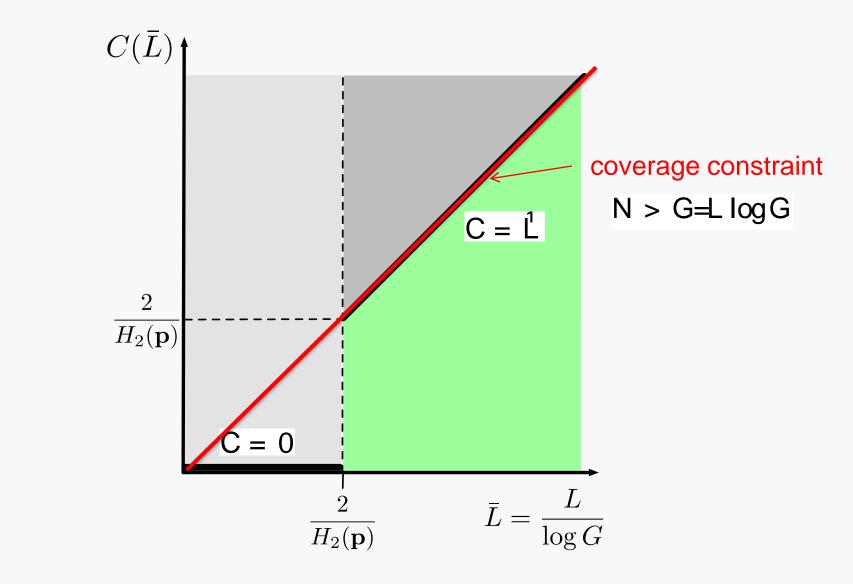
- Capacity depends on
 - read length: L $L \uparrow \Rightarrow C \uparrow$
 - DNA length: G $G \uparrow \Rightarrow C \downarrow$
- Normalized read length: $L^{\perp} := \frac{L}{\log G}$

• Eg. L = 100, G = 3 £
$$10^9$$
 : L = 4:6

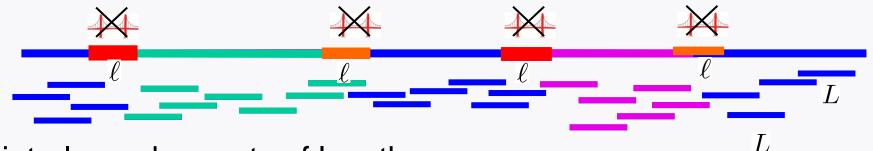
Result: Sequencing Capacity

Complexity is in the eye of the beholder

Low entropy


easier to compress harder jigsaw puzzle

High entropy



harder to compress easier jigsaw puzzle

Capacity Result Explained

A necessary condition for reconstruction

interleaved repeats of length

None of the copies is straddled by a read (unbridged).

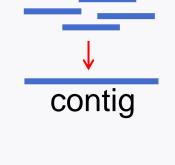
Reconstruction is impossible!

Special cases:

 $\ell = L - 1$: No interleaved repeats of length L - 1 (Ukkonen)

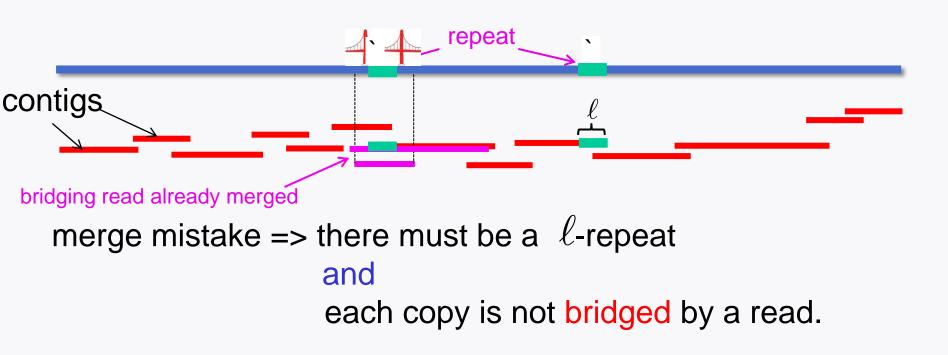
 $\ell = 1$: roughly equivalent to coverage

Under i.i.d. model, greedy is optimal for mixed reads.


A sufficient condition: greedy algorithm

Input: the set of N reads of length L

- 1. Set the initial set of contigs as the reads
- 2. Find two contigs with largest overlap and merge them into a new contig
- 3. Repeat step 2 until only one contig remains


Algorithm progresses in stages: at stage $\ell = L - 1, L - 2, ..., 1$

merge reads at overlap ℓ

overlap

Greedy algorithm: stage ℓ

A sufficient condition for reconstruction:

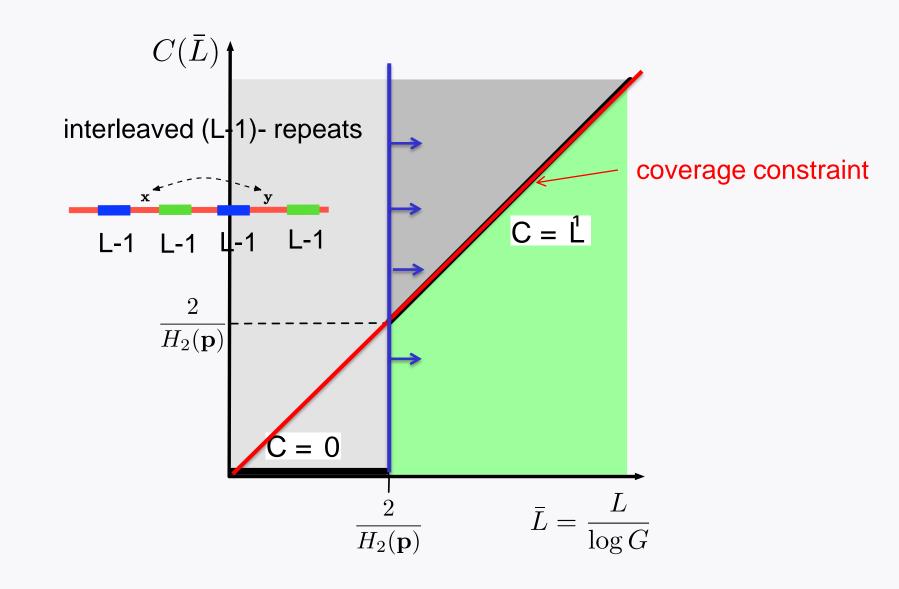
There is no unbridged ℓ - repeat for any ℓ .

Summary

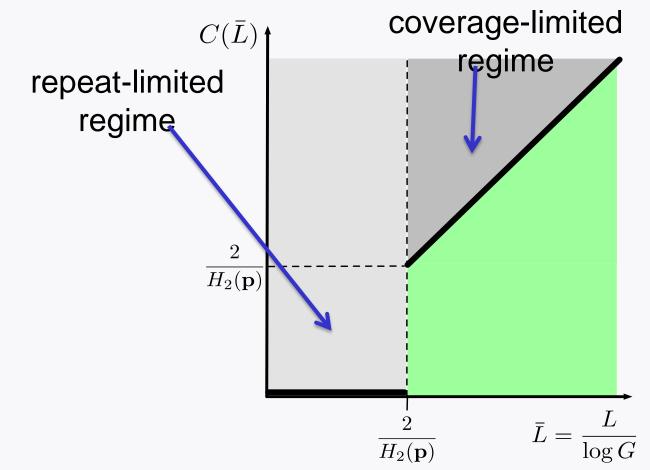
Necessary condition for reconstruction:

No unbridged interleaved ℓ -repeats for any ℓ .

Sufficient condition (via greedy algorithm)


No unbridged ℓ -repeats for any ℓ .

For the i.i.d. DNA model:


1) If there are no unbridged interleaved repeats, then w.h.p. there are no unbridged repeats.

2) The probability is dominated when either $\ell = L - 1$ or $\ell = 1$

Capacity Result Explained

Summary: Two Regimes

Question:

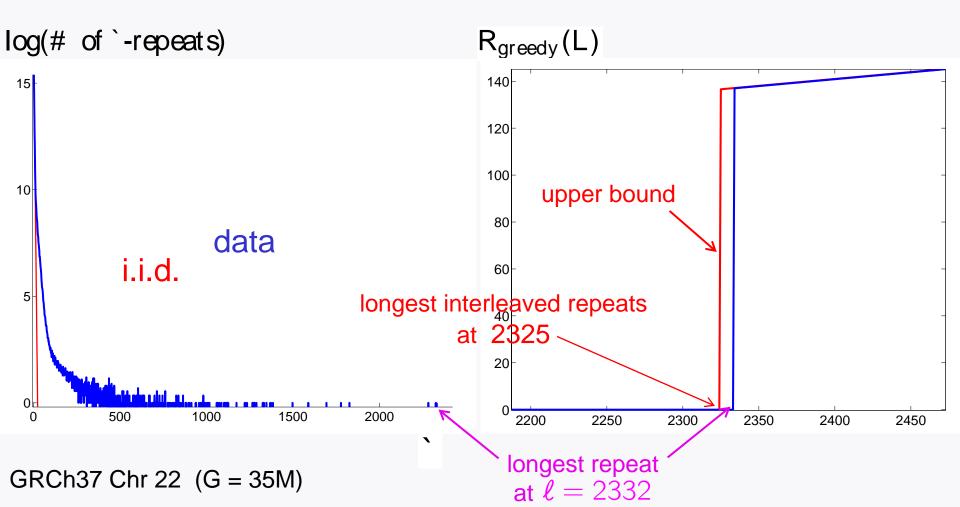
Is this clean state of affairs tied to the i.i.d. DNA model?

I.I.D. DNA vs real DNA

- Mammalian DNA has many long repeats.
- How will the greedy algorithm perform for general DNA statistics?
- Will there be a clean decomposition into two regimes?

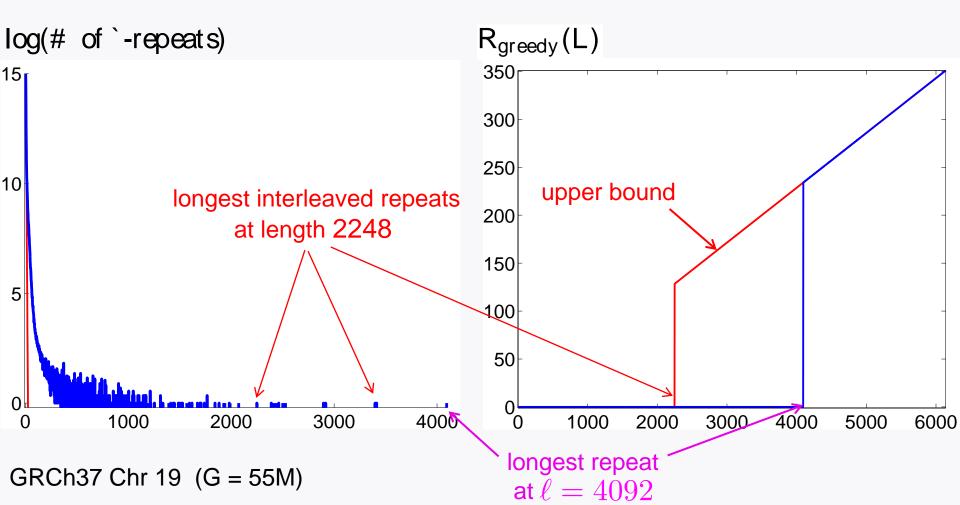
Greedy algorithm: general DNA statistics

- Reconstruction if there are no unbridged repeats.
- Performance depends on the DNA statistics through the number of ` - repeats:


$$R_{\text{greedy}}(L) = \min_{1 \le \ell \le L-1} \frac{2(L-\ell-1)}{\log(\# \text{ of } \ell\text{-repeats})}$$

 Necessary condition translates similarly to an upper bound on capacity:

$$C(L) \le \min_{1 \le \ell \le L-1} \frac{4(L-\ell-1)}{\log(\# \text{ of interleaved } \ell\text{-repeats})}$$


I.I.D. DNA vs real DNA

$$R_{\text{greedy}}(L) = \min_{1 \le \ell \le L-1} \frac{2(L-\ell-1)}{\log(\# \text{ of } \ell\text{-repeats})}$$

Chromosome 19

There is another more sophisticated algorithm that would close the gap and in fact near optimal on all 22 chromosomes.

Ongoing work

- Noisy reads
- Reference-based assembly.
- Partial reconstruction.

Conclusion

- Information theory has made a huge impact on communication.
- Its success stems from focusing on something fundamental: information.
- This philosophy may be useful for other important engineering problems.
- DNA sequencing is a good example.