

Institut Mines-Telecom

Model-Based Design of Embedded Systems

Ludovic Apvrille, ludovic.apvrille@telecom-paristech.fr

COMELEC Seminar, Paris, France

Outline

Introduction

Context Model-Driven Engineering

Synthetic overview of contributions

UML Profiles Overview TTool

Focus on a few contributions

Partitioning Handling security Deployment

Conclusions and perspectives

Conclusions Perspectives

Synthetic overview of contributions Focus on a few contributions Conclusions and perspectives

Outline

Introduction

Context Model-Driven Engineering

Synthetic overview of contributions Focus on a few contributions Conclusions and perspectives Context Model-Driven Engineering

Designing Embedded Systems

How to Handle Complexity?

Modeling and verification! (But there are other options)

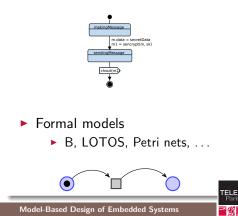
Synthetic overview of contributions Focus on a few contributions Conclusions and perspectives Context Model-Driven Engineering

Modeling is not Really a New Technique...

... and it is not limited to Software!

Synthetic overview of contributions Focus on a few contributions Conclusions and perspectives Context Model-Driven Engineering

Software Development Techniques for E.S.

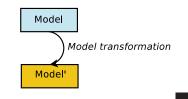

Code-based approaches

- Extreme Programming
 - Strongly tested step-by-step code increments
- Agile Software Development
 - Focus on change in specification

Model-based approaches

- V-Cycle
 - ► KAOS, AADL, MDE, ...

Synthetic overview of contributions Focus on a few contributions Conclusions and perspectives Context Model-Driven Engineering


Model Driven Engineering

Definition

- Process based on abstract graphical representations for a given domain
- Intends to improve software engineering quality criteria
 - Reliability, extensibility, maintainability,
- Should enhance team communication and documentation

Abstraction levels

- Platform Independent Model, Platform Specific Model
- Model transformations

Context Model-Driven Engineering

Synthetic overview of contributions Focus on a few contributions Conclusions and perspectives

UML Profiles

Definition

UML defined extension mechanisms to e.g.,

- Define new operators
- Provide a semantics
- Give a methodology

Example of profiles

- Profiles defined by OMG (e.g., SPT, MARTE, SysML)
- Profiles defined by tool vendors (e.g. in Rhapsody, Artisan)
- User-defined and company-defined models

Synthetic overview of contributions Focus on a few contributions Conclusions and perspectives Context Model-Driven Engineering

UML Profiles and MDE

UML profiles are a way to define domain-specific languages for MDE

Our contribution in MDE

Definition of UML profiles for modeling and verifying complex embedded systems

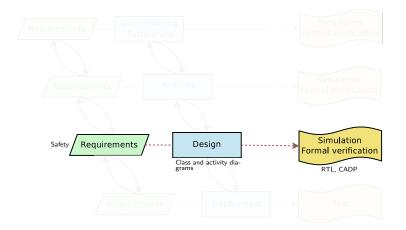
Definition of methodologies based on the V-cycle Definition of model transformations for simulation, formal verification and code generation purpose Implementation in a toolkit (TTool)

Outline

UML Profiles Overview TTool

Introduction

Synthetic overview of contributions UML Profiles Overview TTool

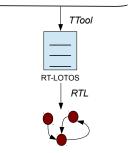

Focus on a few contributions

Conclusions and perspectives

UML Profiles Overview TTool

TURTLE: A Formally Defined UML Profile

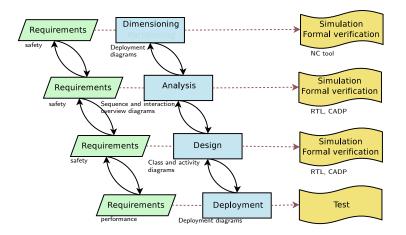
L. Apvrille, J.-P. Courtiat, C. Lohr, P de Saqui-Sannes , "TURTLE: A Real-Time UML Profile Supported by a Formal Validation Toolkit", IEEE Transactions on Software Engineering, Vol. 30, No. 7, pp. 473-487, July 2004



UML Profiles Overview TTool

TURTLE: A Formally Defined UML Profile (Cont.)

- Developed in the scope of my Ph.D.
- Partners: Thalès Alenia Space, LAAS-CNRS, ISAE
- Software design: class and activity diagram
 - Communication based on synchronous exchanges
 - Non-deterministic choices
 - Non-deterministic time intervals
- Model transformation to RT-LOTOS

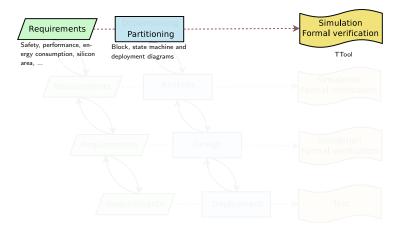


UML Profiles Overview TTool

Extending TURTLE

L. Apvrille, P de Saqui-Sannes , F. Khendek "TURTLE-P: A UML Profile for the Formal Validation of critical and Distributed Systems", SoSym (Software and System Modeling) Journal, Springer, Pages: 1-18, July 2006

UML Profiles Overview TTool


Extending TURTLE (Cont.)

- Developed in the scope of my post-doctorate and in LabSoC
- Collaboration with ISAE on Dimensioning stage
 - Network calculus toolkit for computing the Worst Case
 - Use case provided by Airbus
- Collaboration with ISAE and Concordia University for analysis and deployment stages
- Other partners / projects: LAAS-CNRS, UDCast, European project Maestro, ANR project Safecast, DoceaPower
- 1 Ph.D. completed (Benjamin Fontan, ISAE)

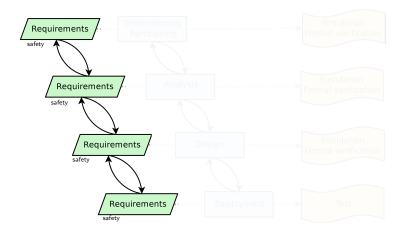
UML Profiles Overview TTool

DIPLODOCUS: HW/SW Partitioning

D. Knorreck, L. Apvrille, R. Pacalet, "Formal System-level Design Space Exploration", Concurrency and Computation: Practice and Experience, John Wiley and Sons, Ltd, 2012.

UML Profiles Overview TTool

DIPLODOCUS (Cont.)

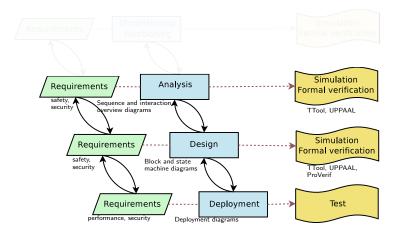

- High abstraction level ("system-level")
- Can be used for Design Space Exploration
- Developed at LabSoC
- Partners: Texas Instruments, Freescale, European project EVITA, European project SACRA, LIP6
- 2 Ph.D. completed (Chafic Jaber, Daniel Knorreck), 3 on-going Ph.D. (Jair Gonzalez-Pina, Fériel Ben Abdallah, Andrea Enrici)
- Applied to:
 - Multimedia system, e.g., partitioning of smartphone platforms
 - Telecommunication systems, e.g., partitioning of LTE

UML Profiles Overview TTool

TEPE: Requirements and Property modeling

Daniel Knorreck, Ludovic Apvrille, Pierre de Saqui-Sannes, "TEPE: A SysML Language for Time-Constrained Property Modeling and Formal Verification", ACM SIGSOFT Software Engineering Notes, Vol. 36, No 1, pp. 1-8, January 2011.

UML Profiles Overview TTool

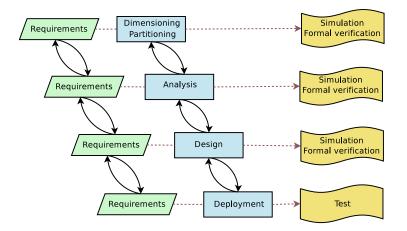

TEPE (Cont.)

- Requirement modeling within SysML requirement diagrams
- Graphical modeling of safety properties using SysML Parametric Diagrams
 - Reachability, liveness
- Handle logical and temporal constraints
- 2 Ph.D. completed (Benjamin Fontan, Daniel Knorreck)
- Collaboration with ISAE

UML Profiles Overview TTool

AVATAR: Taking Into Account Security

UML Profiles Overview TTool


AVATAR

- Main idea: safety and security property proofs at the push of a button
- 2 Ph.D. completed (Muhammad Sabir Idrees, Gabriel Pedroza)
- Defined in the scope of the European project EVITA, Collaboration with ISAE and Eurecom
 - Used to model and prove security properties of cryptographic protocols for automotive systems
- Most TURTLE users have switched to AVATAR
- Widely used for educational purpose (Universities, training in companies, tutorials, etc.)

UML Profiles Overview TTool

Overview of Contributions

UML Profiles Overview TTool

TTool: A Multi Profile Platform

TTool

- Open-source toolkit mainly developed by Telecom ParisTech / COMELEC
- Multi-profile toolkit
 - DIPLODOCUS, AVATAR, ...
- Support from academic (e.g. INRIA, ISAE) and industrial partners (e.g., Freescale)

Main ideas

- Lightweight, easy-to-use toolkit
- Simulation with model animation
- Formal proof at the push of a button

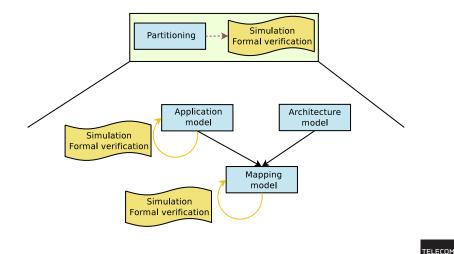
Model-Based Design of Embedded Systems

Outline

Partitioning Handling security Deployment

Introduction

Synthetic overview of contributions

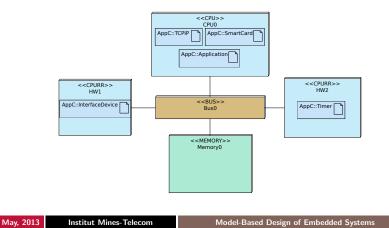

Focus on a few contributions Partitioning Handling security Deployment

Conclusions and perspectives

Partitioning Handling security Deployment

Partitioning with the Y-Methododology

ParisTech

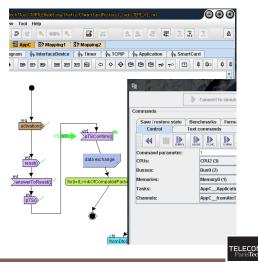

三然翻

Partitioning Handling security Deployment

Mapping

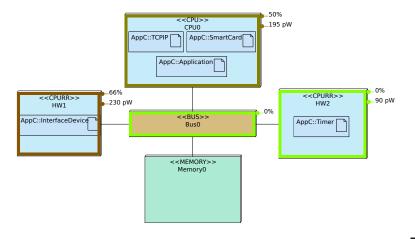
25/47

- Tasks are mapped on execution nodes (e.g., CPUs, HWAs)
- Channels are mapped on communication and storage nodes



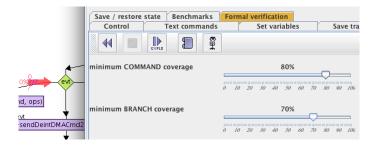
ELECU

Partitioning Handling security Deployment


After-Mapping Simulation

- TTool built-in simulator
- Extremly fast
- Diagram animation
- Step-by-step execution, breakpoints, etc.

Partitioning Handling security Deployment

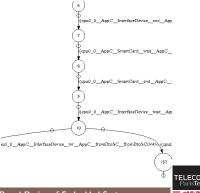

After-Mapping Simulation (Cont.)

Partitioning Handling security Deployment

After-Mapping Coverage-Enhanced Simulation

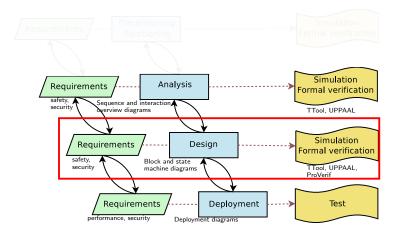
Possibility to select a given part of the model to be explored

- Minimum percentage of operators coverage
- Minimum percentage of branch coverage


Implementation: TTool built-in model-checking techniques

Partitioning Handling security Deployment

After-Mapping Formal Verification


- TTool built-in model checker can compute all possible execution paths
- Graph analysis and visualization

😰 Analysis on the Las	e diplodoc		
Deadlocks 🕲 Shortest Pa	ths 🛛 🔘 L	Longest Paths	
General info.		Statistics	
Transition	Nb		
allCPUsTerminated<24>	1	(176, 177)	
allCPUsTerminated<26>	1	(172, 173)	
allCPUsTerminated<38>	4	(81, 82), (98, 99), (115, 116)	
allCPUsTerminated<40>	4	(77, 78), (94, 95), (111, 112)	
allCPUsTerminated<43>	1	(64, 65)	
allCPUsTerminated<45>	1	(60, 61)	
allCPUsTerminated<47>	1	(138, 139)	
allCPUsTerminated<49>	1	(134, 135)	
allCPUsTerminated<53>	1	(47, 48)	
allCPUsTerminated<55>	1	(43, 44)	
cpu0_0AppCApplicationsn	8	(46, 47), (63, 64), (80, 81), (9	
cpu0_0AppCApplicationsn		(40, 41), (57, 58), (74, 75), (9	
cpu0_0AppCApplicationsn	8	(33, 34), (50, 51), (67, 68), (8	
cpu0_0AppCApplicationsn	8	(37, 38), (54, 55), (71, 72), (8	
cpu0_0AppCApplicationwa		(32, 33), (49, 50), (66, 67), (6	
cpu0_0AppCApplicationwr		(36, 37), (53, 54), (70, 71), (8	
cpu0_0AppCInterfaceDevice		(10, 157)	
cpu0_0AppCInterfaceDevice	1	(0, 1)	
		•	
	Close		

Partitioning Handling security Deployment

Security-Oriented Design with AVATAR

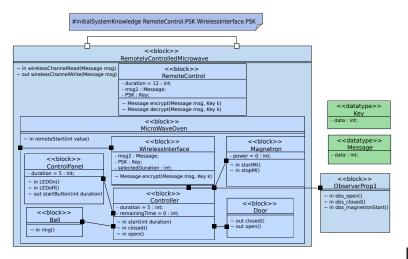
Partitioning Handling security Deployment

Design: Features for Security

Initial knowledge: Introduced as a common knowledge of the system, or of a specific session of the system:

#InitialSystemKnowledge Alice.sk Bob.sk

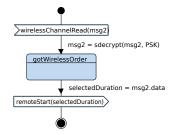
Cryptographic functions: Predefined in each AVATAR block: MAC(), encrypt(), decrypt(), sign(), verifyMAC(), verifySign()...


Communication Architecture: Common public channels can be defined in blocks. Attackers can eavesdrop public channels

Attacker model: Taken from the underlying security framework ProVerif

Partitioning Handling security Deployment

Design: Architecture

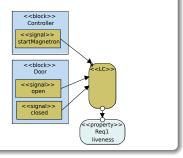


TELECOM ParisTech

Partitioning Handling security Deployment

Detailed Design

- Block's behaviour is described in terms of SysML State Machine Diagrams
- Non deterministic choices, non deterministic temporal operators



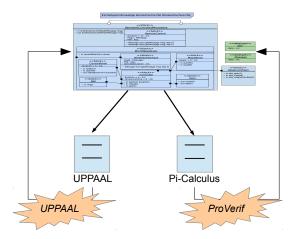
Partitioning Handling security Deployment

Property Modeling

Safety properties

- Customized Parametric Diagrams (TEPE)
- Reachability, liveness

Security properties


- Based on basic pragmas
 - Confidentiality of a block attribute
 - Authenticity of interconnected block signals

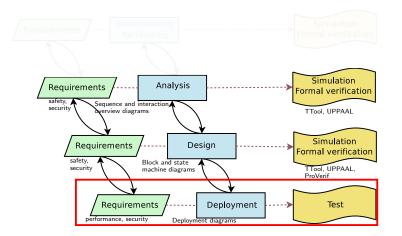
#Confidentiality RemoteControl.duration #Authenticity RemoteControl.SendingRemoteOrder.msg1 WirelessInterface.gotWirelessOrder.msg2

Partitioning Handling security Deployment

Model Transformation for Formal Verification

Partitioning Handling security Deployment

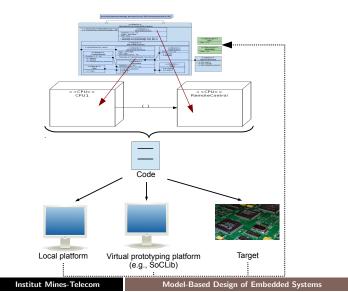
Formal Verification


Push button approach, both for safety and security properties!

Safety properties	Security properties
 UPPAAL based 	 ProVerif based
Verify with UPPAAL: options Search for absence of deadock situations Reachability of selected states Uveness of selected states Custom verification Custom formulae = e your CTL fo Generate simulation trace Show verification details Session id on launcher-1 Sending UPPAAL specification data Reachability of: ObserverProp1.state0: Error -> property is NOT satisfied All Done	Execution Execute ProVerif as packages/proverif/proverif -in pi Show output of ProVerif Confidential Data: duration Non Confidential Data: Satisfied Authenticity: WirelessInterface_gotWirelessOrder_msg2_data

Partitioning Handling security Deployment

Deployment



Partitioning Handling security Deployment

Deployment (Cont.)

May, 2013

38/47

Partitioning Handling security Deployment

Prototyping with SoCLib

• • •	X vcitty		000	Terminal — xterm — 88×24		
> No request selected -	> looking for one!		System	2.2.8 Oct 18 2009 07:49:18		
			Copyright (c	c) 1996-2006 by all Contributors		
> Starting loop > Send sync			 ALL RIGHTS RESERVED 			
> Send sync > Send sync not executa			Packaged for MacOS by Logic Poet: http://www.logicpoet.com			
> Counting requests=: (
> No pending requests			Initializing memorie			
> Adding pending reques	t in outWaitqueue		caba-vgmn-mutekh_kernel_tutorial SoCLib simulator for MutekH			
- Controller -> Waitir	a for request!		Initializing memories with 5a			
- Controller -> Releas	ing nutex		Initializing memorie			
name = Magnetron				variable may contain the following flag letters:		
			X (dont break on e			
		tForStart	C (functions brand			
> Trace function				watchpoints), T (exit sumilation on trap), F (start frozen)		
- Hagnetron -> Locking - Hagnetron -> Hutex I	nutex			.soclib.fr/trac/dev/wiki/Tools/GdbServer		
- Hagnetron -> Foing 1	occed		[GDB] listening on p			
No pequest selected :	- Hagnetron -> Going to execute request No request selected -> looking for one!			Loading at 0x60000000 size 1048576: .text .rodata .excep .contextdata .data .bss		
> Counting requests				supported by Xlib, locale set to C		
> Starting loop			Loading at 0×802000			
> receive sunc			Loading at 0 size 4096: nothing			
> Counting requests=: 1			Loading at 8xbfc80808 size 4096: .boot			
> At least one pending	At least one pending request; 1			I Loading at 8xffffff88 size 128: nothing Loading at 0x80000000 size 16777216: nothing		
> selectedIndex=: 1			Loading at 0x800000	dd size 16777216: nothing		
> Getting request at in	dex: 0	RemotelyControlledMicrowa	Bomoto Control	MicroWaveOven		
Kalifornia (Caller 1	Remoterycontrolleumicrowa	ve RemoteControl	MICIDWaveOven		
	All and a second second					
	StartState()					
			StartState()			
		SendingRemoteOrder	0			
			-			
		sencrypt(12,0)				
		wirelessChan	UM-N - 70x			
		wirelesschani	neiwrite(U)			
				StartState()		
				(December 20)		
				Running()		

39/47 May, 2013 Institut

Institut Mines-Telecom

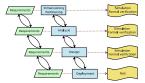
TELECOM ParisTect

Conclusions Perspectives

Introduction

Synthetic overview of contributions

Focus on a few contributions


Conclusions and perspectives Conclusions Perspectives

Conclusions Perspectives

Contributions

- Global approach for complex embedded systems based on Model Driven Engineering techniques
 - Safety-oriented Dimensioning, Analysis, Design, Deployment: TURTLE
 - Partitioning: DIPLODOCUS
 - Requirements and properties: TEPE
 - Safety and security: AVATAR
- Toolkit (TTool)
- Collaboration with academic and industrial partners

Conclusions Perspectives

And So?

Embedded System

Tightly coupled hardware and software integration

MDE is still a software-centric approach!

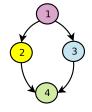
- Definitely not tightly coupled hardware and software methodology!
- Hardware is seen like a resource, i.e. it has no behaviour
- Same remark applies to intermediate layers (e.g., OS, middleware)

Conclusions Perspectives

Hardware in MDE

A few techniques to handle hardware

- UML Deployment diagrams
- SysML / MARTE allocation mechanisms
- DIPLODOCUS mapping
- Platform Independent Model, Platform Specific Model



Conclusions Perspectives

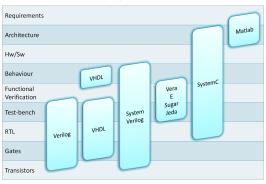
A Graal MDE

Methodological steps

- 1. System partitioning
- 2. Software-centric model-based methodology
 - Including "low level" layers, e.g. drivers, OS. middleware
- 3. Hardware-centric model-based methodology
- 4. Model-based hardware and software integration

MDHSE: Model Driven Hardware and Software Engineering

Meta-modeling for describing languages for all stages



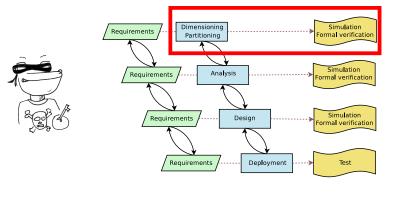
Conclusions Perspectives

MDE for Hardware Design: A Few Issues

Abstraction levels?

- Software: PIM, PSM
- Hardware: Transaction level (TLM, CABA), RTL
- Time handling?
 - Time model of MARTE?
- Is UML adapted as a modeling language? If yes, is it adapted to all abstraction levels?
- Underlying simulation technologies, i.e., model transformation to SystemC, System Verilog, SocLib?

Language Comparison



Conclusions Perspectives

What About Security?

- AVATAR handles security from Analysis to Deployment
- Dimensioning, partitioning are not (yet) handled

Conclusions Perspectives

Questions?

- http://perso.telecom-paristech.fr/~apvrille/
- http://ttool.telecom-paristech.fr/

