Methods and tools to optimize the trade-off "performance versus complexity" of error control codes architectures.

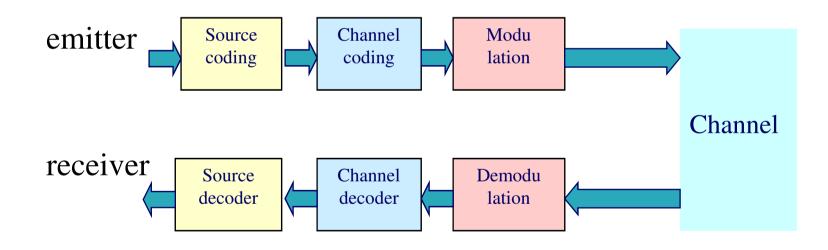
Emmanuel Boutillon CNRS, UMR 6285, Lab-STICC Centre de Recherche - BP 92116 F-56321 Lorient Cedex - FRANCE

Telecom ParisTech 4 octobre 2012

- o Motivation
- Reduced Monte-Carlo Simulation
- Entropy Inspired Distance
- Hardware Emulation
- Conclusion

- Motivation
- Reduced Monte-Carlo Simulation
- Entropy Inspired Distance
- Hardware Emulation
- Conclusion

Design of a communication system...

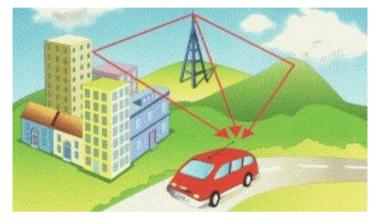


...find the best complexity-performance trade-off

Motivation Performance:

- BER
- Jammer rejection
- time of synchronization...

-...



Complexity:

- area, power dissipation
- time to market

algorithm ADC resolution, sampling frequency, fixed precision

A very complex problem...

- Formal expression of the BER: refer to Proakis
- In practice, estimation of the BER using Monte-Carlo simulation
 - Software model of emitter, channel, receiver
 - Emulation of the transmission of N bits
 - Estimation of the BER as Nb_errors/N

VERY EFFICIENT... BUT

TIME AND CPU CONSUMING: Bit Error Rate of 10⁻⁶ (+-3%) requires 10⁹ bits.

• 1) The code design problem.

- Theoretical bound
- Weight estimation using impulse method and its derivative
- EXIT CHART Tools.

Let's start from a C reference model in floating point (ideal decoder).

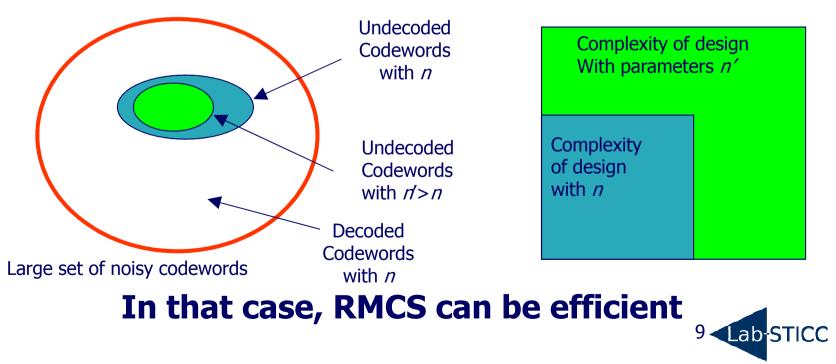
• 2) Evaluate performance of "hardware decoder" vs "ideal decoder"

- o Motivation
- Reduced Monte-Carlo Simulation
- Entropy Inspired Distance
- Hardware Emulation
- Conclusion



REDUCED MONTE CARLO SIMULATION

- Let us assume that we want to find the best trade-off of an algorithm parameter *n*. Assuming that:
 - ♦ 1) Decoder complexity is an increasing function of *n*.
 - ◊ 2) Performance is a strictly increasing function, i.e. if a noisy codeword is decoded with parameter *n*, then the codeword is decoded with parameter *n*' > *n*.



REDUCED MONTE CARLO SIMULATION

- Step 1: Run Monte-Carlo simulation with the "worstcase" configuration. Store the undecoded codeword in the set *S*;
- Step 2: Re-run decoder with better parameters only in the subset *S* to evaluate performances ;
- Step 3: Perform a classical MCS in order to verify the validity of hypotheses 1 for some configurations.

EXAMPLE ON NON-BINARY LDPC GF(64) WITH EMS (parameters n).

10^{7} frames (FER 5.10⁻³)

	it =8	<i>it</i> =10	<i>it</i> =12	<i>it</i> =14	<i>it</i> =16
<i>n</i> =8	49693	13535	5404	2993	2105
<i>n</i> =10	12340	2569	815	414	291
<i>n</i> =12	4763	893	270	109	62
<i>n</i> =14	2419	467	163	72	42
<i>n</i> =16	1349	223	5671	22	13⁄22
<i>n</i> =18	835	151	25	10	4
<i>n</i> =20	592	116	17	7	6
<i>n</i> =22	455	103	14	4	3
<i>n</i> =24	373	86	`} 4 21	5	¥ 8
<i>n</i> =26	321	91	16	4	3
<i>n</i> =28	262	54	9	5	3
<i>n</i> =30	235	52	8	4	3
<i>n</i> =32	228	52	≫19	4	2<8

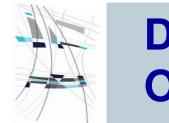
Save 3 months of simulation sticc

- o Motivation
- Reduced Monte-Carlo Simulation
- Entropy Inspired Distance
- Hardware Emulation
- Conclusion

• OBSERVATION : FROM APP TO BER, A HUGE QUANTITY OF INFORMATION IS SUPPRESSED.

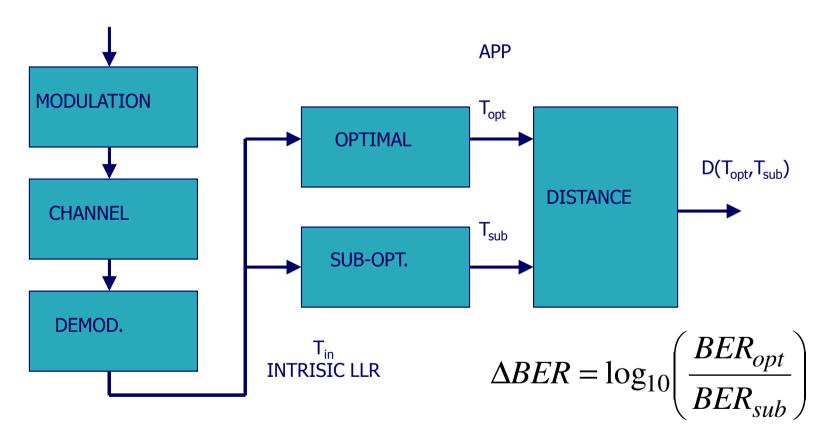
QUESTION 1 : CAN WE EXPLOIT THIS INFORMATION ?

QUESTION 2 : HOW ?



DISTANCE BETWEEN OPTIMAL/SUB-OPT.

SET OF *M* CODEWORDS OF SIZE P (*N*=*M*x*P Q*-ary symbols)



FIND D(Topt,Tsub) RELATED TO $\triangle BER$

QUESTION : WHAT DISTANCE TO CHOOSE...

• LET $(p_k^0, p_k^1, ..., p_k^{Q-1})$ AND $(\tilde{p}_k^0, \tilde{p}_k^1, ..., \tilde{p}_k^{Q-1})$ BE THE APP OF THE *k*th DECODED SYMBOL FOR OPTIMAL AND SUB-OPTIMAL DECODERS.

$$\sum_{i=0}^{Q-1} p_k^i = 1 \qquad \qquad \sum_{i=0}^{Q-1} \tilde{p}_k^i = 1$$

• FIRST ATTEMPT : L1 MORM

$$L_1 = \sum_{k=0}^{N-1} \left(\sum_{i=0}^{Q-1} \left| p_k^i - \widetilde{p}_k^i \right| \right)$$

EXPERIMENTAL RESULT: NO CLEAR CORRELATION BETWEEN L1(Tsub, Topt) AND \triangle BER.

PROPOSED EXPLANATION: $p = 10^{-6}$ AND $p = 10^{-12}$ ARE REALLY DIFFERENT FROM A DECODING PERSPECTIVE

QUESTION : WHAT DISTANCE TO CHOOSE...

• LET $(p_k^0, p_k^1, ..., p_k^{Q-1})$ AND $(\tilde{p}_k^0, \tilde{p}_k^1, ..., \tilde{p}_k^{Q-1})$ BE THE APP OF THE *k*th DECODED SYMBOL FOR OPTIMAL AND SUB-OPTIMAL DECODERS.

$$\sum_{i=0}^{Q-1} p_k^i = 1$$

$$\sum_{i=0}^{Q-1} \tilde{p}_k^i = 1$$

• SECOND ATTEMPT : L1-log MORM

$$L_{1} = \sum_{k=0}^{N-1} \left(\sum_{i=0}^{Q-1} -\log \left| p_{k}^{i} - \tilde{p}_{k}^{i} \right| \right)$$

EXPERIMENTAL RESULT: NO CLEAR CORRELATION BETWEEN L1-log(Tsub, Topt) AND \triangle BER.

PROPOSED EXPLANATION: p = 0.7 AND p = 0.9 ARE REALLY DIFFERENT FROM A DECODING PERSPECTIVE AND $-\log(0.2) << -\log(10^{-5})$

QUESTION : WHAT DISTANCE TO CHOOSE...

• LET $(p_k^0, p_k^1, ..., p_k^{Q-1})$ AND $(\tilde{p}_k^0, \tilde{p}_k^1, ..., \tilde{p}_k^{Q-1})$ BE THE APP OF THE *k*th DECODED SYMBOL FOR OPTIMAL AND SUB-OPTIMAL DECODERS.

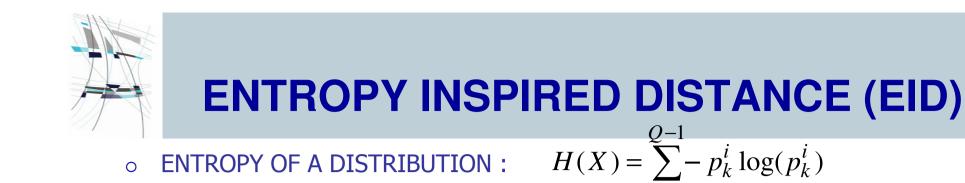
$$\sum_{i=0}^{Q-1} p_k^i = 1 \qquad \qquad \sum_{i=0}^{Q-1} \tilde{p}_k^i = 1$$

• THIRD ATTEMPT : KULLBACK-LEIBLER DIVERGENCE

$$KL = \sum_{k=0}^{N-1} \left(\sum_{i=0}^{Q-1} - p_k^i \log(p_k^i / \tilde{p}_k^i) \right)$$

EXPERIMENTAL RESULT: NO CLEAR CORRELATION BETWEEN KL(Tsub, Topt) AND \triangle BER.

PROPOSED EXPLANATION: NO EXPLANATION ...



• PROPERTIES : $H(X) \ge 0$, $H(X) = \log(Q)$ for p' = 1/Q, i = 0..Q-1.

$$EID = \sum_{k=0}^{N-1} \left(\sum_{i=0}^{Q-1} - \left| p_k^i - \widetilde{p}_k^i \right| \log\left(\left| p_k^i - \widetilde{p}_k^i \right| \right) \right)$$

EXPERIMENTAL RESULT: USEFULL TOOLS TO PREDICT THE \triangle BER !!!

PROPERTIES OF EID

• IF $Arg \max(p^i) = Arg \max(\tilde{p}^i)$

THEN EID IS A DISTANCE, I.E.

EID(X,X')=0 => X=X' (note that EID([0,0,0,1], [1,0,0,0]) = 0)

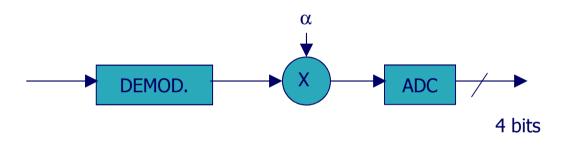
EID(X,X') = EID(X',X)

 $EID(X,Y) + EID(Y,Z) \ge EID(X,Y)$

AT THE MOMENT, IT WAS PROVEN FOR Q=2 UP TO 12.

...STILL NEED A PROOF FOR Q > 12

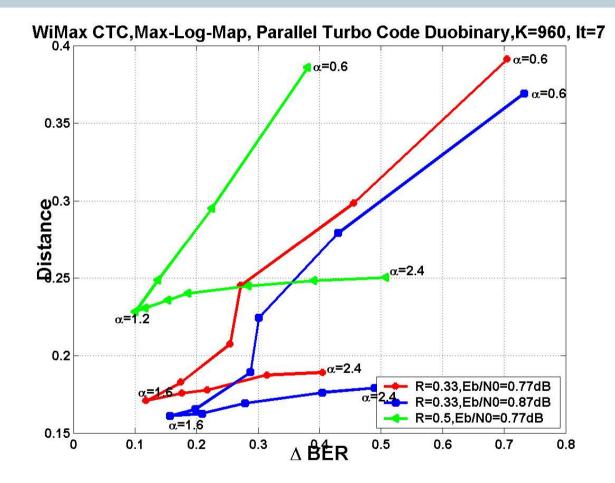
- DUO BINARY TURBO-CODE
- SEARCH FOR THE OPTIMAL QUANTIZATION FACTOR



- IF α too small => ERASURE
- IF α too big => SATURATION (HARD DECODER)

THERE IS AN OPTIMAL VALUE OF $\boldsymbol{\alpha}$

SIMULATION RESULT : CASE 1



SIMULATION RESULT : CASE 2

• NON BINARY LDPC DECODER ON GF(64) USING EMS ALGORITM

GF(2⁶) LDPC Code (R=0.5,N_b=3012), It=20 2.2 n_m=6 1.8 n_m=8 1.6 1.4 n_m=12 n_m=24 ^m=20 SNR=1.4dB n_m=16 SNR=1.6dB 1.2 n_m=32 n_m=28 2 2.5 3 3.5 4.5 5 'n 0.5 1.5 4 ΔFER

- o Motivation
- Reduced Monte-Carlo Simulation
- Entropy Inspired Distance
- Hardware Emulation
- Conclusion

Three methods to reduce the simulation time:

a) code optimization

b) powerful computers

c) parallel computing (One Mbps for a turbo-decoder with a cluster of 16 PCs)

also use hardware emulation

Software Algorithm

C programs

Compilation

Validation/optimization with long simulations

Fix specifications

Hardware

VHDL programs

Synthesis, place and route operations

Validation

Final prototype

Software Algorithm

C programs

Compilation

Validation/optimization

Fix algorithm + Set of nonspecified parameters

Hardware

Generic VHDL programs, IP

Synthesis, place and route operations (on FPGA)

Hardware simulation/validation

Final prototype

Type of communication channel:

- AWGN
- Rice

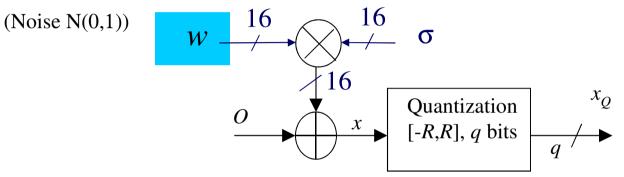
. . .

- Rayleigh

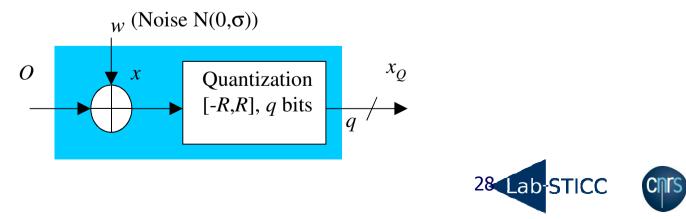
All those channels can be derived from Gaussian Noise (with ARMA filter, non-linear operators).

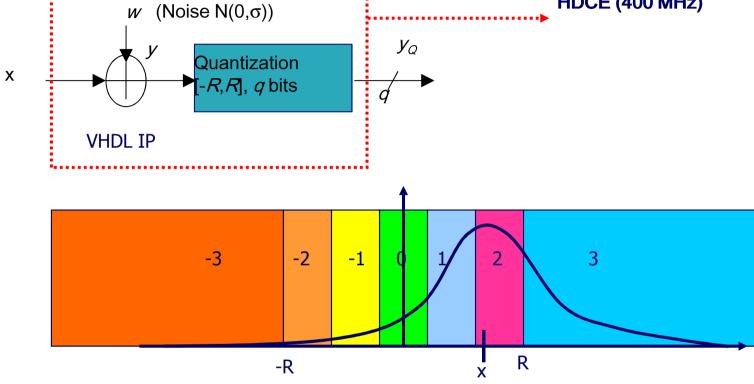
=> Need a White Gaussian Noise Generator (WGNG)

• Straigth method: Direct emulation of the AWGN channel.



• New method: emulate channel + quantization.



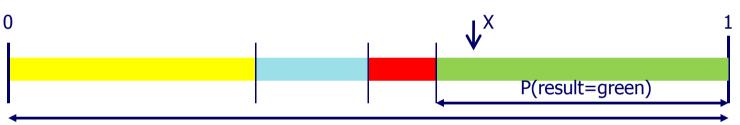


• FOR A GIVEN x_{r} , σ and R_{r} , y_{q} is EQUIVALENT TO A DISCRETE R.V.

Principle of generation of a discrete random variable.

o 1D method

Oraw a random number between [0,1] and see where it falls



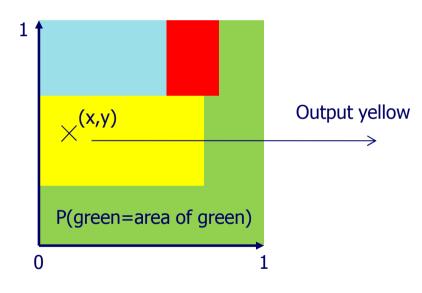
(Discrete random variable with *N*=4 values, represented by color)

- Complex to implement: the value x needs to be compared to all the thresholds (*N*-1 comparizons).
- Solution : go towards 2D.

Principle of generation of a discrete random variable.

o 2D method

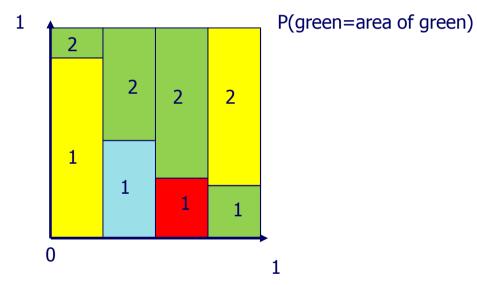
Principle: generate two random variables x,y between [0,1] and see where it falls.



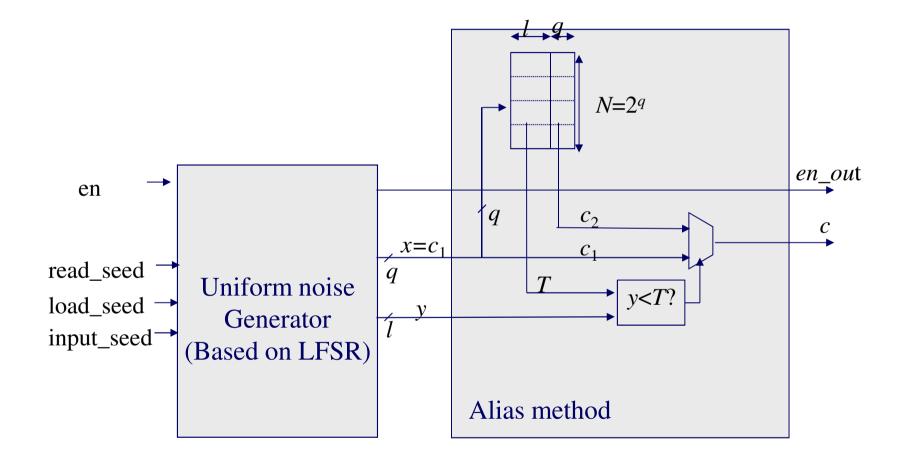
♦ No simplification => need a structure.

Principe of generation of a discrete random variable.

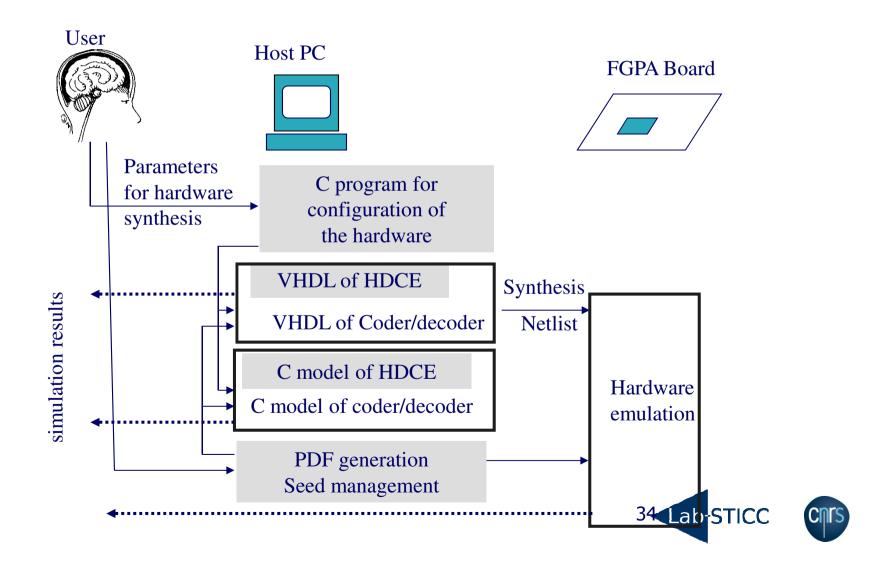
 2D method: with x, select a column, with y, select color 1 or 2 of the column.



X: random number between 1 to N to select color 1 (c₁), then, read color 2 (c₂) and the threshold T in a memory and compare y to t to select c₁ or c₂.



Coherent set of simulation/emulation



- o Motivation
- Reduced Monte-Carlo Simulation
- Entropy Inspired Distance
- Hardware Emulation
- Conclusion

- PROPOSITION OF 2 METHODS TO AVOID MONTE-CARLO SIMULATION :
 - Reduced Monte Carlo Simulation
 - ♦ Entropy Inspired Distance
- THOSE TWO METHODS ALLOW TO TRADE OFF SPEED VS PRECISION.
 - => NEED TO BE VALIDATED BY A DIRECT MONTE-CARLO
 - If you have a generic VHDL, can use HDCE to replace software simulation by hardware simulation (factor of 1000 in speed).

Conclusion



M.C. Escher (1898 - 1972)

Designing an iterative decoder is still an art...

- EID : A. Singh, A. Al-Ghouwayel1, G. Masera, E. Boutillon, " <u>New Performance Evaluation Metric for Sub-Optimal Iterative</u> <u>Decoders</u>", IEEE Communications letters, nov. 2008.
- E. Boutillon, C. Douillard, G. Montorsi, <u>"Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues</u>", Transactions of the IEEE, vol. 95, n°6, june 2007.
- E. Boutillon, Y. Tang, C. Marchand, P. Bomel, "Hardware Discrete Channel Emulator", The 2010 International Conference on High Performance Computing & Simulation (HPCS 2010), pp 452-458, Caen, June 2010.
- o http://www.ict-davinci-codes.eu/

