

Symétrie \mathcal{PT} , un concept unificateur pour la physique des dispositifs à gain

H. Benisty^{1*},

¹Laboratoire Charles Fabry, IOGS, Palaiseau, France

Collaboration: A. Lupu², and A. Degiron²

²IEF, Univ. Paris-Sud and CNRS, Orsay, France

H. Benisty, C. Yan, A. T. Lupu, and A. Degiron, IEEE J. Lightwave Technol., vol. 30, pp. 2675-2683, 2012.

A. Lupu, H. Benisty and A. Degiron, Optics Express 21, 21651 (2013)

H. Benisty and M. Besbes, JOSA. B, vol. 29, pp. 818-826, March 29 2012.

H. Benisty et al. Opt. Express, 19, 18004, 2011

ENST 3 Oct 2013, Paris : Symétrie PT Concept unificateur

OUTLINE

1

$\Rightarrow \mathcal{PT}$ -symmetry, Hamiltonians, and Gain-Loss (with reminder)

⇒ Three flavours of PT-symmetries

- With waveguides
- With resonators
- With gratings

Application with plasmonics (with IEF : A. Lupu, A. Degiron)

- Losses are now causing a singularity !
- Switches
- Real life ? ("healing" of smoothed singularity)

$\Rightarrow \mathcal{PT}$ -symmetry and (many) current photonic concepts

• from coherent perfect absorbers to lasers

⇒ The brachistochrone problem (1696[!]-1990)

• Relevance for fast Quantum computation

• Counter-example (Bender 1998)

$$\begin{aligned}
& (\lambda - ig)(\lambda + ig) - \kappa^{2} = 0 \\
& \lambda^{2} = \kappa^{2} - g^{2}
\end{aligned}$$

$$H = \begin{pmatrix} \hbar(\omega_{1} + ig) & \kappa \\
& (\omega_{1} = \omega_{2} = 0) \text{ Real eigenvalues if : } g < \kappa \\
& (1 \leftrightarrow 2) &$$

- Switches
- Real life ? ("healing" of smoothed singularity)

$\Rightarrow \mathcal{PT}$ -symmetry and (many) current photonic concepts

• from coherent perfect absorbers to lasers

⇒ The brachistochrone problem (1696[!]-1990)

• Relevance for fast Quantum computation

Coupling Strength K /Kpt

whispering-gallery microcavities

Nonreciprocal light transmission in parity-time-symmetric

Bo Peng et al. Arxiv 2013 (coor author Lan Yang @ ese.wustl.edu)

-10

loss µ-ring

bus

Laser studies (Wronskian attack?)

PRL 108, 173901 (2012)

M. Liertzer,^{1,*} Li Ge,² A. Cerjan,³ A.D. Stone,³ H.E. Türeci,^{2,4} and S. Rotter^{1,†}

FIG. 1 (color online). Intensity output of a laser system consisting of two 1D coupled ridge lasers, each of length 100 μ m with an air gap of size 10 μ m and an (unpumped) index of refraction n = 3 + 0.13i. For 0 < d < 1, the pump in the left ridge is linearly increased in the mage 0 < D < 1.2, and, for

Non-Hermitian Dirac equation and its optical realization.—Let us consider the Dirac equation in one spatial

Bell Lab patent 1965 Tsang 1984 C3 laser (Coupled cavity laser)

Won-Tien Tsang, one of the three inventors of the cleaved coupledcavity laser, prepares

ENST 3 Oct 2013, Paris : Symétrie PT Concept unification

PT-symmetry with gratings

13

 $\Delta \varepsilon(x) \sim \Delta \varepsilon_1 \left[(\exp i \mathbf{G} x) + \exp (-i \mathbf{G} x) \right]$

 $=\Delta\varepsilon_1 \left[\cos(kx) + i\sin(kx)\right]$

« Single sideband » grating (Fr:BLU)

PT-symmetry with gratings

OUTLINE	
$\Rightarrow \mathcal{PT}$ -symmetry, Hamiltonians, and Gain-Loss	
 ⇒ Three flavours of PT-symmetries With waveguides With resonators With gratings 	
 ⇒ Application with plasmonics (with IEF : A. Lupu, A. Deg Losses are now causing a singularity ! Switches Real life ? ("healing" of smoothed singularity) 	giron)
 ⇒ <i>PT</i>-symmetry and (many) current photonic concepts • from coherent perfect absorbers to lasers 	
 The brachistochrone problem (1696[!]-1990) Relevance for fast Quantum computation 	

CONTEXT : Gain with plasmons

• SPASER (Stockman, Oulton with nanorods, ...)

 \mathcal{PT} -symmetry with relaxed gain-loss balance

17

ENST 3 Oct 2013, Paris : Symétrie PT Concept unificateur

MORE on SWITCHING?

ENST 3 Oct 2013, Paris : Symétrie PT Concept unificateur

Dielectric and plasmonic waveguides

polymer + Au-LRSPP New Journal of Physics 11 (2009) 015002 A. Degiron et al. (@ Duke U.) 3 IOP Institute of Physics DEUTSCHE PHYSIKALISCHE GESELLSCHAFT (a) (b) 3 SU-8 2.5 ur BCB (b)x position (µm) 0.5 CL=0 µm CL=185 µm .=296 µm CL 480 µm passive regime; 600 800 200 400 Coupling length (µm) « Switching » based on detuning of Re(ε) 25 ENST 3 Oct 2013, Paris : Symétrie PT Concept unificateur

« Healing » in this realistic architecture ?

Adaptation of geometry

ENST 3 Oct 2013, Paris : Symétrie PT Concept unificateur

Hybrid plasmonic waveguide : the «PIROW » PIROW: Plasmonic Inverse-Rib Optical Waveguide

« Healing » obtained here by changing both $Im(\varepsilon)$ and $Re(\varepsilon)$, the latter with a small factor... equivalent to detuning of waveguides with fixed $Re(\varepsilon)$ of EP...

ENST 3 Oct 2013, Paris : Symétrie PT Concept unificateur

COUTLINE
 ⇒ PT-symmetry, Hamiltonians, and Gain-Loss
 ⇒ PT-symmetry, Hamiltonians, and Gain-Loss
 ⇒ Three flavours of PT-symmetries
 With waveguides
 With resonators
 With resonators
 With gratings
 ⇒ Application with plasmonics (with IEF : A. Lupu, A. Degiron)
 Losses are now causing a singularity !
 Switches
 Real life ? ("healing" of smoothed singularity)
 ⇒ PT-symmetry and (many) current photonic concepts
 from coherent perfect absorbers to lasers
 ⇒ The brachistochrone problem (1696[!]-1990)

• Relevance for fast Quantum computation

General metamaterial scattering description

ENST 3 Oct 2013, Paris : Symétrie PT Concept unificateur

and t = 0 for one side of incidence.

•Description based on a « rich dipole » (2 coupled degrees of freedom)

The brachistochrone problem...

Johann Bernoulli <u>Acta Eruditorum</u> 1696 $\frac{\sin \theta}{v} = \frac{1}{v} \frac{dx}{ds} = \frac{1}{v_m}$

Quickest path with given *g* ?

> ~ "Quickest Hamiltonian"

[Solution = Cycloid]

ENST 3 Oct 2013, Paris : Symétrie PT Concept unificateur

[Solution ~Rabi $\pi/2$ oscillation] $au=\pi\hbar/\omega$

CONCLUSION & PERSPECTIVES

Attractive concepts from classical to quantum

Quite some potential to unify several fields using Gain & "Phase-transitions" (lasers, CPA, EIT, metamaterial ?, strong coupling ?,...)

Can be combined (...with care...) with plasmonics to yield singularity from losses !