

Photonique sur silicium : une nouvelle plateforme d'intégration photonique

Guang-Hua DUAN 12 Dec. 2012

III-V Lab, a joint lab of 'Alcatel-Lucent Bell Labs France', 'Thales Research and Technology' and 'CEA Leti', Campus Polytechnique, 1, Avenue A. Fresnel, 91767 Palaiseau cedex, France.

Motivation

- Photonic integrated circuits on silicon for optical communications
- Comparison of InP PICs and silicon PICs
- Current state of art of silicon photonics

Hybrid III-V/Si integration technology

- Hybrid integration technology
- Hybrid III-V/Si lasers
- Integrated tunable laser- Mach-Zehnder modulator

Future directions

Microprocessor Transistor Counts 1971-2011 & Moore's Law

PIC: an on-going (r)evolution

Photonic Integration

Small footprint Cost effective Reduced power consumption

Alcatel·Lucent 🍘

THALES

I. Kang, Optics Express 2007

Page 6

leti

Photonic integrated circuits on silicon

CMOS EIC platform on silicon

- Mature industrial process with high yield
- Foundry model for cost-effective industrial production
- Cost-effective for large volume

PICs on silicon

III-V lab

- Taking benefit for EICs: industrial tools, foundry models, etc.
- Co-integration with CMOS electronics, close proximity between signal processing unit and photonic elements
- Providing optical interconnect solutions for "More than Moore" for EICs

Can silicon be a Photonic integration plateform?

I/O & waveguides

Waveguides Transitions Splitters MMI Resonators AWG oNoC Slow wave structure

oupling with d taper: <1dB

10 µm

Edge coupling with inverted taper: <1dB losses

Germanium photodetectors

•Eye diagram @ 40Gbps

From L. Vivian, IEF

leti THALES

40Gb/s demonstrated with 10dB extinction ratio

Tradeoff between losses, power consumption and extinction ratio

From D. Morris, IEF

Alcatel·Lucent 🥢

THALES

Wafer level testing

Photonic Integration : InP vs Si Photonics Platforms

	InP platform (III-V Lab)	Si-photonics platform (III-V Lab, CEA, LETI)
Functionality	Source, Detector, Waveguide, Modulator	Detector, Waveguide, Modulator Massive electronic integration No source: need for InP hetero- integration or Ge sources
Performance	Excellent optical performance No large scale integration with electronics	Good optical performance Large scale integration with electronics for 'free'
Footprint	Large for passive elements (AWG, ring resonators, etc)	Compact for passive elements (AWG, ring resonators, etc)
Cost	Higher due to individual device testing, Low yield for PICs	Wafer scale testing CMOS processing & monitoring for 'free' Foundry model for volume production will drive cost down
Power consumption	Low for electro-absorption modulator, higher for Mach-Zehnder type modulator	Novel modulator design results in low drive voltage

Our Vision on Silicon PICs

Silicon photonics approach:

- Mature CMOS fabrication process
- Available key building blocks: modulators, detectors, low loss passive waveguides, wavelength multiplexers/demultiplexers
- Lack of efficient lasers sources on silicon

Sources for silicon photonics

- Ge on silicon lasers and Epitaxy of III-V layers on silicon through a buffer layers: very promising results, but still requiring developments
- Hybrid III-V/Si integration using wafer bodning: most efficient solution today

Hybrid III-V/Si integration combing advantages of III-V and Si

- III-V: providing optical gain
- Si: providing wavelength selection and tuning using passive silicon waveguides
- Dies to wafer or wafer to wafer bonding proven to be a reliable process for SOI wafers
- => a new classe of tunable lasers with large tuning range, high SMSR and compact size
- = > PIC transmitter integrating tunable lasers and silicon modulators

THALES

Wafer to wafer bonding

Dies to wafer bonding

Laser cutting of 8" wafers into 3" wafers, ready to be processed in a III-V foundry

Tunable lasers with 45 nm tuning range

A. Le Liepvre, et al., GFP Conference, Aug. 2012

III-V lab

Low loss in waveguides and bends

- 90° Turn : 0.01 dB loss for 5μm radius
- High finesse (> 10) ring/racetracks resonators in Si with FSR around 5nm

Si Racetrack resonator

Measured transmission of two ring resonators used in the laser

Main Laser CW Characteristics

- Threshold : 22mA, maximum total output power 10 dBm
- Single-mode operation with SMSR > 40 dB
- Series resistance : 5-6 Ω

Laser spectrum for I=80mA, T=20℃

Wavelength tuning curves

• 45 nm tuning range with SMSR > 40 dB over the tuning range
• More robust single mode operation than InP based tunable lasers

Tunable transmitter and local oscillator in a coherent receiver

Dynamic reconfiguration of client connections with joint flexibility in time and wavelength domains

Alcatel · Lucent

THALES

- **\Rightarrow** Power sensitivity of -27 dBm in b-t-b @ BER = 10^{-3}
 - No penalty compared to the reference laser (ECL)
 - No further penalty after transmission

Digital dispersion compensation in the receiver

THALES

- Sensitivity penalties with respect to the ECL
- Less than 1 dB channel-to-channel sensitivity across the C-band

THALES

Consecutive wavelengths on the 50-GHz ITU grid

- Number of neighboring channels up to a worst case of 80 (50 GHz)
- Possibility of filterless operation

Wavelength selectable laser

Wavelength selectable source :

- Si AWG inside the laser cavity as a filter
- Broadband bragg reflectors for feedback
- Si AWG : 5 channels, 400GHz spacing
- Vertical bragg gratings for on wafer scale testing

Simple wavelength tuning for access networks

Can also be used as multiwavelength source

THALES

Wavelength selectable laser : spectrum

- Spectrum for each channel with 110mA injection
- Single mode operation with > 30 dB SMSR
- 390GHz spacing between channels

III-V lab

Spectrum for each channel

leti

THALES

 3 dB modulation bandwidth around
 13 GHz

Page 35

BER and eye diagramme at 10 Gb/s

III-V lab

Page 36

State of the art on hybrid III-V/Si lasers

	III-V Lab		LETI	Intel/UCSB			Monolithic InP lasers	
Туре	Si FP	Si RRs	Si DBR	Si DBR	Si DFB	Si DBR	DFB	SG DBR
Silicon waveguide thickness (nm)	400	440	500	500	500	500	1	1
lth (mA) at 20°C	30	21	40	45	25	65	< 20	< 20
η (mW/mA) at 20°C	0.1	0.1	0.1	0.1	0.05	0.15	> 0.25	> 0.25
Pmax (mW) at 20°C	18	10	14	30	5.4	11	30	20
SMSR (dB)	/	45	>20	1	40	40	40	35
Tunability (nm)	/	45	/	1	/	1	1	40
T° max operation	60°C	60°C	60°C	90°C	50°C	45°C	90°C	90°C
Wavelength (µm)	1.55	1.55	1.55	1.3	1.55	1.55	1.3-1.55	1.55

III-V lab

Luxterra's Active Optical Cables

Luxtera technology for transceiver

- •Freescale SC Hip7 0.13µm SOI CMOS process
- Customized SOI & CMOS 130nm technology –
- Proprietary library for electronic design
 - Flip chip laser die bonding
 - Si lateral depletion modulator → 10Gb/s
 - •Ge photodetectors → 20GHz
 - •Surface holographic gratings fiber coupling
 - •4x28 Gb/s using 4 parallel links

Luxtera and STMicroelectronics to Enable High-Volume Silicon Photonics Solutions Collaboration between two leading companies will bring silicon photonics into mainstream markets

THALES

March 1st, 2012

La chaine de la valeur en photonique silicium

THALES

III-V lab

- European projects:
 - HELIOS, Plat4M, Fabulous
- French national projects:
 - ANR MICROS (coherent receiver)
 - ANR SILVER (transceiver for access networks)
- III-V Lab:
 - C. Jany, A. Le Liepvre, M. Lamponi, A. Accard, F. Poingt, D. Make, F. Lelarge, G. Levaufre, N. Girard
- **CEA:**
 - S. Messaoudene, D. Bordel, and J.-M. Fedeli, C Kopp, B. Ben Bakir, L. Fulbert
- Photonics Research Group, INTEC, Ghent University-IMEC
 - S. Keyvaninia, G. Roelkens, D. Van Thourhout
- School of Electronics and Computer Science, University of Southampton
 - D. J. Thomson, F. Y. Gardes and G. T. Reed

